The Great Lockdown and the Big Stimulus: Tracing the Pandemic Possibility Frontier for the U.S.

Greg Kaplan Ben Moll Gianluca Violante

October 2020

Slides at http://benjaminmoll.com/PPF_slides/

What We Do

- US policy response to COVID-19:
 - Lockdown: workplace and social sector
 - Stimulus: CARES Act
- Goal: quantify trade-offs
 - Aggregate: Lives versus livelihoods
 - Distributional: Who bears the economic costs?
- Approach: distributional Pandemic Possibility Frontier (PPF)
 - · Compare policies without taking stand on economic value of life
 - · Seek policies that flatten and shift the frontier

How We Do It

- Integrated SIR + Heterogeneous Agent model with necessary ingredients
 - Sectors: (i) regular; (ii) social; (iii) home production
 - Types of labor: (i) workplace; (ii) remote; (iii) home production
 - Occupations: (i) flexibility; (ii) sectoral intensity; (iii) essentiality
 - Two-way behavioral feedback: between virus & economic activity
- Economic exposure to pandemic correlated with financial vulnerability
- Calibrate model to U.S. economy and examine counterfactuals
 - Laissez-faire vs lockdowns vs fiscal stimulus (CARES Act)
 - Smarter policies: (i) targeted lockdowns; (ii) Pigouvian taxes

What We Find

- 1. Economic welfare costs of pandemic: large and heterogeneous
 - Regardless of the policy response
 - · Laissez-faire vs lockdown: who bears the cost differs
 - Large welfare costs for middle of earnings distribution
- 2. Slope of PPF varies with length lockdown
 - Driven by hospital beds constraint and eventual arrival of vaccine
 - · Reconcile conflicting views on extent of health-wealth trade-off
- 3. U.S. CARES Act:
 - Reduced economic cost by 20% on average, highly redistributive
 - Explains rapid recovery in consumption of poor households
- 4. Taxation-based alternatives to lockdown: favorable mean trade-off but more dispersion

^{ightarrow} dimensions not considering today

Outline

1. Model

2. Parameterization

3. Results

4. Conclusions

5. Linked Slides

Epidemiological Model

- *S_t*: susceptible
- \mathcal{I}_t : infectious
- \mathcal{R}_t : recovered

- \mathcal{E}_t : exposed = latent virus, not yet infectious
- C_t : critical = in ICU, may ultimately die
- \mathcal{N}_t : population = $\mathcal{S}_t + \mathcal{E}_t + \mathcal{I}_t + \mathcal{C}_t + \mathcal{R}_t$

$$\begin{bmatrix} \dot{\mathcal{S}}_t \\ \dot{\mathcal{E}}_t \\ \dot{\mathcal{I}}_t \\ \dot{\mathcal{C}}_t \\ \dot{\mathcal{R}}_t \end{bmatrix} = \begin{bmatrix} -\beta_t \frac{\mathcal{I}_t}{\mathcal{N}_t} & \beta_t \frac{\mathcal{I}_t}{\mathcal{N}_t} & 0 & 0 & 0 \\ 0 & -\lambda_E & \lambda_E & 0 & 0 \\ 0 & 0 & -\lambda_I & \lambda_I \chi & \lambda_I (1-\chi) \\ 0 & 0 & 0 & -\lambda_C & \lambda_C (1-P(\mathcal{C}_t, \mathcal{C}_{\max})) \\ \lambda_R & 0 & 0 & 0 & -\lambda_R \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathcal{S}_t \\ \mathcal{E}_t \\ \mathcal{I}_t \\ \mathcal{C}_t \\ \mathcal{R}_t \end{bmatrix}$$

• Deaths (flow) $\dot{\mathcal{D}}_t = P(\mathcal{C}_t, \mathcal{C}_{max})\lambda_C \mathcal{C}_t$, cumulative deaths \mathcal{D}_t

Two key features:

- 1. Death probability of C_t 's depends on $C_t \ge \max ICU$ capacity C_{\max}
- 2. $\beta_t = \beta(C_{st}, L_{wt}, t)$: transmission depends on economic activity and time

→ lockdowns in SIR models

Occupations (j)

	Flexibile	Rigid	
C-intensive	Software engineer, architect	Car mechanic, miner	
S-intensive	Event planner, social scientist	Waiter, shop assistant	
Essential	Police, nurse, supermarket clerk		

1. Flexibility: substitutability between remote and workplace hours

- Total labor supply = $L_w^j + \phi^j L_r^j$
- 2. Employment intensities in social versus regular sector , (ξ_s^j, ξ_c^j)

$$Y_{i} = Z_{i} N_{i}^{\alpha_{i}} K_{i}^{1-\alpha_{i}}, \quad N_{i} = \left[\sum_{j=1}^{J} \left(\xi_{i}^{j}\right)^{\frac{1}{\sigma}} \left(N_{i}^{j}\right)^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}, \quad i \in \{s, c\}$$

3. Essential occupations: not affected by workplace lockdown

Households

- Period utility: $U[c, s, h] V[\ell_w, \ell_r, h]$
 - c: regular consumption
 - ℓ_w : workplace hours
 - *h*: home production

- s: social consumption
- ℓ_r : remote hours

Households

- Period utility: $U[c, v_s(\dot{D})s, h] V[v_\ell(\dot{D})\ell_w, \ell_r, h]$
 - c: regular consumption
 - ℓ_w : workplace hours
 - *h*: home production

- s: social consumption
- ℓ_r : remote hours
- v_s , v_ℓ : disutility of infection risk ("fear factor")
- Externality: when choosing s, ℓ_w , do not take into account effect on \dot{D}_t , disutility of others
- Budget constraint of healthy household working in occupation j

$$\dot{b} = (1-\tau)w^{j}z\left(\ell_{w} + \phi^{j}\ell_{r}\right) + r^{b}b + T - c - p_{s}s - d - \chi(d,a)$$
$$\dot{a} = r^{a}a + d$$

• b: liquid assets

- a: illiquid assets
- $\phi^j \in [0, 1]$: flexibility of occupation *j*
- χ : transaction cost
- Sick households (= C, in ICU): cannot produce, gov't provides c and s

Lockdowns

1. Social sector lockdown: Mandated decrease in K utilization in s sector

 $Y_s = Z_s(\kappa_s K_s)^{\alpha_s} N_s^{1-\alpha_s}, \qquad \kappa_s < 1$

2. Workplace lockdown: Mandated maximum (share of) workplace hours

$$\ell_w \leq \kappa_\ell (\ell_w + \ell_r), \qquad \kappa_\ell < 1$$

- Full lockdown: $\kappa_s = \kappa_{\ell} = 0$
- Lockdowns reduce infections because reduce $\beta_t = \beta(C_{st}, L_{wt}, t)$
- Lockdowns affect same behavioral margins as pandemic...
- ... but reduce cumulative deaths for four reasons:
 - 1. reduce epidemic "overshoot" (small)
 - 2. vaccine after 24 months (small except for very long lockdowns)
 - 3. ICU constraint \mathcal{C}_{max}
 - 4. "learning" = logistic time trend in β_t

Remaining Model Ingredients

Firms

- Monopolistic intermediate-good producers → final s,c goods
- Baseline: flexible prices (extension: sticky prices)

Investment Fund

- Illiquid assets = shares of an investment fund
- The fund owns K and equity of intermediate producers in c, s sectors

Government

- Issues liquid debt (B^g) , spends (G), taxes and transfers (\mathcal{T})
- Central bank absorbs the additional debt needed to finance CARES Act

 \rightarrow market clearing conditions

Outline

1. Model

2. Parameterization

3. Results

4. Conclusions

5. Linked Slides

Key Aspects of Parameterization

- 1. Epidemiological block
 - SEIR parameters: epidemiological and clinical studies
- 2. Occupational parameters
 - Flexibility measures by occupation: O*NET, ATUS
 - Sectoral employment intensities in C and S: OES, CPS
 - Earnings and liquid wealth by occupation: SIPP, CPS, SCF
- 3. Two-way feedback: virus \leftrightarrow economic activity
 - Economic activity \rightarrow virus: drop in R_t after lockdown
 - Virus \rightarrow economic activity: VSL literature

 \rightarrow feedback: virus \rightarrow activity

 \rightarrow feedback: activity \rightarrow virus

Model fits deaths data reasonably well despite simple epi block

Outline

1. Model

2. Parameterization

3. Results

4. Conclusions

5. Linked Slides

Lockdown Scenario

- Calibrated to obtain decline in workplace and retail activity (Google)
- Assumption: no future lockdown in case of 2nd wave

Laissez-faire vs Lockdown Dynamics

- Lockdown \rightarrow second wave, but fewer cumulative deaths
- Lockdown \rightarrow longer, deeper contraction and ${\it W}\mbox{-shaped}$ recovery

ightarrow laissez-faire dynamics) (ightarrow lockdown dynamics) (ightarrow lockdown decomposition) (ightarrow cumulative deaths

Laissez-faire vs Lockdown Dynamics

- · Large drop in income for S-intensive occupations even in laissez faire
- Lockdown \rightarrow further drop in income for C-intensive occupations

Pandemic Possibility Frontier (PPF)

- Large average economic costs and big dispersion
- · Heterogeneity in economic costs exacerbated with longer lockdowns
- Very non-linear trade-off: role of ICU constraint and vaccine

Distribution of Economic Welfare Costs

- Largest economic costs in middle of distribution
- Transfers (bottom) vs Rigid labor (middle) vs Flexible labor (top)

CARES Act Shifts Down the PPF

CARES Act: stimulus checks, pandemic UI, PPP

Distribution of Economic Welfare Costs

· Big impact of CARES Act on households below the median

 \rightarrow welfare cost distribution

Consumption Dynamics

• US Data: biggest *y* drops, but fastest *c* recovery at the bottom of the income distribution → US data

• CARES Act redistributed heavily toward low-income households with high MPC

19

Smarter Alternative Polices

Kaplan, Moll and Violante (2020)

Outline

1. Model

2. Parameterization

3. Results

4. Conclusions

5. Linked Slides

Messages

- 1. Economic costs of pandemic: large and heterogeneous, regardless of lockdowns
- 2. Distributional PPF is useful for quantifying trade-offs:
 - Aggregate tradeoff between lives vs livelihoods
 - Distributional tradeoff over who bears economic burden
- 3. Non-linear PPF: reconciles conflicting views on aggregate tradeoff
- 4. Exposure correlated with vulnerability \Rightarrow scope for fiscal policy
- 5. US CARES Act:
 - Shifts PPF inward: reduces economic costs w/o increasing deaths
 - Faster recovery of spending for low income households
- 6. Pigouvian schemes alternative to lockdowns improve aggregate trade-off

Thanks and Stay Safe!

Outline

1. Model

2. Parameterization

3. Results

4. Conclusions

5. Linked Slides

Distributional Pandemic Possibility Frontier

Some Dimensions we Abstract From

- 1. Differential impact of the epidemic across age groups (Glover-Heathcote-Krueger-RiosRull, Bairoliya-Imrohoroglu, Acemoglu et al., Brotherhood-Kircher-Santos-Tertilt, ...)
- 2. Differential impacts of the epidemic across gender (Alon-Doepke-Olmstead Rumsey-Tertilt, ...)
- 3. Impact of the epidemic on deaths from other causes
- 4. Input-output linkages in production (Baqaee-Farhi, ...)
- 5. Firm balance sheets, liquidity provision to firms (Buera-Fattal Jaef-Neumeyer-Shin, Elenev-Landvoigt-VanNieuwerburgh, ...)
- 6. Costly destruction of viable employment relationships

Background on Lockdowns in SIR Models

- Some vocabulary:
 - 1. Basic reproduction number: $R_0 := \beta_0 / \lambda_I$
 - 2. Effective reproduction number: $R_t^e := R_0 \times S_t / N_t$
 - 3. Herd immunity threshold:
 - 4. Final size of disease:

- $\mathcal{S}^*/\mathcal{N} := 1/R_0$ or $\mathcal{R}^*/\mathcal{N} = 1 \mathcal{S}^*/\mathcal{N} = 1 1/R_0$ $\mathcal{S}_{\infty} = e^{-R_0(1-\mathcal{S}_{\infty})}$
- Two key features of SIR models:
 - 1. Infections \uparrow if $R_t^e > 1$ or $S > S^*$ and \downarrow otherwise
 - 2. Epidemic "overshoot": total infections > herd immunity, $\mathcal{S}_{\infty} > \mathcal{S}^*$
- Results on lockdowns := $R_0 \downarrow$
 - Even temporary lockdowns reduce total number of infections
 - But total number of infections \geq herd immunity threshold
 - · Best lockdowns-only can do is eliminate epidemic "overshoot"
 - If lockdown too short or too tight, get 2nd wave

Market Clearing Conditions

• Regular goods market

$$Y_c = C_c + I + G + \chi$$

Social goods market

$$Y_s = C_s$$

• Labor market for each occupation

$$N_c^j + N_s^j = \int z(\ell_w^j(\mathfrak{h}, a, b, z) + \phi^j \ell_r^j(\mathfrak{h}, a, b, z)) d\mu, \quad j = 1, ..., 5$$

• Liquid asset market

$$B^h = B^g$$

Illiquid asset market

$$A = V_{\text{fund}}(K, \Theta_c, \Theta_s), \quad K = K_c + K_s$$

 \rightarrow model ingredients

Epidemiological Parameters

Description	Parameter	Value
Initial basic reproduction number	$R_0^{init} = \beta_0^{init} / \lambda_I$	2.5
Final basic reproduction number	$R_0^{end} = \beta_0^{end} / \lambda_I$	2
Avg. duration of \mathcal{I} nfectious	$T_I \Rightarrow \lambda_I = 1/T_I$	4.3 days
Avg. duration of \mathcal{E} xposure (latency)	$T_E \Rightarrow \lambda_E = 1/T_E$	5.0 days
Infection fatality rate	$IFR = \chi \delta_C$	$0.02 \times 0.33 = 0.066$

- Time trend in transmissions (masks,...): $\tilde{R}_0(t) = (1 \omega(t))R_0^{\text{init}} + \omega(t)R_0^{\text{end}}, \omega(t) = \text{logistic}$
- Herd immunity threshold: $1 1/R_0^{\text{init}} = 60\% \Rightarrow 1 1/R_0^{\text{end}} = 50\%$
- Vaccine arrival after 18 months

→ back to parameterization

Occupations: Flexibility

- O*NET: Share of tasks that can be performed at home (Dingel-Neiman)
- ATUS Q: As part of your (main) job, can you work at home?
- Systematic variation across 3-digit SOC occupations

• Two flexibility levels: high flexibility occupation if O*NET share > 0.5.

ightarrow back to parameterization

Occupations: Social vs Regular Intensity

NAICS code	Sector C (value added share: 0.74)	NAICS code	Sector S (value added share: 0.26)
11	Agriculture, forestry, fishing, and hunting	44-45	Retail trade
21	Mining	481 - 482 - 483	Air, rail, and water transportation
22	Utilities	485-487-488	Transit and scenic transportation
23	Construction	61	Educational services
31-32-33	Manufacturing	62	Health care and social assistance services
42	Wholesale trade	531 - 532 - 533	Real estate, rental and leasing services
484 - 486	Truck and pipeline transportation	71	Arts, entertainment, and recreation services
491 - 492	Postal transportation	72	Accommodation and food services
493	Warehousing and storage	81	Other services (excluding P.A.)
51	Information		
52	Finance and insurance		
_	Housing services		
54 - 55	Professional, technical, and scientific services		
56	Management and administrative services		

→ back to parameterizatior

Occupations: Exposure vs Vulnerability

Correlation between Flexibility and Median Liquid Wealth Across Occupations 0.9 ONET (share of teleworkable jobs) • . . Weighted Correlation: 0.51 0.1 -1000 1000 2000 3000 4000 5000 0 Median liquid wealth (\$)

→ back to parameterizatior

Occupations: Exposure vs Vulnerability

Occupation	ϕ^{j}	$\boldsymbol{\xi}_{c}^{j}$	ξ_s^j	Empl Share	Earnings	Liq Wealth	_ _ Source: O*NET,
Essential	0.1	0.19	0.35	0.31	\$45 <i>K</i>	\$1,300	
CF: C-intensive, Flexible	1	0.57	0.12	0.21	\$79 <i>K</i>	\$18,400	
SF: S-intensive, Flexible	1	0.03	0.19	0.10	\$51 <i>K</i>	\$8,900	
CR: C-intensive, Rigid	0.1	0.19	0.04	0.13	\$45 <i>K</i>	\$1,000	
SR: S-intensive, Rigid	0.1	0.04	0.29	0.24	\$32 <i>K</i>	\$900	_
							-

OES, SIPP

- Estimate stochastic processes for household wage dynamics by occupation from PSID
- To match liquid wealth we add occupational-specific wedge on liquid rate

back to parameterizatior

Feedback: Economic Activity to Virus

• Transmission rate for infections:

$$\beta_t = \tilde{\beta}_t \left(\frac{C_{st}}{\bar{C}_s}\right)^{\nu_\beta^s} \left(\frac{L_{wt}}{\bar{L}_w}\right)^{\nu_\beta^w}$$

Google COVID-19 Community Mobility Data:

- Estimates of R_t drop from 2.5 to 0.8 after lockdown
- Drop in acrivity of $50\% \Rightarrow$ elasticities: $\nu_{\beta}^{s} = \nu_{\beta}^{w} = 0.8$

→ back to parameterization

Feedback: Virus to Economic Activity

• Parameterize utility shifters as:

$$\upsilon_{\ell}(\dot{\mathcal{D}}) = \exp\left(-\nu_{\ell}^{0}\dot{\mathcal{D}}^{\nu_{\ell}^{1}}
ight), \qquad \upsilon_{s}(\dot{\mathcal{D}}) = \exp\left(-\nu_{s}^{0}\dot{\mathcal{D}}^{\nu_{s}^{1}}
ight)$$

• Maps into VSL calculations: optimality condition for hours worked is

$$\log w_{it} = \gamma_{\ell}^{0} \left(\nu_{\ell}^{0} \dot{\mathcal{D}}_{t}^{\nu_{\ell}^{1}} \right) + \gamma_{\ell}^{1} \mathbf{X}_{it}$$

- Used to estimate monetary compensation for fatality risk
 - increasing and concave in risk Greenstone et al. (2014), Lavetti (2020)
- Target VSL between \$4-10M for fatality rates between 1/1,000 and 1/10,000 per quarter (relevant magnitude for COVID-19)

ightarrow back to parameterization

Aggregates Dynamics: Laissez-Faire

Aggregates Dynamics: Lockdown

Lockdown Decomposition

Cumulative infections and deaths

Kaplan, Moll and Violante (2020)

Economic Welfare Cost Distribution

Production Possibility Frontier by Occupation

 C-intensive, rigid occupations (green line) hurt most by longer lockdowns

Modeling CARES Act

- Stimulus checks: unconditional transfer of \$1,900 to everyone
- Pandemic UI: replacement earnings loss by decile (Ganong-Vavra)
- Paycheck Protection Program: part wage & profit subsidies (half each)
- 401(k) withdrawals up to \$100,000: reduction in withdrawal cost

Aggregates Dynamics: Lockdown + CARES Act

Decomposition of CARES Act Elements

Kaplan, Moll and Webaste (2020)

CARES Act by Income Quartile

43

CARES Act Components by Income Quartile

Consumption Dynamics by Income Quartile: US Data

- Source: Cox-Ganong-Noel-Vavra-Wong-Farrell-Greig
- · Consumption of poor recovers faster than consumption of rich