Lecture 2

Solving the Income Fluctuation Problem
Numerical Dynamic Programming

Macroeconomics EC442

Benjamin Moll

London School of Economics, Fall 2020

Just so everyone is on board: vocabulary

What do the following words mean (when used in economics)?
1. deterministic
. stochastic
. idiosyncratic
. ii.d.

. rational expectations

. partial equilibrium

2
3
4
5
6. rational
7
8. general equilibrium
9

. ... what else?

Plan for remaining lectures before break

1. Income fluctuation problem a.k.a. consumption-saving problem
with idiosyncratic labor income risk in partial equilibrium

® Ethan already covered this
2. Numerical dynamic programming a.k.a. numerical solution of
Bellman equations
® application: numerical solution of income fluctuation problem
3. Textbook heterogeneous agent model: Aiyagari-Bewley-Huggett
® income fluctuation problem, embedded in general equilibrium

4. Perpetual youth model

5. Further directions

® business cycles with heterogeneous agents (idiosyncratic +
aggregate risk): Den Haan & Krusell-Smith

® Heterogeneous Agent New Keynesian (HANK) models
® Why is the wealth distribution so skewed?

Useful references & resources — see syllabus for more

e Key papers in literature
® Aiyagari (1994)
® Huggett (1993)

¢ Textbook treatment: Ljungqgvist-Sargent "Recursive Macro Theory”
e Part IV “Savings Problems and Bewley Models”

e Matlab, Python & Julia codes: nttp://benjaminmoll.com/ha_codes/
(Note: .zip file, my Google Chrome tries to block download)

® written by Greg Kaplan in Matlab
¢ translated to Python & Julia by Tom Sweeney

e Other computational resources

® http://quant-econ.net/, particularly Aiyagari model codes
Python: http://quant-econ.net/py/aiyagari.html
Julia: http://quant-econ.net/jl/aiyagari.html

http://benjaminmoll.com/ha_codes/
http://quant-econ.net/
http://quant-econ.net/py/aiyagari.html
http://quant-econ.net/jl/aiyagari.html

The Income Fluctuation Problem

Income fluctuation problem: Overview

1. Individuals are subject to exogenous income shocks. These
shocks are not fully insurable because of the lack of a complete set
of Arrow-Debreu contingent claims

2. There is only a risk-free asset (i.e., and asset with non-state
contingent rate of return) in which the individual can save/borrow,

and that the individual faces a borrowing (liquidity) constraint

3. A continuum of such agents subject to different shocks will give
rise to a wealth distribution

4. Integrating wealth holdings across all agents will give rise to an
aggregate supply of capital

® Have already seen 1. and 2. in Ethan’s part of the course

Liquidity Constraints
@ Modify PIH so that household maximizes

max Ey) Bfu(ct)
t=0

atr+1

st. a1 < yr + Rax
and a;1 > ¢,

where ¢ is a liquidity constraint.

@ Modified Euler equation

u'(ce) = PREcU (ces1) + i,

or
u' (ct) > ,BREtU/ (Ct+1) .
with strict inequality only if a;11 = ¢.

llzetzki EC442

The Income Fluctuation Problem

¢ Will change notation very slightly: a instead of ¢

max E025tu(ct) s.t.

3t+1}?o:o t=0
Ct + a1 < yr + Ra
ary1 > a

¢ Will also interchangeably use R and 1 + r to denote gross return

What we’ll do next

1. In general, no analytic solution = learn how to solve income
fluctuation problem on a computer

¢ Bellman equation
® wealth distribution generated by optimal saving behavior

2. “Close the model” i.e. embed the income fluctuation problem in
general equilibrium, thereby endogenizing r

e Different ways of doing this < different assumptions on where
capital demand comes from

® Aiyagari: K demand of rep firm, Huggett: bonds w K =0, ...
o

_—— Capital Supply

Capital Demand

Deterministic Saving Problem
Deterministic Dynamic Programming

Saving Problem with Deterministic Income

® Assume that income is deterministic and constant y; = y
oo
{aga}%o;)ﬁtu(ct) s.t.
¢t +atr1 Sy + Ray
a1 > a
¢ Recursive formulation of household problem Bellman equation
V(a) = max u (c)+pBV(d) st

c+d <y-+Ra
a>a
e [Functional equation: solve for unknown function
* Arguments of value function are called state variables

Solution is
® Value function: V/(a)

® Policy functions: c(a), a'(a)

Euler Equation from Bellman Equation

¢ Form Lagrangean:
L=u(c)+BV(d)+Aly+(1+ra—c—a]+uld -2

First order conditions with respect to ¢ and a’:
u(c)=X

pV'(@)=x—wu

Envelope condition:
Vi) =X(1+r) = V(@)=N1+r)
Substitute into FOC for &’
A—p=p1-r)N

Using FOC for ¢
d(c)=BA+nrd(c)+u
Since u > 0 this is typically written as
u(c) >PB(1+nrd ()

Value Function Iteration

e Easiest method to numerically solve Bellman equation for V/(a)

Guess value function on RHS of Bellman equation then maximize
to get value function on LHS

Update guess and iterate to convergence right until convergence

Contraction Mapping Theorem: guaranteed to converge if B < 1

We will learn other methods later, but this is simplest (and slowest)

Value Function Iteration — see vfi_deterministic.m

e Step 1: Discretized asset space A = {a1, a2, . . ., ay}. Seta; =a
e Step 2: Guess initial Vp(a). Good guess is

u(ra+y)

Vo (a) = Zﬁtu(ra+Y) 5

e Step 3: Set £ = 1. Loop over all A and solve
a1 (a) = arg max u (y+(1+ra—a)+B%(d)
Verr (a)) = maxu (v + (1 + 1) ai = &) + BV (4)

=u(y+ (1 +r)a—ap(a)) +BVe (a1 (ar)

vfi_deterministic.m

Value Function Iteration — see vfi_deterministic.m

e Step 4: Check for convergence ¢; < €

€= m?><|\/e+1 (ai)) — Vi (a)l

e jfep>€ gotoStep2withl =24+ 1
® [fey <€, then
e Step 5: Extract optimal policy functions
* d(a) = ag1(a)
* V(a) = Vpy1(a)
* clay)=y+(1+r)a—2a(a)
e Consumption function restricted to implied grid so not very
accurate.

vfi_deterministic.m

Time Subscripts on State Variable in Bellman Equation

® Sometimes people write
V(ar) = max u(ct)+PBV (arr1) st
Ct,at+1

Ct+arp1 < y+ Rat
41> a

® Please don’t do this!!!

* Why not?

Finite Horizon Dynamic Programming

¢ \alue function depends on time t
Vi(a) = maxu(c) + BVer1(a)
c,a
subject to

c+a <y:+(1+r)a
a>a

Solution consists of sequence of value functions {V;(a)}/_, and
sequence of policy functions {c:(a), a;(a)}]_,

Solve by backward induction. Last period:
ar(a)=0
cr(a)=yr+(1+r)a
Vr(a) = u(yr + (1 +r)a)
Why does the state variable a still not have a time subscript?

e Code: vfi_deterministic_finite.m

vfi_deterministic_finite.m

Income Fluctuation Problem
Stochastic Dynamic Programming

Sequence Formulation

e Sequence Formulation of household problem

o0
t
e Eotz_%ﬁ u(ct)
subject to
cGtt+arr1 <yr+(1+r)as
ary1 > a
ap given

® Assume y; is a Markov Process: CDF F satisfies

F(Yt+1|yt) = F(Yet1lyt)

where vyt := {yo. y1. ..., vt} denotes history of income realizations

Recursive Formulation

¢ Bellman equation for household problem

V(a,y) = maxu(c)+pBE v, y)ly]
c,a
subject to
c+d < y+Ra
a > a

® Solution consists of
® Value function: V(a,y)
® Policy functions: c(a, y), a(a,y)

Cash-on-hand State Variable

® \When y is IID, can define cash-on-hand x
x=y+ Ra

¢ Bellman equation becomes
V (x) =maxu(c)+BE [V (Rs+y')]
Cc,s

subject to
c+s<x
s>a

e Solution consists of
® Value function: V/(x)

® Policy functions: c(x), a'(x)

Stochastic Euler Equation

® We form Lagrangian

V(a,y):ncﬁg;(u(c)—kmﬁl V@ y)y]+x[ly+(1+r)a—c—4d]

+uld —a
st.u>0 A>0
® FOC are
u(c)=x [c]
BE [V, (d.y)ly] =x—nu [a']

® Envelope condition

Va(a,y) =A(1+r)
Va(d,y')=XN(1+r)

Stochastic Euler Equation

e Using FOC for a’ and envelope condition

A—pu=B1+nE[Ny]
e Using FOC for ¢

U (c)=B1+nE[V ()]y] +nu

® Since u > 0, Euler Equation (EE) is
U (c)=BA+nE[J () y] [EE]:

® Notes:
® Expectation is conditional on all information at t
® Borrowing constraint binds = EE strict inequality
® Borrowing constraint not binding = EE equality

Discrete-State Markov Process for Income

¢ Finite number of income realizations: y € {y1, -,y }

® P is Markov transition matrix where

® (j,j/)th element of P is Pr(yry+1 = yyly: = yj) = pjjr
*VjJ py€l0,1]

Vi, Yoi_ipy=1
e Stationary distribution is vector 7 with elements ;

® solves
T=P'm, PT = transpose of P

(Eigenvalue problem = same form as Av = Av with A = 1;
Equivalently row vector 7 s.t. # = 7P)

® casy method for finding 7 in practice: take N large, some g
m (PT)m

® |ogic: 41 =P and hence m ~ my = (PT)N7g

Bellman Equation with Discrete-State Markov Process

V (a,y)) —maXU(C)+5ZV a,yy) piy
J=1

subject to
c+a<y+(1+r)a
a>a

e Fuler Equation is

' (c(ay)) 5(1+r)2 c(a,yy)) piy

® Solution is set of J functions c(a, y;)

Value Function Iteration —see vfi_IID.m

e Step 1: Discretized asset space A = {a1, a2, . . ., ay}. Seta; =a
e Step 2: Guess initial \p(a, y;). Reasonable first guess is

(ra+y)

Vo(ay) = Zﬁtu(raJrY) "y

e Step 3: Set £ = 1. Loop over all a; € A and solve

g (3 yy) = argmaxcu (v + (1 +r) a; - &) +6ZVe a\ yy) piy
J'=1

Vet (@i y)) = max u (yi+(Q+r)a—4a) +ﬁZ\/e (@, yy) pjy
J=1
J
=u(y+Q+r)a—ap (@) +8) Ve (d (a.) vy
J=1

vfi_IID.m

Value Function Iteration —see vfi_IID.m

e Step 4: Check for convergence ¢; < €
€= rT}éJ@X\VeH (ai ;) — Ve (ai, ;)|

® fe,>€,gotoStep2withl :=2+1
® [f ey <€, then

e Step 5: Extract optimal policy functions
* d(ay)=ami(ay)
* V(ay)=Veai(a y)
*clay)=yvi+(l+nra-a(ay)
e Consumption function restricted to implied grid so not very
accurate

vfi_IID.m

Finding the Stationary Distribution

Method 1: Stationary Distribution via Simulation

e Step 1: Set seed of random number generator

® Step 2: Initialize array to hold consumption ¢;; and assets a;; for
large number / of individuals and time periods T

e Step 3: Loop over agents /, draw y;q from stationary distribution.
Set ajo=20

e Step 4: Loop over all time periods t. Use policy function a’(a, y) to
compute next period assets a; ;11 for each agent. Use budget
constraint to get implied c;;. Draw y; +4+1 using Markov chain P.

e Step 5: Compute mean asset holdings as

g

\‘|—l

and check that A; has converged
e Code: see 2nd part of vfi_IID.m

vfi_IID.m

Method 2: Stationary Distribution via Transition Matrix

¢ Simulation often bad idea bc slow and introduces numerical error

® Now: preferred method that avoids simulation

e Recall: stationary distribution 7 of income process y solves

7=P'r or 7w~ (PN, forlarge N

¢ |dea of method 2: form big transition matrix of joint (a, y) process,
let’s call it B, and use same strategy

e Step 1: Fix point in grid (a;, y;). For all possible grid points a;, y;
(important: all a; forced to be on grid A = {a1, ..., an}) compute

Pr(at+1 = an, yer1 = yylar = ai, yr = y))

¢ Can do this by interpolation of policy function a’(aj, ;)

e Step 2: Stack! 1. Stack grids for a (dim = N) and y (dim = J) into
large K = N x J grid. Stack Pr’s into big matrix K x K matrix B

e Step 3: Stat dist g, a K x 1 vector w entries g(a;, y;), solves

g=BTg o g~ (B")Ngy forlarge N

Something useful to think about

® \We solved for wealth dist of economy with large number of people
(say simulation with N = 100, 000 to approximate continuum)

¢ How many Bellman equations did we solve?

e \Why?

More Advanced Methods
and Useful Tricks

More Advanced Methods and Useful Tricks

1. Euler equation iteration

® seeeei_IID.m

2. Power-spaced grids

® ysed in all our codes | shared with you

3. Endogenous Grid Method
® seeegp_IID.m

e if possible, always use this

4. Continuous-time methods: will teach this in my 2nd-year course

® see codes here https://benjaminmoll.com/codes/,
€.J. https://benjaminmoll.com/huggett_partialeq/

eei_IID.m
egp_IID.m
https://benjaminmoll.com/codes/
https://benjaminmoll.com/huggett_partialeq/

Euler Equation Ilteration

e Step 1: Construct finite grid A, a; = a
e Step 2: Set £ = 0. Guess initial cp(a;y;). Good first guess is

coaiy))=ra+y
e Step 3: Loop over A, solve for ¢ by calculating LHS and RHS

v (c) 6RZ (ce lyj + Rai = c.v;]) by

1. At borrowing constraint 8/ =a = c=Raj+y; —a
LHS = «/ (Ra,- +yj— a)

RHS = ﬁRZ (ce[2.v7]) P
J=1
2. LHS <RHS = cp41 (ai, yj) = Ra; +y; — a. Go to Step 4.
3. LHS > RHS = solve non-linear equation.

Euler Equation Ilteration

e Step 3 (continued):
e Construct interpolation function
J

EMUC (d,y;) =D u' (c (3 yy)) piy
=1

which depends only on today’s income. At (a;, y;) nonlinear
equation becomes

u(c)=BL+r)EMUC ((L+r)ai+y —c.y)

® Solve with non-linear solver: Matlab: fzero or fsolve,
Python: scipy.optimize.root Ofr scipy.optimize.fsolve

e Step 4: Stop if € < € and return policy functions, where
€ = max|cgr1 (a1,) — @ (a0)|

Ife, > gotoStep3withd :=£2+1

Power-spaced grids

¢ Policy functions are typically very non-linear close to the borrowing
constraint

e Accurate linear interpolation with more grid points close to the
constraint

® Let [a, 3] be the possible range of asset holdings.
® | et Z be an equi-spaced grid on [0, 1].

® For each grid point z € Z, define x = z* for some o € (1,) to
create a non-linear spaced grid X on [0, 1]. Notice that as o« — oo,
X has more and more points closer to O.

e Construct asset grid A by rescaling each x € X

a=a+(a—ax

Endogenous Grid Method

e Step 1: Construct grid A and set a; = a
e Step 2: Set £ = 0. Guess initial co(a;, y;). A good first guess is
cl(aiy)=ra+y
® Step 3: Construct implicit ¢,(a’, yj) via interpolating
J

EMUC, (a,y;) = Y ' (et (a}.) piy
J=1

Use Euler equation at equality to get MUC today and ¢, a
MUC, (&, y;) = BR x EMUC, (4, y;)
= (a.y) =" (MUC, (a4, y;))
c(a.y)+a -y
14+r

Invert a,(a}, y;) = a'(a, y;) on an endogenous grid
Interpolate on A to get ag+1(a;, yi). Use BC to calculate ¢pq1

!/

dg (aivyj) =

Endogenous Grid Method

* Step 4: Deal with borrowing constraints: define a* (y;) = a,. Then
for a; > a*(yj), ai€ A

g+1 (aivyj) =a
aj+1(any) =Q+r)a+y—a

e Step 5: Stop if € < € and return policy functions, where
¢ = max e (an ;) — ce (a1, 35)|

lfe, > € gotoStep3withl :=4+1

Endogenous Grid Points with Cash-on-Hand

® \When income y is IID, single state variable is x
¢ |ndividual chooses consumption ¢, savings s s.t.

c+s<x
s>a

e Cash-on-hand x evolves as

X'=0+r)s+y

Endogenous Grid Points with Cash-on-Hand

e Step 1: Discretize X = {x1, x2, . . ., Xy}, set x1 = Ra+ Ymin
® Step 1.1: Discretize savings S = {s1, %, . . ., sy}, sets; =a
® Step 2: Set £ = 0. Guess cy(x;), Vx; € X. A good first guess is

co(xi) = rx;

Step 3: Compute (via interpolation of ¢(x) or MUC (x) = v/ (¢ (x)))
J

EMUC,(s) =Y v (q((L+r)si+y))py. Vs €S
J=1

Step 4: Using EE at equality
MUGC, (s;) = BR x EMUG, (s))
— ¢ (s) = v (MUCq (s)))
xp (si) = si+ c (si)

Step 5: Invert x,(s;) by interpolating on X', checking borr constraint
Gives sp11(x;) which gives ¢p11 = X; + Sp11(x))
Step 6: Check for convergence. If fails, go to step 3

