
Lecture 2
Solving the Income Fluctuation Problem

Numerical Dynamic Programming

Macroeconomics EC442

Benjamin Moll

London School of Economics, Fall 2020

April 7, 2021

Just so everyone is on board: vocabulary

What do the following words mean (when used in economics)?

1. deterministic

2. stochastic

3. idiosyncratic

4. i.i.d.

5. rational expectations

6. rational

7. partial equilibrium

8. general equilibrium

9. ... what else?
1

Plan for remaining lectures before break
1. Income fluctuation problem a.k.a. consumption-saving problem

with idiosyncratic labor income risk in partial equilibrium
• Ethan already covered this

2. Numerical dynamic programming a.k.a. numerical solution of
Bellman equations
• application: numerical solution of income fluctuation problem

3. Textbook heterogeneous agent model: Aiyagari-Bewley-Huggett
• income fluctuation problem, embedded in general equilibrium

4. Perpetual youth model
5. Further directions

• business cycles with heterogeneous agents (idiosyncratic +
aggregate risk): Den Haan & Krusell-Smith

• Heterogeneous Agent New Keynesian (HANK) models
• Why is the wealth distribution so skewed? 2

Useful references & resources – see syllabus for more
• Key papers in literature
• Aiyagari (1994)
• Huggett (1993)

• Textbook treatment: Ljungqvist-Sargent ”Recursive Macro Theory”
• Part IV “Savings Problems and Bewley Models”

• Matlab, Python & Julia codes: http://benjaminmoll.com/ha_codes/
(Note: .zip file, my Google Chrome tries to block download)

• written by Greg Kaplan in Matlab
• translated to Python & Julia by Tom Sweeney

• Other computational resources
• http://quant-econ.net/, particularly Aiyagari model codes

Python: http://quant-econ.net/py/aiyagari.html
Julia: http://quant-econ.net/jl/aiyagari.html

3

http://benjaminmoll.com/ha_codes/
http://quant-econ.net/
http://quant-econ.net/py/aiyagari.html
http://quant-econ.net/jl/aiyagari.html

The Income Fluctuation Problem

4

Income fluctuation problem: Overview

1. Individuals are subject to exogenous income shocks. These
shocks are not fully insurable because of the lack of a complete set
of Arrow-Debreu contingent claims

2. There is only a risk-free asset (i.e., and asset with non-state
contingent rate of return) in which the individual can save/borrow,
and that the individual faces a borrowing (liquidity) constraint

3. A continuum of such agents subject to different shocks will give
rise to a wealth distribution

4. Integrating wealth holdings across all agents will give rise to an
aggregate supply of capital

• Have already seen 1. and 2. in Ethan’s part of the course
5

Liquidity Constraints

Modify PIH so that household maximizes

max
at+1

E0
∞

∑
t=0

βtu (ct)

s.t. ct + at+1 � yt + Rat
and at+1 � φ,

where φ is a liquidity constraint.

Modi�ed Euler equation

u0 (ct) = βREtu0 (ct+1) + µt

or
u0 (ct) � βREtu0 (ct+1) ,

with strict inequality only if at+1 = φ.

Ilzetzki EC442

The Income Fluctuation Problem

• Will change notation very slightly: a instead of ϕ

max
{at+1}∞t=0

E0
∞∑
t=0

βtu(ct) s.t.

ct + at+1 ≤ yt + Rat
at+1 ≥ a

• Will also interchangeably use R and 1 + r to denote gross return

7

What we’ll do next
1. In general, no analytic solution⇒ learn how to solve income

fluctuation problem on a computer
• Bellman equation
• wealth distribution generated by optimal saving behavior

2. “Close the model” i.e. embed the income fluctuation problem in
general equilibrium, thereby endogenizing r
• Different ways of doing this⇔ different assumptions on where
capital demand comes from

• Aiyagari: K demand of rep firm, Huggett: bonds w K = 0, ...

Capital Demand

Capital Supply

8

Deterministic Saving Problem
Deterministic Dynamic Programming

9

Saving Problem with Deterministic Income
• Assume that income is deterministic and constant yt = y

max
{at+1}∞t=0

∞∑
t=0

βtu(ct) s.t.

ct + at+1 ≤ y + Rat
at+1 ≥ a

• Recursive formulation of household problem Bellman equation
V (a) = max

c,a′
u (c) + βV

(
a′
)

s.t.

c + a′ ≤ y + Ra
a′ ≥ a

• Functional equation: solve for unknown function
• Arguments of value function are called state variables
• Solution is
• Value function: V (a)
• Policy functions: c(a), a′(a) 10

Euler Equation from Bellman Equation
• Form Lagrangean:

L = u (c) + βV
(
a′
)
+ λ[y + (1 + r)a − c − a′] + µ[a′ − a]

• First order conditions with respect to c and a′:
u′(c) = λ

βV ′(a′) = λ− µ
• Envelope condition:

V ′(a) = λ(1 + r) ⇒ V ′(a′) = λ′(1 + r)

• Substitute into FOC for a′

λ− µ = β(1− r)λ′

• Using FOC for c
u′(c) = β(1 + r)u′(c ′) + µ

• Since µ ≥ 0 this is typically written as
u′(c) ≥ β(1 + r)u′(c ′) 11

Value Function Iteration

• Easiest method to numerically solve Bellman equation for V (a)

• Guess value function on RHS of Bellman equation then maximize
to get value function on LHS

• Update guess and iterate to convergence right until convergence

• Contraction Mapping Theorem: guaranteed to converge if β < 1

• We will learn other methods later, but this is simplest (and slowest)

12

Value Function Iteration – see vfi_deterministic.m

• Step 1: Discretized asset space A = {a1, a2, . . . , aN}. Set a1 = a
• Step 2: Guess initial V0(a). Good guess is

V0 (a) =

∞∑
t=0

βtu (ra + y) =
u (ra + y)

1− β

• Step 3: Set ℓ = 1. Loop over all A and solve

a′ℓ+1 (ai) = argmax
a′∈A
u
(
y + (1 + r) ai − a′

)
+ βVℓ

(
a′
)

Vℓ+1 (ai) = max
a′∈A
u
(
y + (1 + r) ai − a′

)
+ βVℓ

(
a′
)

= u
(
y + (1 + r) ai − a′ℓ+1 (ai)

)
+ βVℓ

(
a′ℓ+1 (ai)

)

13

vfi_deterministic.m

Value Function Iteration – see vfi_deterministic.m

• Step 4: Check for convergence ϵℓ < ϵ̄

ϵℓ = max
i
|Vℓ+1 (ai)− Vℓ (ai)|

• if ϵℓ ≥ ϵ̄, go to Step 2 with ℓ := ℓ+ 1
• If ϵℓ < ϵ̄, then

• Step 5: Extract optimal policy functions
• a′(a) = aℓ+1(a)
• V (a) = Vℓ+1(a)
• c(a) = y + (1 + r)a − a′(a)

• Consumption function restricted to implied grid so not very
accurate.

14

vfi_deterministic.m

Time Subscripts on State Variable in Bellman Equation

• Sometimes people write

V (at) = max
ct ,at+1

u (ct) + βV (at+1) s.t.

ct + at+1 ≤ y + Rat
at+1 ≥ a

• Please don’t do this!!!

• Why not?

15

Finite Horizon Dynamic Programming
• Value function depends on time t

Vt(a) = max
c,a′
u(c) + βVt+1(a

′)

subject to
c + a′ ≤ yt + (1 + r)a
a′ ≥ a

• Solution consists of sequence of value functions {Vt(a)}Tt=0 and
sequence of policy functions {ct(a), a′t(a)}Tt=0
• Solve by backward induction. Last period:

a′T (a) = 0

cT (a) = yT + (1 + r)a

VT (a) = u(yT + (1 + r)a)

• Why does the state variable a still not have a time subscript?
• Code: vfi_deterministic_finite.m 16

vfi_deterministic_finite.m

Income Fluctuation Problem
Stochastic Dynamic Programming

17

Sequence Formulation
• Sequence Formulation of household problem

max
{ct ,at+1}∞t=0

E0
∞∑
t=0

βtu (ct)

subject to
ct + at+1 ≤ yt + (1 + r) at

at+1 ≥ a
a0 given

• Assume yt is a Markov Process: CDF F satisfies

F (yt+1|y t) = F (yt+1|yt)

where y t := {y0, y1, . . . , yt} denotes history of income realizations

18

Recursive Formulation

• Bellman equation for household problem

V (a, y) = max
c,a′
u (c) + βE

[
V (a′, y ′)|y

]
subject to

c + a′ ≤ y + Ra

a′ ≥ a

• Solution consists of
• Value function: V (a, y)
• Policy functions: c(a, y), a′(a, y)

19

Cash-on-hand State Variable

• When y is IID, can define cash-on-hand x
x = y + Ra

• Bellman equation becomes
V (x) = max

c,s
u (c) + βE

[
V
(
Rs + y ′

)]
subject to

c + s ≤ x
s ≥ a

• Solution consists of
• Value function: V (x)
• Policy functions: c(x), a′(x)

20

Stochastic Euler Equation

• We form Lagrangian

V (a, y) = max
c,a′
u (c) + βE

[
V
(
a′, y ′

)
|y
]
+ λ

[
y + (1 + r) a − c − a′

]
+ µ

[
a′ − a

]
s.t. µ ≥ 0, λ ≥ 0

• FOC are

u′(c) = λ [c]
βE

[
Va

(
a′, y ′

)
|y
]
= λ− µ [a′]

• Envelope condition

Va (a, y) = λ (1 + r)

Va
(
a′, y ′

)
= λ′ (1 + r)

21

Stochastic Euler Equation

• Using FOC for a′ and envelope condition

λ− µ = β (1 + r)E
[
λ′|y

]
• Using FOC for c

u′ (c) = β (1 + r)E
[
u′
(
c ′
)
|y
]
+ µ

• Since µ ≥ 0, Euler Equation (EE) is

u′ (c) ≥ β (1 + r)E
[
u′
(
c ′
)
|y
]

[EE]:

• Notes:
• Expectation is conditional on all information at t
• Borrowing constraint binds =⇒ EE strict inequality
• Borrowing constraint not binding =⇒ EE equality

22

Discrete-State Markov Process for Income
• Finite number of income realizations: y ∈ {y1, · · · , yJ}

• P is Markov transition matrix where
• (j, j ′)th element of P is Pr(yt+1 = yj ′ |yt = yj) = pj j ′
• ∀ j, j ′ pj j ′ ∈ [0, 1]
• ∀j,

∑J
j ′=1 pj j ′ = 1

• Stationary distribution is vector π with elements πj
• solves

π = PTπ, PT = transpose of P
(Eigenvalue problem = same form as Av = λv with λ = 1;
Equivalently row vector π̃ s.t. π̃ = π̃P)

• easy method for finding π in practice: take N large, some π0
π ≈ (PT)Nπ0

• Logic: πt+1 = PTπt and hence π ≈ πN = (PT)Nπ0
23

Bellman Equation with Discrete-State Markov Process

V
(
a, yj

)
= max
c,a′
u (c) + β

J∑
j ′=1

V
(
a′, yj ′

)
pj j ′

subject to
c + a′ ≤ yj + (1 + r) a
a′ ≥ a

• Euler Equation is

u′
(
c
(
a, yj

))
= β (1 + r)

J∑
j ′=1

u′
(
c
(
a, yj ′

))
pj j ′

• Solution is set of J functions c(a, yj)
24

Value Function Iteration – see vfi_IID.m

• Step 1: Discretized asset space A = {a1, a2, . . . , aN}. Set a1 = a
• Step 2: Guess initial V0(a, yj). Reasonable first guess is

V0 (a, y) =

∞∑
t=0

βtu (ra + y) =
u (ra + y)

1− β

• Step 3: Set ℓ = 1. Loop over all ai ∈ A and solve

a′ℓ+1
(
ai , yj

)
= argmax

a′∈A
u
(
yj + (1 + r) ai − a′

)
+ β

J∑
j ′=1

Vℓ
(
a′, yj ′

)
pj j ′

Vℓ+1
(
ai , yj

)
= max
a′∈A
u
(
yj + (1 + r) ai − a′

)
+ β

J∑
j ′=1

Vℓ
(
a′, yj ′

)
pj j ′

= u
(
yj + (1 + r) ai − a′ℓ+1

(
ai , yj

))
+ β

J∑
j ′=1

Vℓ
(
a′ℓ+1

(
ai , yj

)
, yj ′

)
pj j ′

25

vfi_IID.m

Value Function Iteration – see vfi_IID.m

• Step 4: Check for convergence ϵℓ < ϵ̄

ϵℓ = max
i ,j

∣∣Vℓ+1 (ai , yj)− Vℓ (ai , yj)∣∣
• If ϵℓ ≥ ϵ̄, go to Step 2 with ℓ := ℓ+ 1
• If ϵℓ < ϵ̄, then

• Step 5: Extract optimal policy functions
• a′(a, y) = aℓ+1(a, y)
• V (a, y) = Vℓ+1(a, y)
• c(a, y) = yi + (1 + r)a − a′(a, y)

• Consumption function restricted to implied grid so not very
accurate

26

vfi_IID.m

Finding the Stationary Distribution

27

Method 1: Stationary Distribution via Simulation
• Step 1: Set seed of random number generator
• Step 2: Initialize array to hold consumption cit and assets ait for
large number I of individuals and time periods T
• Step 3: Loop over agents i , draw yi0 from stationary distribution.
Set ai0 = 0
• Step 4: Loop over all time periods t. Use policy function a′(a, y) to
compute next period assets ai ,t+1 for each agent. Use budget
constraint to get implied cit . Draw yi ,t+1 using Markov chain P .
• Step 5: Compute mean asset holdings as

At =
1

I

I∑
i=1

ait

and check that At has converged
• Code: see 2nd part of vfi_IID.m

28

vfi_IID.m

Method 2: Stationary Distribution via Transition Matrix
• Simulation often bad idea bc slow and introduces numerical error
• Now: preferred method that avoids simulation
• Recall: stationary distribution π of income process y solves

π = PTπ or π ≈ (PT)Nπ0 for large N
• Idea of method 2: form big transition matrix of joint (a, y) process,
let’s call it B, and use same strategy
• Step 1: Fix point in grid (ai , yj). For all possible grid points ai ′ , yj ′
(important: all ai ′ forced to be on grid A = {a1, ..., aN}) compute

Pr(at+1 = ai ′ , yt+1 = yj ′ |at = ai , yt = yj)
• Can do this by interpolation of policy function a′(ai , yj)
• Step 2: Stack! 1. Stack grids for a (dim = N) and y (dim = J) into
large K = N × J grid. Stack Pr’s into big matrix K ×K matrix B
• Step 3: Stat dist g, a K × 1 vector w entries g(ai , yj), solves

g = BTg or g ≈ (BT)Ng0 for large N
29

Something useful to think about

• We solved for wealth dist of economy with large number of people
(say simulation with N = 100, 000 to approximate continuum)

• How many Bellman equations did we solve?

• Why?

30

More Advanced Methods
and Useful Tricks

31

More Advanced Methods and Useful Tricks

1. Euler equation iteration
• see eei_IID.m

2. Power-spaced grids
• used in all our codes I shared with you

3. Endogenous Grid Method
• see egp_IID.m
• if possible, always use this

4. Continuous-time methods: will teach this in my 2nd-year course
• see codes here https://benjaminmoll.com/codes/,
e.g. https://benjaminmoll.com/huggett_partialeq/

32

eei_IID.m
egp_IID.m
https://benjaminmoll.com/codes/
https://benjaminmoll.com/huggett_partialeq/

Euler Equation Iteration
• Step 1: Construct finite grid A, a1 = a
• Step 2: Set ℓ = 0. Guess initial c0(aiyj). Good first guess is

c0(ai , yj) = ra + y

• Step 3: Loop over A, solve for c by calculating LHS and RHS

u′ (c) ≥ βR
J∑
j ′=1

u′
(
cℓ
[
yj + Rai − c, y j ′

])
pj j ′

1. At borrowing constraint a′ = a =⇒ c = Rai + yj − a

LHS = u′
(
Rai + yj − a

)
RHS = βR

J∑
j ′=1

u′
(
cℓ
[
a, yj ′

])
pj j ′

2. LHS ≤ RHS =⇒ cℓ+1
(
ai , yj

)
:= Rai + yj − a. Go to Step 4.

3. LHS > RHS =⇒ solve non-linear equation.
33

Euler Equation Iteration
• Step 3 (continued):
• Construct interpolation function

EMUC
(
a′, yj

)
=

J∑
j ′=1

u′
(
c
(
a′, yj ′

))
pj j ′

which depends only on today’s income. At (ai , yj) nonlinear
equation becomes

u′ (c) = β (1 + r)EMUC
(
(1 + r) ai + yj − c, yj

)
• Solve with non-linear solver: Matlab: fzero or fsolve,
Python: scipy.optimize.root or scipy.optimize.fsolve

• Step 4: Stop if ϵℓ < ϵ̄ and return policy functions, where
ϵℓ = max

i ,j

∣∣cℓ+1 (ai , yj)− cℓ (ai , yj)∣∣
If ϵℓ ≥ ϵ̄, go to Step 3 with ℓ := ℓ+ 1

34

Power-spaced grids
• Policy functions are typically very non-linear close to the borrowing
constraint

• Accurate linear interpolation with more grid points close to the
constraint

• Let [a, ā] be the possible range of asset holdings.

• Let Z be an equi-spaced grid on [0, 1].

• For each grid point z ∈ Z, define x = zα for some α ∈ (1,∞) to
create a non-linear spaced grid X on [0, 1]. Notice that as α→∞,
X has more and more points closer to 0.

• Construct asset grid A by rescaling each x ∈ X

a = a + (ā − a)x

35

Endogenous Grid Method
• Step 1: Construct grid A and set a1 = a
• Step 2: Set ℓ = 0. Guess initial c0(ai , yj). A good first guess is

c0
(
ai , yj

)
= ra + y

• Step 3: Construct implicit cℓ(a′i , yj ′) via interpolating

EMUCℓ
(
a′i , yj

)
=

J∑
j ′=1

u′
(
cℓ
(
a′i , yj ′

))
pj j ′

Use Euler equation at equality to get MUC today and c, a
MUCℓ

(
a′i , yj

)
= βR × EMUCℓ

(
a′i , yj

)
=⇒ cℓ

(
a′i , yj

)
= u′−1

(
MUCℓ

(
a′i , yj

))
aℓ

(
a′i , yj

)
=
cℓ
(
a′i , yj

)
+ a′i − yj

1 + r

Invert aℓ(a′i , yj) =⇒ a′(a, yj) on an endogenous grid
Interpolate on A to get aℓ+1(ai , yi). Use BC to calculate cℓ+1

36

Endogenous Grid Method
• Step 4: Deal with borrowing constraints: define a∗

(
yj
)
= aℓ. Then

for ai > a∗(yj), ai ∈ A

aℓ+1
(
ai , yj

)
:= a

aj+1
(
ai , yj

)
:= (1 + r) ai + yj − a

• Step 5: Stop if ϵℓ < ϵ̄ and return policy functions, where

ϵℓ = max
i ,j

∣∣cℓ+1 (ai , yj)− cℓ (ai , yj)∣∣
If ϵℓ ≥ ϵ̄, go to Step 3 with ℓ := ℓ+ 1

37

Endogenous Grid Points with Cash-on-Hand
• When income y is IID, single state variable is x
• Individual chooses consumption c, savings s s.t.

c + s ≤ x
s ≥ a

• Cash-on-hand x evolves as

x ′ = (1 + r) s + y ′

38

Endogenous Grid Points with Cash-on-Hand
• Step 1: Discretize X = {x1, x2, . . . , xN}, set x1 = Ra + ymin
• Step 1.1: Discretize savings S = {s1, s2, . . . , sN}, set s1 = a

• Step 2: Set ℓ = 0. Guess c0(xi), ∀xi ∈ X . A good first guess is
c0(xi) = rxi

• Step 3: Compute (via interpolation of c(x) or MUC (x) ≡ u′ (c (x)))

EMUCℓ (si) =
J∑
j ′=1

u′
(
cℓ
(
(1 + r) si + yj

))
pj ′ , ∀si ∈ S

• Step 4: Using EE at equality
MUCℓ (si) = βR × EMUCℓ (si)
=⇒ cℓ (si) = u

′−1 (MUCℓ (si))
xℓ (si) = si + cℓ (si)

• Step 5: Invert xℓ(si) by interpolating on X , checking borr constraint
Gives sℓ+1(xi) which gives cℓ+1 := xi + sℓ+1(xi)
• Step 6: Check for convergence. If fails, go to step 3 39

