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We present a simple, purely analytic method for proving the convergence of a wide class of approximation schemes to the 
solution of fully non linear second-order elliptic or parabolic PDE. Roughly speaking, we prove that any monotone, stable and 
consistent scheme converges to the correct solution provided that there exists a comparison principle for the limiting equation. 
This method is based on the notion of viscosity solution of Crandall and Lions and it gives completely new results concerning 
the convergence of numerical schemes for stochastic differential games. 

O. Introduction 

In this paper we show the convergence of a wide class of approximation schemes to the 
solution of fully nonlinear second-order elliptic or parabolic, possibly degenerate, partial 
differential equations. Roughly speaking, we prove that any monotone, stable and consistent 
scheme converges (to the correct solution) provided that there exists a comparison principle for 
the limiting equation. We then give several examples of concrete schemes where the result 
applies, in order to emphasize both the simplicity and the efficiency of this approach. The 
formulation of the schemes follows along the lines of Souganidis [26] where the analogous 
problem was studied for first-order equations but not in the present generality. The convergence 
result is based upon exploring a basic idea of Barles and Perthame [2,3] regarding passage to the 
limits in fully nonlinear second-order elliptic PDE with only LOO estimates. This method relies on 
the notion of viscosity solutions, introduced by Crandall and Lions [8] for first-order problems 
(see also [7,20]) and extended to second-order equation by Lions [21]. Our approach is purely 
analytic and does not rely on any convexity or concavity assumptions; we are thus able to 
present completely new results concerning convergence of numerical schemes ... etc. These 
results include as special cases most of the results of Bardi and Fa1cone [1], Capuzzo-Do1cetta 
and Falcone [5], Capuzzo-Do1cetta and Ishii [6], Fa1cone [9], Kushner [18,19] and Menaldi 
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[23,24], who deal with convex or concave problems. Our goal in this paper is to underline the 
general unifying principle behind the convergence and to explain the method. Keeping this in 
mind, we have chosen to present several relatively simple examples (some of which have already 
been proved by different methods) without trying to list any optimal conditions. 

In order to give a flavor of the results of the paper, we next present a special case as an 
example. In particular, we consider the Cauchy problem 

ut +F(D 2 u)=0 in!RNx(O, T), 

u = U o on!R N X {O}. 

(O.la) 

(O.lb) 

Here u and F are continuous functions of their arguments, D 2 u denotes the second derivative 
matrix of u with respect to x, and F is assumed to be elliptic, i.e. 

F(M) <.F(N) ifM");N, (0.2) 

for all M, NE SN (the space of n X n symmetric matrices). The relation M"); N should be 
understood as the usual partial ordering of symmetric matrices. It is well known (cL [13-17]) that 
if F is uniformly continuous and Uo E BUC(!R N), then (0.1) has a unique solution in BUC(!R N X 

[0, T]), where BUC(D) denotes the space of bounded uniformly continuous functions defined 
on D. 

We now construct a general scheme that is supposed to approximate (0.1). To this end, for 
p > 0 let S(p): B(!RN) ~ B(!RN) 1 be such that 

and 

S ( p ) u "); S ( P ) v if u"); v, 

S(p)(u+k)=S(p)u+k (kE!R), 

cp - S( p) cp ~ F(D2cp) as p ~ 0 for all cp E Coo. 
p 

Given such an S and a positive integer M we define UM:!RN X [0, T] ~ !R as follows: 

U M ( ., t) = {s ( t - i ~ ) U M ( ., i ~ ) ( . ) if t E (i ~, (i + 1) ~ 1 , 
U o (- ) if t = O. 

(0.3) 

(0.4) 

(0.5) 

Theorem. Assume (0.2)-(0.5) and Uo E BUC(!RN). Then uM ~ u locally uniformly on !RN X [0, T] 
as M ~ 00. D 

We continue with two applications of this Theorem. One comes from the theory of stochastic 
differential games (cf. Fleming and Souganidis [10]), the other is related to the convergence of 
finite difference approximations to the solution of (0.1). 

Example 1 (cf. [10]). Suppose that 

F(M) = max min {-trace ±a(y, z)M} 
yE Y zEZ 

(0.7) 

I B(D) is the space of bounded functions defined on D. We use such a notation (instead of LOO) to point out that no 
measure theory is involved in this framework. 
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where Y, Z are compact sets and a = (J(J', and define 

S(p) u(x) = min maxEu{x + pl/2(J1]) 
yE Y zEZ 
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where 1] is a mean zero random vector whose components are independent and take values ± 1. 
Here Eg denotes the expected value of g. The function uM defined by (0.6) and the S above 
converges as M ~ 00 to the lower value of the stochastic differential game with dynamics 

dXs = a(y" Z,) dfY" Xl = x 

and payoff Euo( XT ). 

Example 2. For the sake of simplicity we assume here that N = 1 and define 

( 
u ( x + (ap) 1/2) - 2 u (x) + u ( x - (ap ) 1/2) ) 

S(p)u(x) = u(x) - pF . ap 

The function U M defined by (0.6) and the above S converges as M ~ 00 to the unique solution of 
(0.1) for a sufficiently large. Such results were known but only in the case the F is either convex 
or concave and uniformly elliptic, neither of which are necessary for our theory. 

The paper is organized as follows: in Section 1 we discuss the equations and the notion of 
solution we are considering in the generality needed to cover all the examples later. Section 2 is 
devoted to the construction of the approximation schemes and the proof of the convergence. 
Section 3 is devoted to examples. 

1. Discontinuous viscosity solutions of fully nonlinear second-order equations 

In this section we consider fully nonlinear, second-order elliptic or parabolic equations and 
discuss the notion of weak solutions (viscosity solutions) to such equations. Continuous viscosity 
solutions in the context of second-order equations were first introduced by Lions [21]. (For an 
overview of the theory we refer to Lions and Souganidis [22]). The basic ideas explained below 
regarding discontinuous solutions are due mostly to Ishii [12] and Barles and Perthame [2,3]. 

The equations we are considering are of the form 

F(D 2u, Du, u, x) = 0 in fJ. (1.1) 

Here fJ is an open subset of IR N, Q is its closure, the functions F: SN X IR N X IR X fJ ~ IR and 
u: Q ~ IR are locally bounded (possibly discontinuous) and, finally, Du and D 2u stand for the 
gradient vector and second derivative matrix of u. 

We will say that (1.1) is elliptic if for all (p, u, x) E IRN X IR X Q 

F(M, p, u, x) ~ F(N, p, u, x) for all M, NE SN such that M?- N, (1.2) 

where M?- N is the usual partial ordering of SN. 
Next we recall the notions of the upper semi-continuous (use in short) and the lower 

semi-continuous (lsc in short) envelopes of a function z: C ~ IR N, where C is a closed subset of 
IR N. These are 

z * ( x) = lim sup z ( y ) , 
y'-'x 
yEC 

(1.3) 
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z * ( x) = lim inf z ( y ) , 
y-->x 
yEC 

(1.4) 

respectively. In the sequel, we will consider the cases where z == u with C == D and z == F with 
C == SN X IR N X IR X D. 

Definition 1.1. A locally bounded function u: D ~ IR is a (viscosity) subsolution (respectively 
supersolution) of (1.1), if for all cp E C 2(D) and all x E D such that u* - cp (respectively u* - cp) 
has a local maximum (respectively minimum) at x, we have 

F*(D 2cp(x), Dcp(x), u*(x), x) ~O 

(respectively 

F*(D2cp(X), Dcp(x), u*(x), x) ~ 0). 

(1.5) 

(1.6) 

The function u is said to be a (viscosity) solution of (1.1), if it is both sub- and supersolution of 
(1.1). 

Viscosity solutions turn out to be unique under very general assumptions (cf. [7,8,13-17]) and 
stable under passage to limits (cf. [2,3,7,8,12]). Both these facts are used strongly in the ne~ 
sections. Here we want to take some time to explain the, admittedly, strange setting of (1.1) in D 
instead of D. The reason is, loosely speaking, that we want to write both the equation and the 
boundary conditions as one expression. Indeed, let us consider for example the Dirichlet 
problem 

H(D 2u, Du, u, x) = 0 in D, 

u = cp on aD. 

(1.7a) 

(1.7b) 

We can write (1.7) as in (1.1), if we consider the boundary condition only as a discontinuity of 
the equation. To this end, if F: SN X IR N X IR X D ~ IR is defined by 

( ) _ {H(M, p, u, x) 
F M, p, u, x -

u-cp 

then (1.7) becomes 

F(D 2u, Du, U, x) = 0 on D. 

if x E D, 

if x E aD, 

For a locally bounded function u: D ~ IR to be a viscosity solution of (1.7), in view of Definition 
1.1, we need u to satisfy in the viscosity sense 

and 

H(D 2u, Du, u, x) = 0 in D, 

max(H(D2u,Du, u, x), u-cp)~O on aD, 

min( H(D 2u, Du, U, x), u - cp) ~ 0 on aD. 

(1.8) 

(1.9a) 

(1.9b) 

It is well known (cf. Gilbarg and Trudinger [11]) that (1.7) does not have, in general, a solution 
which assumes the boundary conditions continuously. Therefore (1.8) and (1.9) appear to be its 
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"natural" replacement. On the other hand, in some "regular" cases (for example, 
H(D 2u, Du, U, x) = -(j.u - f(x)), the boundary condition u = cp on aQ can be recovered by 
using a suitable (or a suitable sequence of) test function cp in Definition 1.1 (for example 
± { 1 x - Xo 12/E + ME 10g(1 + KEd(x, aQ))} for suitable constants ME and KE if Xo E aQ). This 
reflects the impossibility of the inequalities H(D 2u, Du, U, x) ~ ° and H(D 2u, Du, U, x) :;:, ° 
on aQ in these cases. Of ~ourse, all these remarks are valid for any type of boundary conditions 
(Neumann or oblique derivatives, mixed, state-constraints, etc.). 

2. The convergence result 

We consider approximation schemes of the form 

S(p, x, uP{x), up) = ° in Q. (2.1) 

Here S: IR + X Q X IR X B( Q) ~ IR is locally bounded, where IR + == [0, 00). We prove that as long 
as these schemes are monotone, stable and consistent, they converge to the solution of (1.1), 
provided that the latter problem admits a comparison principle. 

We next formulate the precise assumptions on S. (As mentioned in the Introduction the 
presentation here follows the one of [26], the results, however, extend those of [26]). The first 
assumption is the monotonicity, i.e. 

S(p,x,t,u)~S(p,x,t,v) ifu:;:,v forallp:;:,O, xEQ, tEIR and 

u, v E B(Q). 

The stability of S reads as follows: 

For all p > 0, there exists a solution uP E B(Q) of (2.1)' 

with a bound independent of p. 

The scheme defined by (2.1) also has to be consistent, i.e. for all x E Q and cp E C;:( Q) 

lim sup S(p, y, cp(y) +~, cp+~) ~F*(D2cp(X), Dcp(x), cp(x), x), 
p-+O p 
y-+x 
~-+O 

and 

lim inf S (p, y, cp (y) + ~, cp + ~) :;:, F* (D 2cp (x), Dcp (x), cp (x), x). 
p-+O p 
y-+x 
~-+O 

Finally, we assume that (1.1) has the following strong uniqueness property: 

(2.2) 

(2.3) 

(2.4a) 

(2.4b) 

If u E B(Q) is an usc solution of (1.1) and v E B(Q) is a Isc solution of (1.1), then 

u ~ v on Q. (2.5) 

Theorem 2.1. Assume (2.2), (2.3), (2.4) and (2.5). Then, as p ~ 0, the solution uP of (2.1) 
converge locally uniformly to the unique continuous viscosity solution of (1.1). 
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Remark 2.1. The monotonicity assumption (2.2) is the analogue to the ellipticity condition (1.2); 
it ensures some maximum principle type property for the scheme. The numerical schemes 
considered in optimal control or differential games are often based on the dynamic programming 
principle (cf. [1,5,6,9,18,19,23,24]). In this case, this assumption is automatically satisfied. 
Finally, it can be relaxed in several ways, since in fact the inequality in (2.2) needs only to hold 
within up to o( p) terms. 

Remark 2.2. In the framework presented in Section 1, (2.4) stands for the natural replacement of 
the usual consistency requirement like (0.5). Finally, let us mention that (2.5) is the only limiting 
step of our method. 

Proof. Let U, !:!: E B(.Q) be defined by 

U ( x) == hm sup uP (y ) and !:!: (x) == lim inf uP ( Y ) . 
y->x 
p->O 

y->x 
p->O 

(2.6) 

We claim that u and!:!: are respectively sub- and supersolutions of (1.1). AssuEle for the moment 
that this claim is true; then, since u is use and!:!: is lse, (2.5) yields u ~ !:!: on .Q. But the opposite 
inequality is obvious by the very definition of u and !:!:, hence 

u==u=u 

is the unique continuous solution of (1.1) (again by (2.5)). This fact together with (2.6) also imply 
the local uniform convergence of uP to U. 

Next we prove the above claim. Here we only consider the u ~ase, since the argum~nt for !:!: is 
identical. To this end, let xo be a local maximum of u - cp on .Q for some cp E C;:( .Q). Without 
any loss of generality, we may assume that Xo is a strict local maximum, that u(xo) = cp(xo) and, 
finally, that cp> 2 sUPp 11 uP 11 co outside the ball B(xo, r), where r> 0 is such that 

u(x)-cp(x)~O=u(xo)-cp(xo) in B(xo, r). 

Then there exist sequences Pn E IR + and Yn E .Q such that as n ~ 00 

Pn ~ 0, Yn ~ Xo, uPn(Yn) ~ u(xo), and 
(2.7) 

Yn is a global maximum point of uPn ( . ) - cp ( . ). 

Den~ting by ~n the quantity uPn(Yn) - CP(Yn), we have ~n ~ 0 and uPn(x) ~ cp(x) + ~n for all 
x E.Q. 

The definition of uP, the mono tonicity of Sand (2.7) above yield 

S(Pn, Yn, CP(Yn) + ~n' cp + ~n) ~ O. 

Taking limits in (2.8) and using the consistency of S «2.4)) we get 

O 1· . f S(Pn' Yn' cp(yJ + ~J > lmm 
n Pn 

1· . f S(p, Y, cp(y) +~, cp+O > lmm 
p->o P 

y->Xo 
~->O 

> F*(D 2cp(xO)' Dcp(xo), cp(xo), x o), 

which is desired inequality, since u(xo) = cp(xo). D 

(2.8) 
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3. Examples 

We present three examples of applications of the result of the preceding section. The first one 
is the convergence of the Trotter-Kato product formula. The second is motivated by the theory 
of stochastic differential games. Finally, the last example proves the convergence of numerical 
approximations to solution of (1.1). References to related results will be given, when each 
example is discussed. We refer, however, to Souganidis [26] for analogous results for the 
first-order case. Finally, we remark, that all examples below will be descripted for special cases 
of (1.1), but they can be extended, under suitable hypotheses, to very general equations. 

Example 1 (Trotter-Kato products). We are interested in expressing the solution of the Cauchy 
problem 

in IRN X (0, (0), 

on IRN X {o}, 

in terms of the solution of Cauchy problems of the form 

( 
Vi'~+ r; (D 2vi ) = ° 
Vi - vi,a 

in IRN X (0, (0), 

on IRN X {o}, 
(i=1,2), 

(3.1a) 

(3.1b) 

(3.2) 

Here F1, F2 : SN ~ IR are uniformly continuous and satisfy (0.2). If ua' VI a, V2 a E BUC(IR N), it 
follows ([13-17]) that (3.1) and (3.2) have unique solutions and satisfy (2.5). If we denote by 
SFj +F2 and SFj the solution operators of (3.1) and (3.2) respectively, then (cf. [13-17]) 

SFj(p)u?-SFj(p)v if u?-v and p?-o (i=1,2), (3.3) 

and 

S Fj ( p ) ( u + k) = S Fj (p ) u + k for all k E IR (i = 1, 2). (3.4) 

We next construct the Trotter-Kato product which approximates SF +F(t)Ua. To this end, let 
j 2 

P = {o = ta < ... < tn = T} be a partition of [0, T] and define 

if t E (t i' t i + 1] , 
if t = 0. 

Theorem 3.1. As 11 P 11 ~ 0, up(x, t) ~ SFj +F2(t)Ua(x) locally uniformly on IRN X [0, T], where 

11 P 11 = max a ,;;; i ,;;; n - 1 1 t i + 1 - t i I· 0 

Proof. For V E B(IR N X [0, T]) define 

S(p, x, t, v(x, t), v) =v(x, t) - [SF2(P)SFj (P)V(-, t)](x). 

In view of (3.3) and (3.4) and [13-17], S satisfies (2.2), (2.3) and (2.5). In order to apply Theorem 
2.1, we need to check (2.4). This, however, follows from the definition of S and the fact that 

cp(x) - SF(P)CP(X) 
p2 p--->o' F2(D2cp(X)) 
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and 

cj>(x) - SF,(P)SF2 (P)cj>(x) _ ( )(D2 ( )) 
P p-->O) PI +F2 cj> x 

locally uniformly in IRN for all cj> E C;'(IRN). These two facts are not really immediate, but follow 
along the lines of the analogous results for first-order problems of [26], thus we omit their proof. 

Theorem 2.1 now yields that uP converge locally uniformly to the unique solution of the 
problem 

Ut + F(D 2u) = 0 in IRN X (0, T], 
max(ut +P(D2u), u-uo);;~O onlRNx {O}, 

min(!it + P(D2!i), !i - uo) ~ 0 on IRN X {O}, 

provided that the latter has a strong comparison principle, which is the case. We conclude by 
remarking that the two inequalities above yield u(·, 0) ~ Uo in IR Nand !i(., 0) ~ Uo in IR N (cf. 
[4]), thus the result. 0 

We conclude the discussion about Trotter-Kato products by remarking that we can treat more 
general functions F; (i = 1, 2) as well as more general problems than the Cauchy problems. 

Example 2 (Stochastic Differential Games). The relation between the theory of two players, zero 
sum, stochastic differential games and second-order nonlinear PDE's, as well as the existence of 
a value for the game, was developed in a paper by Fleming and Souganidis [10] ([10] studies only 
the finite horizon case, but the results extend easily to other situations). Here, we only review the 
PDE-aspects of the theory for infinite horizon game set in an open bounded set g. The game, 

I 

which we do not describe here, has a lower and an upper value u- and u+ respectively, which 
are solutions of the equations 

and 

P-(D2u+, D 2u+, u+, x) = 0 in g, 

u+= cp on ag, 

F+(D 2u-, Du-, u-, x) = 0 in g, 

u-= cp on ag, 

where p+ and P- are defined by 

(3.7a) 

(3.7b) 

(3.8a) 

(3.8b) 

P+{M, p, t, x) == min max{ -Tr{ O"ap(x)O"~(x)M} - b",p(x)p + cap(x)t - fc,p(x)}, 
aEA f3EB 

(3.9) 

and 

P- (M, p, t, x) == max min {-Tr{ O"ap(x )O"~(x)M} - bap{x)p + cap{x)t - faP{x )}. 
f3EB aEA 

(3.10) 
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Here A and B are given compact sets, oap E M(N, m) (the set of N X m matrices), baP E IR N , 

0a/J' baP' Cap and fap are given uniformly bounded and Lipschitz continuous functions in x 
uniformly with respect to (a, f3) E A X Band o;p denotes the adjoint matrix of oap' Finalb::, 
cp E C(iW) and there exists a constant co> 0 such that cap(x) ~ Co for all (a, {3, x) EA X B X D. 

If the Isaacs' condition holds, i.e. if 

P+(M, p, t, x) = P-(M, p, t, x) for all (M, p, t, x), 

and if u± are continuous on aa with u±= cp on aD, then the uniqueness results ([13-17]) 
regarding (3.7) and (3.8) yield 

u+= u- on a, 
in which case we say that the game has a value. A condition which guarantees the continuity of 
u ± on aa is 

(3.11) 

where n denotes the unit outward normal of aa. Such a condition was already used by Oleinik 
[25] to treat degenerate elliptic PDE's. We will explain later why such a condition yields the 
desired continuity. 

Now we introduce our approximation scheme. We will concentrate on (3.7); everything that 
follows, however, can be routinely changed to apply to (3.8). We define 

S(p, x, u(x), u) 

== inf sup {lr E{[ u(x) - pfaP(x) - u(Xp) e-Cop(X)p]x{X E.Q} 

aEA /JEB p 

+ e-cofl(x)p [u(x) - <p(x)] X{Xp$.Q}}} (x Ea), 

where Xp == x + ba/J(~)P + 0aP(x)n:-:" n:-:, is a standard Brownian motion in IR N , <p is a continuous 
extension of cp to a, XD denotes the indicator function of the set D and E stands for the 
expected value. 

Our result is: 

Theorem 3.2. Let baP' Cap, faP and cp be as above and assume (3.11). Then the problem 

S(p,x,uP(x),up)=O inQ 

has a unique solution uP such that uP ~ u locally uniformly, u being the unique solution of (3.7). 
p ..... O 

Proof. Equation (3.12) can be rewritten as 

hence 

up{x) = sup inf E{[ pfap(x) + up( Xp) eCo/l(X)p 1 X{XpE.Q} 
aEA f3EB 

+ [(p - e-Cop(X)p) up(x) + e-Cop(X)P<p(x)] x{Xp$.Q}}; 

(3.13) 
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where, in view of (3.11), T;,_is a strict contraction. By the classical fixed point theorem, (3.13) has 
a unique solution uP E C( a). Moreover, it is easy to check that 

The monotonicity of S is obvious; the consistency follows from standard stochastic calculus 
arguments via Ito's formula. We only need to check (2.5). To this end, let u and v be respectively 
an usc subsolution and a lsc subsolution of (3.7) and recall that the Dirichlet condition on aa 
means 

min(F+(D2u,Du, u, x), u-<p)<O on aa, 

max( F+ (D 2v, Dv, v, x), v - <p) ~ ° on aa. 
We claim that in fact we have u < <p and v ~ <p on aa. If this is true, then (2.5) follows from 
standard uniqueness results ([13-17]). Here we only check that ~ < <p on aa. The other 
inequality follows in exactly the same way. Let Xo E aa. Since u E B( a), the function 

has a maximum point in {x Ea/ d(x) < e/2K} for M large enough, where d denotes the 
distance from aa. Moreover, x€ ~ Xo as e ~ 0. It then follows that, for K sufficiently large and e 
small, x€ E aa and u(x€) < <p(x€). Indeed, if not, then 

F+( D2<p€(x€), D<p€(xJ, u(x€), xJ < 0, 

where <P€(x) = / x - Xo /2/e2 + [d(x)/e - Kd 2(x)/e2 ]M. Using (3.9) we obtain 

inf sup { - trace( oaj3(x€)o;j3(xJ) + MKI o;j3(xJn (x€) 12 + 0(1)) < 0, 
aEA f3EB 

where n(xJ = - Dd(x€). If K and M are large enough, the above inequality yields a contradic
tion for e small, in view of (3.11) and boundedness of uaj3 . 

Finally, since x€ is a maximum point of u - <P€, 

This inequality together with the uppersemicontinuity of u, yields u(x€) ~ u(xo) as e ~ ° and, 
therefore, 

Example 3 (Numerical Approximations). We are now interested in a numerical scheme approxi
mating (0.1). We present two examples. 

For the first example, in order to simplify the presentation, we consider the case when N = 1 
and U o is I-periodic, which in turn yields that u is I-periodic in x. To compute the solution, we 
consider a grid in space and time of mesh size Llx and Llt respectively, and denote by M and P 
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the integers such that M ~x = 1 and P M = T. Finally, we write uj for the quantity 
u(j ~x, n M). One of the simplest scheme approximating u is given by 

(3.14a) 

uJ = uo(} ~x), (3.14b) 

for 0 ~ n < P and for j E Z with the convention that Uj+M = uj. This implies in particular that 
the domain of (real) computation is bounded. Finally, let us denote by u/::"x,11t the function 
defined by 

u/::,.x,l1t{x, t)=uj ifxE[(j-1) ~X,(j+1) ~x) and tE[(n-1) ~t,(n+1) ~t), 

where uj is defined by (3.14). 

Theorem 3.3. Assume (0.2), Uo E C(IR) and (M/(~X)2) 11 F' 11 00 ~ 1. Then 

u/::"x,11t ~ u uniformly in IR X [0, T] as 1 ~x 1 + 1 M 1 ~ O. 0 

We leave the proof to the reader since, in fact, all the assumptions of Theorem 2.1 are easily 
checkable, (2.5) being a consequence of the results of [13-17]. 

We now present one more example which is motivated from the theory of stochastic 
differential games. (See also Kushner [18,19] where the analogous problem is treated for convex 
F's via purely probabilistic methods). For simplicity we consider the problem 

Ut + max min{-a~J:f3(x)uxx - b~,f3(x)ux} = 0 in IRN X (0, T), 
0' f3 I J { 

(3.15a) 

(3.15b) 

where for all lX, f3 the matrix « a~/)) is uniformly elliptic and the functions a~/ and b~,f3 are 
bounded and uniformly Lipschitz continuous. Following [18,19], we approximate ux(x) either 
by (u(x + e;h) - u(x))/h if b~,f3(x)? 0 or by (u(x) - u(x - e;h))/h if b~,f3(x) < 0'. In either 
case we write Dtxu for the difference quotient. As far as the second derivatives go, we 
approximate ux;x;(x) by 

u{x + e;h) + u{x - e;h) - 2u(x) 

h2 

and uxx(x) by either 
, J 

2u(x) + u(x + e;h + ejh) + u(x - e;h - ejh) 

2h2 

u(x + e;h) + u(x - e;h) + u(x + ejh) + u(x - ejh) 

2h2 
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if ai/x) ? 0 or by 

-2u(x) + u(x + eih - ejh) + u(x - eih + ejh) 

2h2 

u(x + eih) + u(x - eih) + u(x + ejh) + u(x - ejh) 
+ 2h2 

if aij(x) < O. In all cases, we write Di:,xU. The approximating operator is defined by 

S(p)u(x) = u(x) - pm:x ~n { -a~f(x)D!j,xu - b~,f3(x)Df,xu}. 

Theorem 3.4. Assume that 

a~,f3(x) - L la~/(x) I? 0 for all i, x, a, {3. 
j*i 

The scheme defined by S converges locally uniformly to the unique solution of (3.15). 0 
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