Present Bias Amplifies the Household Balance-Sheet Channels of Macroeconomic Policy

David Laibson
Peter Maxted
Benjamin Moll

Slides at https://benjaminmoll.com/PBMP_slides/

ASSA Meetings, January 4, 2021
Question

Idea with long tradition (Strotz 1956, ...)

• dynamically inconsistent preferences alter dynamic choices

• particular form with strong empirical support: present bias
 (e.g. Ashraf-Karlan-Yin, Augenblick-Niederle-Sprenger, Laibson-Maxted-Repetto-Tobacman, ...)

Monetary and fiscal policy ⇒ household consumption and investment

• = leading examples of dynamic choices affected by present bias

To what extent does present bias alter impact of these policy tools?

(To be clear: present bias = $\beta - \delta$ preferences = quasi-hyperbolic discounting)
What We Do

Starting point: “positive household finance”

• households face complex financial planning problem, behavior is influenced by psychological factors

• want our model to capture relevant complexities

Develop partial-equilibrium heterogeneous-household model with

1. rich household balance sheets (“Aiyagari w mortgages & housing”) (e.g. Guerrieri-Lorenzoni-Prato, Wong, Eichenbaum-Rebelo-Wong, Kaplan-Mitman-Violante,...)
 ○ assets: liquid wealth and illiquid housing
 ○ liabilities: credit card debt and fixed-rate mortgages
 ○ liquidity constraints

2. present biased preferences
 ○ naïve present bias with procrastination

Goal: understand how interaction of (1)+(2) affects policy transmission
Important: today ≠ GE analysis, want to first understand PE

Paper: speculative discussion through lens of HANK literature
Our Scope: Monetary Policy Transmission

Monetary transmission to individual consumption

Direct effects (PE)
- Intertemporal Substitution
- Income Effects
 - Standard Income Effects through Interest Rates
 - Valuation Effects from Inflation (Fisher Effects)
 - Income Effects through Mortgage Rates

Indirect effects (GE)
- Asset Prices/Returns
 - Dividends/Profits
 - Capital Gains
- Fiscal Policy
- Labor Income
 - Level
 - Risk

Important: today ≠ GE analysis, want to first understand PE

Paper: speculative discussion through lens of HANK literature
What We Find

1. Fiscal policy
 • present bias amplifies potency
 • generically increases economy’s average MPC

2. Monetary policy
 • present bias amplifies potency...
 • ... but at same time slows down transmission speed

Both effects of present bias move model toward data

3. Methods (not today’s focus)
 • continuous-time present bias, option value problem via HJBQVI
What We Find

1. Fiscal policy
 • present bias amplifies potency
 • generically increases economy’s average MPC

2. Monetary policy
 • present bias amplifies potency...
 ◦ cash-out refis = liquidity injections to high-MPC households
 • ... but at same time slows down transmission speed
 ◦ refinancing inertia due to procrastination

Both effects of present bias move model toward data

3. Methods (not today’s focus)
 • continuous-time present bias, option value problem via HJBQVI
Model
Plan for model exposition

1. Household balance sheets: “Aiyagari with mortgages & housing”
2. Time preferences: naïve present bias
3. Refinancing procrastination
Household Balance Sheets

- Continuum of households
- Stochastic income y_t, liquid wealth b_t, housing h, mortgage m_t
- Can refinance mortgage at cost (both $ and effort – details later)
- When not refinancing:
 \[
 \dot{b}_t = y_t + r_t b_t + \omega^{cc} b_t^- - (r^m_t + \xi)m_t - c_t
 \]
 \[
 \dot{m}_t = -\xi m_t
 \]
 \[
 b_t \geq b, \quad m_t \geq 0, \quad m_t \leq \theta h
 \]
- Note shortcut: housing h is fixed and cannot be adjusted
 \Rightarrow when taking to data, restrict to home-owners who do not move
- Liquid rate r_t exogenous, follows finite-state process = mon. policy
- Mortgage interest rate r^m_t fixed until refinance, then $r^m_t = r_t + \omega^m$
Why refinance?

1. Rate refinancing motif
 - Lower mortgage interest payments if market rate falls

2. Cash-out refinancing motif
 - Access home equity during low-income spells (c smoothing)
 - Replace expensive credit card debt with cheaper mortgage debt

- Can also prepay mortgage
 - Use large liquid wealth balances to pay off mortgage debt

- Model: mortgage adjustments are costly
 - refinancing: fixed cost κ^{refi}, effort cost $e_t \approx 0$
 - prepayment: fixed cost $\kappa^{\text{prepay}} \approx 0$, effort cost $e_t \approx 0$
Time preferences: naïve present bias

Key behavioral element: present bias = $\beta - \delta$ discounting

Additional assumption: households are naïve about their present bias
Time preferences: naïve present bias

Key behavioral element: present bias = $\beta - \delta$ discounting

Additional assumption: households are naïve about their present bias

Discrete-time warmup:

- Current self discounts all future selves by $\beta < 1$

\[
\sum_{t=1}^{\infty} \delta^t u(c_t)
\]

- Naïveté: current self believes future selves time-consistent ($\beta = 1$)
 \[\Rightarrow\] no game between current and future selves
Time preferences: naïve present bias

Key behavioral element: present bias = $\beta - \delta$ discounting

Additional assumption: households are naïve about their present bias

Continuous time:

- Current self discounts all future selves by $\beta < 1$
- Take period length $\to 0$

Discount function $D(s) = \begin{cases} 1 & \text{if } s = 0 \\ \beta e^{-\rho s} & \text{if } s > 0 \end{cases}$

- Details in Harris-Laibson (2013) and Laibson-Maxted (2020)
Refinancing Procrastination

Large empirical literature: households slow to refinance – think Calvo
(e.g. Andersen-Campbell-Nielsen-Ramadorai, Keys-Pope-Pope,...)

Naïve $\beta < 1$ naturally generates such refinancing procrastination

• Key ingredient: effort cost $e_t \approx 0$

• Application of result from theory literature (O’Donoghue-Rabin):
 naïfs procrastinate on immediate-cost delayed-benefit tasks

• Monetary cost not enough. Why? Effect on u-flow over next hrs of:
 ○ $10k$ payment \Rightarrow small effect (via c)
 ○ 10 hours of pain \Rightarrow large effect

Assumption: stochastic $e_t \in \{0, \varepsilon\}$ with $\varepsilon \downarrow 0$, flicks from ε to 0 at rate ϕ

• $\beta = 1$: small effort cost ε does not affect refi decision

• $\beta < 1$: procrastinate whenever $e_t = \varepsilon$ (even though $\varepsilon \approx 0$)

Why $e_t \in \{0, \varepsilon\}$? W/o $e_t = 0$, never refinance! Future work: partial sophist’n
Model Summary

• Aim: analyze monetary and fiscal policy in heterogeneous-household model with present-biased preferences

• Household problem has 5 state variables:
 1. b: liquid wealth / credit card debt
 2. y: stochastic labor income
 3. m: mortgage (illiquid home equity)
 4. r_m: mortgage rate
 5. r: liquid rate

• Remainder of talk: show results for 3 cases
 1. Rational Benchmark: $\beta = 1$, Procrastination
 2. Intermediate Case: $\beta < 1$, Procrastination
 3. Behavioral Benchmark: $\beta < 1$, Procrastination
Effect of $\beta < 1$ on Policy Functions
Effect of present bias on policy functions

• Notation: household state variables = \(x = (b, m, y, r^m, r) \)

• Assumption: CRRA utility \(u'(c) = c^{-\gamma} \)

• Households make two decisions:
 1. consumption = continuous control
 2. mortgage refinancing and prepayment = impulse control

• Solve optimal control + option value problem
Effect of present bias on consumption

Continuous-time present bias ⇒ simple FOC for today vs future

\[
u'(c(x)) = \beta \frac{\partial v(x)}{\partial b}
\]

and naïveté ⇒ \(v(x) = \text{time-consistent value function (}\beta = 1\)

Proposition

Consumption obeys Euler equation:

\[
E_t \frac{d u'(c(x_t))}{dt} \frac{d}{u'(c(x_t))} = \left[\rho + \gamma \left(1 - \beta^{1/\gamma}\right) \frac{\partial c(x_t)}{\partial b} \right] - r_t(b_t)
\]

When unconstrained, households overconsume by \(\beta^{-1/\gamma} > 1\)

\[
c(x) = \beta^{-1/\gamma} \hat{c}(x) \quad \text{where} \quad \hat{c}(x) = \text{time-consistent policy fn (}\ast\)
\]

Observation: interaction of \(\beta < 1\) with liquidity constraint is critical. Otherwise (\ast) ⇒ \(\beta < 1\) and \(\beta = 1\) observationally equivalent
Effect of present bias on refinancing and prepayment

Proposition

Mortgage adjustment policy function independent of β, i.e. only depend on long-run discount rate ρ (and other model parameters)

$\beta < 1$ affects refinancing decision only through procrastination
Calibration
Discount Function

- Calibrate discount function to match empirical wealth moments
- 2016 SCF wave of home owners who don’t move:
 - Average LTV = 0.54
 - Average credit card debt to income ratio = 0.09

<table>
<thead>
<tr>
<th>Discount Function</th>
<th>Data</th>
<th>Exponential Benchmark</th>
<th>Intermediate Case</th>
<th>Present-Bias Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>-</td>
<td>1</td>
<td>0.7</td>
<td>0.83</td>
</tr>
<tr>
<td>ρ</td>
<td>-</td>
<td>1.65%</td>
<td>0.66%</td>
<td>1.08%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibration Targets</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LTV</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>Avg. CC Debt</td>
<td>0.09</td>
<td>0.04</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Share CC Debt > 0</td>
<td>60%</td>
<td>27%</td>
<td>51%</td>
<td>46%</td>
</tr>
</tbody>
</table>
Other Parameters (Selected)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi) Procrastination Decay Rate</td>
<td>(-\log(0.5))</td>
<td>Andersen et al. (2020)</td>
</tr>
<tr>
<td>Housing and Assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h) House Value</td>
<td>2.9</td>
<td>2016 SCF</td>
</tr>
<tr>
<td>(\theta) Max LTV</td>
<td>0.8</td>
<td>Greenwald (2018)</td>
</tr>
<tr>
<td>(b) Credit Limit</td>
<td>(-\frac{1}{3})</td>
<td>2016 SCF</td>
</tr>
</tbody>
</table>
Results
Fiscal Policy: $1000 Helicopter Drop

- Present bias $\beta < 1$ robustly amplifies potency of fiscal policy
Fiscal Policy: $1000 Helicopter Drop

- Present bias $\beta < 1$ robustly amplifies potency of fiscal policy
Fiscal Policy: $1000 Helicopter Drop

• Present bias $\beta < 1$ robustly amplifies potency of fiscal policy
Present bias amplifies potency of fiscal policy: intuition

- $\beta < 1$ creates large MPCs + large mass of households at b
Monetary Policy: 1% Interest-Rate Cut

- Present bias $\beta < 1$ amplifies potency of monetary policy...
- ...but slows transmission speed
 - refi procrastination \Rightarrow "dry powder" ignited more slowly

![Graph of Consumption Elasticity over Years]

- Exponential function
• Present bias $\beta < 1$ amplifies potency of monetary policy ...
 ○ cash-out refis imitate liquidity-injection of fiscal policy
Monetary Policy: 1% Interest-Rate Cut

- Present bias $\beta < 1$ amplifies potency of monetary policy ...
- ... but slows transmission speed
 - refi procrastination \Rightarrow “dry powder” ignited more slowly
Summary: Effect of $\beta < 1$ on Magnitude and Timing

- Fiscal and Monetary Policy scaled to impact of $\beta = 1$ case

(a) Fiscal policy

- Fiscal Policy: $\beta < 1$ amplifies potency

(b) Monetary policy

- Monetary Policy: $\beta < 1$ amplifies potency but slows transmission
Monetary policy and house price shocks

(a) -25% House Price Shock

(b) +25% House Price Shock

Our main result – that present bias amplifies consumption response to monetary policy – still holds in both cases
Conclusion: Present bias amplifies household balance-sheet channels of macroeconomic policy

1. Fiscal policy

- present bias amplifies potency
- generically increases economy’s average MPC

2. Monetary policy

- present bias amplifies potency but...
- ... at same time slows down speed of monetary transmission

Final thought: het. agent macro as gateway to behavioral macro

- all about building things “from the ground up”
- for more see https://benjaminmoll.com/research_agenda_2020/
Thanks!
Fiscal Policy: Distributional Effects

• For $\beta < 1$, fiscal policy driven by low-c households
 - Low-c households are constrained, have high MPCs
For $\beta < 1$, low-consumption households left out of MP on impact
- Low-c households constrained, procrastinate refinancing

β critical for the distributional effects of stabilization policy
- $\beta = 1$: monetary policy promotes c of low-c households
- $\beta < 1$: fiscal policy promotes c of low-c households
Discussion: General Equilibrium
So far: partial equilibrium analysis

Monetary transmission to individual consumption

- Direct effects (PE)
 - Intertemporal Substitution
 - Income Effects

- Indirect effects (GE)
 - Asset Prices/Returns
 - Fiscal Policy
 - Labor Income

Raised question: how would present bias affect transmission of monetary and fiscal policy in full GE analysis?
GE effects through lens of HANK literature

Monetary transmission to individual consumption

Direct effects (PE)
- Intertemporal Substitution
- Income Effects
 - Standard Income Effects through Interest Rates
 - Valuation Effects from Inflation (Fisher Effects)
 - Income Effects through Mortgage Rates

Indirect effects (GE)
- Asset Prices/Returns
- Fiscal Policy
- Labor Income
 - Dividends/Profits
 - Capital Gains
 - Level
 - Risk

Next: brief speculative discussion of this question
GE effects through lens of HANK literature

Fiscal policy:
- primary GE effect through labor income
- size depends primarily on MPCs
- present bias amplifies MPCs \Rightarrow likely amplifies overall response

Monetary policy:
- as for fiscal policy, GE effects through labor income
- additional GE effects through stock prices / returns, house prices also move but at much lower frequencies
- size depends on MPCs out of labor income and stock capital gains
- present bias amplifies MPCs \Rightarrow likely amplifies overall response