Lecture 2

Solving the Income Fluctuation Problem Numerical Dynamic Programming

Macroeconomics EC442

Benjamin Moll

London School of Economics, Fall 2020

What do the following words mean (when used in economics)?

- 1. deterministic
- 2. stochastic
- 3. idiosyncratic
- 4. i.i.d.
- 5. rational expectations
- 6. rational
- 7. partial equilibrium
- 8. general equilibrium
- 9. ... what else?

Plan for remaining lectures before break

- 1. Income fluctuation problem a.k.a. consumption-saving problem with idiosyncratic labor income risk in partial equilibrium
 - Ethan already covered this
- 2. Numerical dynamic programming a.k.a. numerical solution of Bellman equations
 - application: numerical solution of income fluctuation problem
- 3. Textbook heterogeneous agent model: Aiyagari-Bewley-Huggett
 - income fluctuation problem, embedded in general equilibrium
- 4. Perpetual youth model
- 5. Further directions
 - business cycles with heterogeneous agents (idiosyncratic + aggregate risk): Den Haan & Krusell-Smith
 - Heterogeneous Agent New Keynesian (HANK) models
 - Why is the wealth distribution so skewed?

Useful references & resources – see syllabus for more

- Key papers in literature
 - Aiyagari (1994)
 - Huggett (1993)
- Textbook treatment: Ljungqvist-Sargent "Recursive Macro Theory"
 - Part IV "Savings Problems and Bewley Models"
- Matlab, Python & Julia codes: http://benjaminmoll.com/ha_codes/ (Note: .zip file, my Google Chrome tries to block download)
 - written by Greg Kaplan in Matlab
 - translated to Python & Julia by Tom Sweeney
- Other computational resources
 - http://quant-econ.net/, particularly Aiyagari model codes Python: http://quant-econ.net/py/aiyagari.html Julia: http://quant-econ.net/jl/aiyagari.html

The Income Fluctuation Problem

Income fluctuation problem: Overview

- Individuals are subject to exogenous income shocks. These shocks are not fully insurable because of the lack of a complete set of Arrow-Debreu contingent claims
- 2. There is only a risk-free asset (i.e., and asset with non-state contingent rate of return) in which the individual can save/borrow, and that the individual faces a borrowing (liquidity) constraint
- 3. A continuum of such agents subject to different shocks will give rise to a wealth distribution
- 4. Integrating wealth holdings across all agents will give rise to an aggregate supply of capital
 - Have already seen 1. and 2. in Ethan's part of the course

Liquidity Constraints

• Modify PIH so that household maximizes

$$\max_{a_{t+1}} E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

s.t. $c_t + a_{t+1} \le y_t + Ra_t$
and $a_{t+1} \ge \phi$,

where ϕ is a liquidity constraint.

• Modified Euler equation

$$u'(c_{t}) = \beta RE_{t}u'(c_{t+1}) + \mu_{t}$$

or

$$u'(c_t) \geq \beta R E_t u'(c_{t+1})$$
 ,

with strict inequality only if $a_{t+1} = \phi$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

3

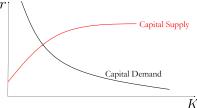
• Will change notation very slightly: \underline{a} instead of ϕ

$$\max_{\substack{\{a_{t+1}\}_{t=0}^{\infty}}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t) \quad \text{s.t.}$$
$$c_t + a_{t+1} \le y_t + Ra_t$$
$$a_{t+1} \ge \underline{a}$$

• Will also interchangeably use R and 1 + r to denote gross return

What we'll do next

- In general, no analytic solution ⇒ learn how to solve income fluctuation problem on a computer
 - Bellman equation
 - wealth distribution generated by optimal saving behavior
- 2. "Close the model" i.e. embed the income fluctuation problem in general equilibrium, thereby endogenizing r
 - Different ways of doing this ⇔ different assumptions on where capital demand comes from
 - Aiyagari: K demand of rep firm, Huggett: bonds w K = 0, ...



Deterministic Saving Problem Deterministic Dynamic Programming

Saving Problem with Deterministic Income

• Assume that income is deterministic and constant $y_t = y$

$$\max_{\substack{\{a_{t+1}\}_{t=0}^{\infty}\\ c_t + a_{t+1} \le y}} \sum_{t=0}^{\infty} \beta^t u(c_t) \quad \text{s.t.}$$
$$c_t + a_{t+1} \le y + Ra_t$$
$$a_{t+1} \ge \underline{a}$$

• Recursive formulation of household problem Bellman equation

$$V(a) = \max_{c,a'} u(c) + \beta V(a') \quad \text{s.t.}$$
$$c + a' \le y + Ra$$
$$a' \ge \underline{a}$$

- Functional equation: solve for unknown function
- Arguments of value function are called state variables
- Solution is
 - Value function: V(a)
 - Policy functions: c(a), a'(a)

Euler Equation from Bellman Equation

• Form Lagrangean:

$$\mathcal{L} = u(c) + \beta V(a') + \lambda [y + (1+r)a - c - a'] + \mu [a' - \underline{a}]$$

• First order conditions with respect to *c* and *a*':

$$u'(c) = \lambda$$

 $eta V'(a') = \lambda - \mu$

• Envelope condition:

$$V'(a) = \lambda(1+r) \quad \Rightarrow \quad V'(a') = \lambda'(1+r)$$

• Substitute into FOC for a'

$$\lambda - \mu = \beta(1 - r)\lambda'$$

• Using FOC for c

$$u'(c) = \beta(1+r)u'(c') + \mu$$

• Since $\mu \ge 0$ this is typically written as

$$u'(c) \ge \beta(1+r)u'(c')$$

Value Function Iteration

- Easiest method to numerically solve Bellman equation for V(a)
- Guess value function on RHS of Bellman equation then maximize to get value function on LHS
- Update guess and iterate to convergence right until convergence
- Contraction Mapping Theorem: guaranteed to converge if $\beta < 1$
- We will learn other methods later, but this is simplest (and slowest)

- Step 1: Discretized asset space $\mathcal{A} = \{a_1, a_2, \dots, a_N\}$. Set $a_1 = \underline{a}$
- Step 2: Guess initial $V_0(a)$. Good guess is

$$V_0(a) = \sum_{t=0}^{\infty} \beta^t u(ra+y) = \frac{u(ra+y)}{1-\beta}$$

• Step 3: Set $\ell = 1$. Loop over all \mathcal{A} and solve

$$\begin{aligned} a'_{\ell+1}(a_i) &= \arg\max_{a'\in\mathcal{A}} u\left(y + (1+r)a_i - a'\right) + \beta V_{\ell}(a') \\ V_{\ell+1}(a_i) &= \max_{a'\in\mathcal{A}} u\left(y + (1+r)a_i - a'\right) + \beta V_{\ell}(a') \\ &= u\left(y + (1+r)a_i - a'_{\ell+1}(a_i)\right) + \beta V_{\ell}\left(a'_{\ell+1}(a_i)\right) \end{aligned}$$

• Step 4: Check for convergence $\epsilon_{\ell} < \bar{\epsilon}$

$$\epsilon_{\ell} = \max_{i} |V_{\ell+1}(a_i) - V_{\ell}(a_i)|$$

- if $\epsilon_{\ell} \geq \overline{\epsilon}$, go to Step 2 with $\ell := \ell + 1$
- If $\epsilon_{\ell} < \bar{\epsilon}$, then
- Step 5: Extract optimal policy functions

•
$$a'(a) = a_{\ell+1}(a)$$

- $V(a) = V_{\ell+1}(a)$
- c(a) = y + (1 + r)a a'(a)
- Consumption function restricted to implied grid so not very accurate.

• Sometimes people write

$$V(a_t) = \max_{c_t, a_{t+1}} u(c_t) + \beta V(a_{t+1}) \quad \text{s.t.}$$
$$c_t + a_{t+1} \le y + Ra_t$$
$$a_{t+1} \ge \underline{a}$$

- Please don't do this!!!
- Why not?

Finite Horizon Dynamic Programming

• Value function depends on time *t*

$$V_t(a) = \max_{c,a'} u(c) + \beta V_{t+1}(a')$$

subject to
$$c + a' \le y_t + (1+r)a$$

$$a' \ge \underline{a}$$

- Solution consists of sequence of value functions {V_t(a)}^T_{t=0} and sequence of policy functions {c_t(a), a'_t(a)}^T_{t=0}
- Solve by backward induction. Last period:

$$a'_{T}(a) = 0$$

 $c_{T}(a) = y_{T} + (1+r)a$
 $V_{T}(a) = u(y_{T} + (1+r)a)$

- Why does the state variable *a* still not have a time subscript?
- Code: vfi_deterministic_finite.m

Income Fluctuation Problem Stochastic Dynamic Programming

Sequence Formulation

• Sequence Formulation of household problem

$$\max_{\substack{\{c_t, a_{t+1}\}_{t=0}^{\infty} \\ b \in C_t}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$
subject to
$$c_t + a_{t+1} \le y_t + (1+r) a_t$$
$$a_{t+1} \ge \underline{a}$$
$$a_0 \text{ given}$$

• Assume y_t is a Markov Process: CDF F satisfies

$$F(y_{t+1}|y^t) = F(y_{t+1}|y_t)$$

where $y^t := \{y_0, y_1, \dots, y_t\}$ denotes history of income realizations

• Bellman equation for household problem

$$V(a, y) = \max_{\substack{c, a' \\ subject \text{ to}}} u(c) + \beta \mathbb{E} \left[V(a', y') | y \right]$$

subject to
$$c + a' \leq y + Ra$$

$$a' \geq \underline{a}$$

- Solution consists of
 - Value function: V(a, y)
 - Policy functions: c(a, y), a'(a, y)

• When y is IID, can define cash-on-hand x

$$x = y + Ra$$

• Bellman equation becomes

$$V(x) = \max_{c,s} u(c) + \beta \mathbb{E} \left[V \left(Rs + y' \right) \right]$$

subject to
$$c + s \le x$$

$$s \ge \underline{a}$$

- Solution consists of
 - Value function: V(x)
 - Policy functions: c(x), a'(x)

• We form Lagrangian

$$V(a, y) = \max_{c, a'} u(c) + \beta \mathbb{E} \left[V(a', y') | y \right] + \lambda \left[y + (1+r) a - c - a' \right]$$
$$+ \mu \left[a' - \underline{a} \right]$$
$$s.t. \ \mu \ge 0, \ \lambda \ge 0$$

$$u'(c) = \lambda$$
 [c]

$$\beta \mathbb{E}\left[V_a\left(a', y'\right)|y\right] = \lambda - \mu \qquad [a']$$

• Envelope condition

$$V_a(a, y) = \lambda (1+r)$$
$$V_a(a', y') = \lambda' (1+r)$$

• Using FOC for a' and envelope condition

$$\lambda - \mu = \beta (1 + r) \mathbb{E} [\lambda' | y]$$

• Using FOC for c

$$u'(c) = \beta (1+r) \mathbb{E} \left[u'(c') | y \right] + \mu$$

• Since $\mu \ge 0$, Euler Equation (EE) is

$$u'(c) \ge \beta (1+r) \mathbb{E} \left[u'(c') | y \right]$$

- Notes:
 - Expectation is conditional on all information at t
 - Borrowing constraint binds \implies EE strict inequality
 - Borrowing constraint not binding \implies EE equality

Discrete-State Markov Process for Income

- Finite number of income realizations: $y \in \{y_1, \cdots, y_J\}$
- P is Markov transition matrix where
 - (j, j')th element of **P** is $Pr(y_{t+1} = y_{j'}|y_t = y_j) = p_{jj'}$
 - $\forall j, j' p_{jj'} \in [0, 1]$
 - $\forall j, \quad \sum_{j'=1}^{J} p_{jj'} = 1$
- Stationary distribution is vector π with elements π_j
 - solves

$$\pi = \mathbf{P}^{\top} \pi$$
, $\mathbf{P}^{\top} = \text{transpose of } \mathbf{P}$

(Eigenvalue problem = same form as $\mathbf{Av} = \lambda \mathbf{v}$ with $\lambda = 1$; Equivalently row vector $\tilde{\pi}$ s.t. $\tilde{\pi} = \tilde{\pi} \mathbf{P}$)

• easy method for finding π in practice: take N large, some π_0

$$\pi \approx (\mathbf{P}^{\top})^N \pi_0$$

• Logic: $\pi_{t+1} = \mathbf{P}^{\mathsf{T}} \pi_t$ and hence $\pi \approx \pi_N = (\mathbf{P}^{\mathsf{T}})^N \pi_0$

$$V(a, y_j) = \max_{c, a'} u(c) + \beta \sum_{j'=1}^{J} V(a', y_{j'}) p_{jj'}$$

subject to
$$c + a' \le y_j + (1 + r) a$$

$$a' > a$$

• Euler Equation is

$$u'(c(a, y_j)) = \beta (1+r) \sum_{j'=1}^{J} u'(c(a, y_{j'})) p_{jj'}$$

• Solution is set of J functions $c(a, y_j)$

Value Function Iteration - see vfi_IID.m

- Step 1: Discretized asset space $\mathcal{A} = \{a_1, a_2, \dots, a_N\}$. Set $a_1 = \underline{a}$
- Step 2: Guess initial $V_0(a, y_j)$. Reasonable first guess is

$$V_0(a, y) = \sum_{t=0}^{\infty} \beta^t u(ra + y) = \frac{u(ra + y)}{1 - \beta}$$

• Step 3: Set $\ell = 1$. Loop over all $a_i \in A$ and solve

$$a'_{\ell+1}(a_i, y_j) = \arg \max_{a' \in \mathcal{A}} u(y_j + (1+r)a_i - a') + \beta \sum_{j'=1}^{J} V_{\ell}(a', y_{j'})p_{jj'}$$

$$V_{\ell+1}(a_i, y_j) = \max_{a' \in \mathcal{A}} u(y_j + (1+r)a_i - a') + \beta \sum_{j'=1}^J V_{\ell}(a', y_{j'}) p_{jj'}$$

$$= u \left(y_{j} + (1+r) a_{i} - a_{\ell+1}' \left(a_{i}, y_{j} \right) \right) + \beta \sum_{j'=1}^{J} V_{\ell} \left(a_{\ell+1}' \left(a_{i}, y_{j} \right), y_{j'} \right)$$

• Step 4: Check for convergence $\epsilon_{\ell} < \bar{\epsilon}$

$$\epsilon_{\ell} = \max_{i,j} \left| V_{\ell+1} \left(a_i, y_j \right) - V_{\ell} \left(a_i, y_j \right) \right|$$

- If $\epsilon_{\ell} \geq \bar{\epsilon}$, go to Step 2 with $\ell := \ell + 1$
- If $\epsilon_{\ell} < \bar{\epsilon}$, then
- Step 5: Extract optimal policy functions
 - $a'(a, y) = a_{\ell+1}(a, y)$
 - $V(a, y) = V_{\ell+1}(a, y)$
 - $c(a, y) = y_i + (1 + r)a a'(a, y)$
- Consumption function restricted to implied grid so not very accurate

Finding the Stationary Distribution

Method 1: Stationary Distribution via Simulation

- Step 1: Set seed of random number generator
- Step 2: Initialize array to hold consumption c_{it} and assets a_{it} for large number I of individuals and time periods T
- Step 3: Loop over agents *i*, draw y_{i0} from stationary distribution. Set $a_{i0} = 0$
- Step 4: Loop over all time periods t. Use policy function a'(a, y) to compute next period assets a_{i,t+1} for each agent. Use budget constraint to get implied c_{it}. Draw y_{i,t+1} using Markov chain P.
- Step 5: Compute mean asset holdings as

$$A_t = \frac{1}{I} \sum_{i=1}^{I} a_{it}$$

and check that A_t has converged

• Code: see 2nd part of vfi_IID.m

Method 2: Stationary Distribution via Transition Matrix

- Simulation often bad idea bc slow and introduces numerical error
- Now: preferred method that avoids simulation
- Recall: stationary distribution π of income process y solves

$$\pi = \mathbf{P}^{\mathsf{T}} \pi$$
 or $\pi \approx (\mathbf{P}^{\mathsf{T}})^N \pi_0$ for large N

- Idea of method 2: form big transition matrix of joint (*a*, *y*) process, let's call it **B**, and use same strategy
- Step 1: Fix point in grid (a_i, y_j) . For all possible grid points $a_{i'}, y_{j'}$ (important: all $a_{i'}$ forced to be on grid $\mathcal{A} = \{a_1, ..., a_N\}$) compute

$$\Pr(a_{t+1} = a_{i'}, y_{t+1} = y_{j'} | a_t = a_i, y_t = y_j)$$

- Can do this by interpolation of policy function $a'(a_i, y_j)$
- Step 2: Stack! 1. Stack grids for a (dim = N) and y (dim = J) into large K = N × J grid. Stack Pr's into big matrix K × K matrix B
- Step 3: Stat dist g, a $K \times 1$ vector w entries $g(a_i, y_j)$, solves

$$g = \mathbf{B}^{\mathsf{T}} g$$
 or $g \approx (\mathbf{B}^{\mathsf{T}})^N g_0$ for large N

Something useful to think about

- We solved for wealth dist of economy with large number of people (say simulation with N = 100,000 to approximate continuum)
- How many Bellman equations did we solve?
- Why?

More Advanced Methods and Useful Tricks

- 1. Euler equation iteration
 - See eei_IID.m
- 2. Power-spaced grids
 - used in all our codes I shared with you
- 3. Endogenous Grid Method
 - see egp_IID.m
 - if possible, always use this
- 4. Continuous-time methods: will teach this in my 2nd-year course
 - see codes here https://benjaminmoll.com/codes/, e.g. https://benjaminmoll.com/huggett_partialeq/

Euler Equation Iteration

- Step 1: Construct finite grid A, $a_1 = \underline{a}$
- Step 2: Set $\ell = 0$. Guess initial $c_0(a_i y_j)$. Good first guess is

$$c_0(a_i, y_j) = ra + y$$

• Step 3: Loop over A, solve for c by calculating LHS and RHS

$$u'(c) \ge \beta R \sum_{j'=1}^{J} u' \left(c_{\ell} \left[y_j + Ra_i - c, y_{j'} \right] \right) p_{jj'}$$

1. At borrowing constraint $a' = \underline{a} \implies c = Ra_i + y_j - \underline{a}$

$$LHS = u' (Ra_i + y_j - \underline{a})$$

$$RHS = \beta R \sum_{j'=1}^{J} u' (c_{\ell} [\underline{a}, y_{j'}]) p_{jj'}$$
2. LHS \leq RHS $\implies c_{\ell+1} (a_i, y_j) := Ra_i + y_j - \underline{a}$. Go to Step 4.
3. LHS > RHS \implies solve non-linear equation.

Euler Equation Iteration

- Step 3 (continued):
 - Construct interpolation function

$$EMUC(a', y_j) = \sum_{j'=1}^{J} u'(c(a', y_{j'})) p_{jj'}$$

which depends only on today's income. At (a_i, y_j) nonlinear equation becomes

$$u'(c) = \beta (1+r) EMUC ((1+r) a_i + y_j - c, y_j)$$

- Solve with non-linear solver: Matlab: fzero or fsolve, Python: scipy.optimize.root or scipy.optimize.fsolve
- Step 4: Stop if $\epsilon_{\ell} < \bar{\epsilon}$ and return policy functions, where

$$\epsilon_{\boldsymbol{\ell}} = \max_{i,j} \left| c_{\boldsymbol{\ell}+1} \left(a_i, y_j \right) - c_{\boldsymbol{\ell}} \left(a_i, y_j \right) \right|$$

If $\epsilon_{\ell} \geq \overline{\epsilon}$, go to Step 3 with $\ell := \ell + 1$

Power-spaced grids

- Policy functions are typically very non-linear close to the borrowing constraint
- Accurate linear interpolation with more grid points close to the constraint
- Let $[\underline{a}, \overline{a}]$ be the possible range of asset holdings.
- Let \mathcal{Z} be an equi-spaced grid on [0, 1].
- For each grid point $z \in \mathcal{Z}$, define $x = z^{\alpha}$ for some $\alpha \in (1, \infty)$ to create a non-linear spaced grid \mathcal{X} on [0, 1]. Notice that as $\alpha \to \infty$, \mathcal{X} has more and more points closer to 0.
- Construct asset grid A by rescaling each $x \in X$

$$a = \underline{a} + (\overline{a} - \underline{a})x$$

Endogenous Grid Method

- Step 1: Construct grid A and set $a_1 = \underline{a}$
- Step 2: Set $\ell = 0$. Guess initial $c_0(a_i, y_j)$. A good first guess is

$$c_0\left(a_i, y_j\right) = ra + y$$

• Step 3: Construct implicit $c_{\ell}(a'_i, y_{j'})$ via interpolating

$$\mathsf{EMUC}_{\ell}\left(a'_{i}, y_{j}\right) = \sum_{j'=1}^{J} u'\left(c_{\ell}\left(a'_{i}, y_{j'}\right)\right) p_{jj'}$$

Use Euler equation at equality to get MUC today and c, a

$$\begin{aligned} \mathsf{MUC}_{\ell}\left(a'_{i}, y_{j}\right) &= \beta R \times \mathsf{EMUC}_{\ell}\left(a'_{i}, y_{j}\right) \\ \implies c_{\ell}\left(a'_{i}, y_{j}\right) &= u'^{-1}\left(\mathsf{MUC}_{\ell}\left(a'_{i}, y_{j}\right)\right) \\ a_{\ell}\left(a'_{i}, y_{j}\right) &= \frac{c_{\ell}\left(a'_{i}, y_{j}\right) + a'_{i} - y_{j}}{1 + r} \end{aligned}$$

Invert $a_{\ell}(a'_i, y_j) \implies a'(a, y_j)$ on an endogenous grid Interpolate on \mathcal{A} to get $a_{\ell+1}(a_i, y_i)$. Use BC to calculate $c_{\ell+1}$

Endogenous Grid Method

Step 4: Deal with borrowing constraints: define a^{*} (y_j) = a_ℓ. Then for a_i > a^{*}(y_j), a_i ∈ A

$$\begin{aligned} a_{\ell+1} \left(a_i, y_j \right) &:= \underline{a} \\ a_{j+1} \left(a_i, y_j \right) &:= (1+r) a_i + y_j - \underline{a} \end{aligned}$$

• Step 5: Stop if $\epsilon_{\ell} < \bar{\epsilon}$ and return policy functions, where

$$\epsilon_{\ell} = \max_{i,j} \left| c_{\ell+1} \left(a_i, y_j \right) - c_{\ell} \left(a_i, y_j \right) \right|$$

If $\epsilon_{\ell} \geq \overline{\epsilon}$, go to Step 3 with $\ell := \ell + 1$

Endogenous Grid Points with Cash-on-Hand

- When income y is IID, single state variable is x
- Individual chooses consumption c, savings s s.t.

$$c + s \le x$$
$$s \ge \underline{a}$$

• Cash-on-hand *x* evolves as

$$x' = (1+r)s + y'$$

Endogenous Grid Points with Cash-on-Hand

- Step 1: Discretize $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$, set $x_1 = R\underline{a} + y_{\min}$
 - Step 1.1: Discretize savings $S = \{s_1, s_2, \dots, s_N\}$, set $s_1 = \underline{a}$
- Step 2: Set $\ell = 0$. Guess $c_0(x_i)$, $\forall x_i \in \mathcal{X}$. A good first guess is

$$c_0(x_i)=rx_i$$

• Step 3: Compute (via interpolation of c(x) or MUC $(x) \equiv u'(c(x))$)

$$\mathsf{EMUC}_{\boldsymbol{\ell}}\left(s_{i}\right) = \sum_{j'=1}^{J} u'\left(c_{\boldsymbol{\ell}}\left(\left(1+r\right)s_{i}+y_{j}\right)\right)p_{j'}, \quad \forall s_{i} \in \mathcal{S}$$

• Step 4: Using EE at equality

- Step 5: Invert $x_{\ell}(s_i)$ by interpolating on \mathcal{X} , checking borr constraint Gives $s_{\ell+1}(x_i)$ which gives $c_{\ell+1} := x_i + s_{\ell+1}(x_i)$
- Step 6: Check for convergence. If fails, go to step 3