Uneven Growth

Automation's Impact on Income and Wealth Inequality

Benjamin Moll Lukasz Rachel Pascual Restrepo

Oxford, 11 February 2020

Uneven Growth in the United States: Stagnant incomes at bottom, rising incomes at top

- Huge literature: technology affects wage inequality
- Examples: SBTC and polarization of wages
- But what about capital income and wealth?
 inequality & capital inc
 SYZZ

- Theory that links tech to income & wealth distribn, not just wages
- Use it to examine distributional effects of automation technologies
 = technologies that substitute labor for capital in production
- Tractable framework to study dynamics of
 - 1. macro aggregates
 - 2. factor income distribution: capital vs labor
 - 3. personal income, wealth distribution
- Key modeling difference to growth model: perpetual youth \Rightarrow
 - nondegenerate wealth distribution
 - long-run capital supply elasticity $<\infty$

Technology \Rightarrow returns \Rightarrow distributional consequences

Analytic version in our theory:

```
return to wealth = \rho + \sigma g + \text{premium}(\alpha)
```

where α = capital share = average automation

- 1. New mechanism: technology increases inequality via return to wealth
 - income/wealth distributions have Pareto tail with fatness = α
- 2. Automation may lead to stagnant wages and lackluster investment
 - productivity gains partly accrue to capital owners
 - $\alpha := R \times \frac{K}{Y}$ and part of $\alpha \uparrow$ shows up in R not K/Y

Paraphrasing these results

• if "robots" increasingly outperform labor, this benefits people owning lots of robots rather than "workers"

How does this square with trends in returns?

Just told you that

```
return to wealth = \rho + \sigma g + \text{premium}(\alpha)
```

But haven't treasury rates decreased over time?

1. Treasury rates = return on specific asset, ave return on US capital \uparrow

2. Model w risky & safe assets: relevant $r = \sum_{j=1}^{J} r_j \times \text{portfolio share}_j$

3. Inequality depends $r - \rho - \sigma g$. Even if $r \downarrow$, arguably $r - \rho - \sigma g \uparrow$.

- Calibrate incidence of automation using exposure to routine jobs
 - accounts for changes in wage inequality 1980-2014
- Conservative (i.e. high) value for long-run capital supply elasticity
- Examine consequences of automation for
 - aggregates? Small expansions in I, Y
 - income, wealth inequality? Sizable increase, uneven growth
 - wages? Stagnation except for top of distribution
- Small shock (3% inc in TFP) can have large distributional effects

Small productivity gains but large distributional effects

Automation and inequality (Acemoglu-Restrepo, Caselli-Manning, Hémous-Olsen, ...)

- capital income & wealth, not just wages
- capital supply elasticity $<\infty$ very different from $=\infty$

Technology and wealth distribution (Kaymak-Poschke, Hubmer-Krusell-Smith, Straub ,...)

 new mechanism: technology ⇒ return ⇒ wealth inequality (in addition to: technology ⇒ wage dispersion ⇒ wealth inequality)

Returns as driver of top wealth inequality (Piketty, Benhabib-Bisin, Jones,...)

- tractable form of capital income risk, integrated in macro model
- Piketty: $r g \uparrow$ due to lower taxes, lower g. This paper: technology.

Tractable theory of macro aggregates, factor and personal income dist Perpetual youth literature (Blanchard): closed form for wealth distribution

- 1. Framework and model of automation
- 2. Steady state
- 3. Transition dynamics skip today
- 4. Model meets data

1. Framework: Households and Technology

Model has two key building blocks

- Our paper: model this in very stylized fashion perpetual youth
 - cost: some unrealistic implications
 - payoff: analytic solution for everything incl distributions
- Same mechanisms would be present in richer, less tractable models

Framework: Perpetual Youth Households

Households: age s, skills z, solve $\max_{\{c_z(s), a_z(s)\}_{s \ge 0}} \int_0^\infty e^{-(\varrho+p)s} \frac{c_z(s)^{1-\sigma}}{1-\sigma} ds \quad \text{s.t.} \quad \dot{a}_z(s) = ra_z(s) + w_z - c_z(s)$

- w_z : wage for skill z, ℓ_z households
- *r* : return to wealth
- *ρ*: discount rate
- *p*: probability of dying ($p = 0 \Rightarrow$ rep agent)
- $\rho = \rho + p$: effective discount rate

Key assumption: "imperfect dynasties"

- average wealth of newborn < average wealth of living
- stark implementation: eat wealth when die \Rightarrow no bequests, $a_z(0)=0$
- other mechanisms: annuities, pop growth, estate taxation
- perpetual youth = just tractable stand-in for other sources of churn $_{10}$

Task-based model: machines/software substitute for tasks, not jobs

First: "reduced form" production side, next slide: where this comes from

1. Each skill type z works in different sector that produces Y_z

$$Y = A \prod_{z} Y_{z}^{\gamma_{z}}$$
 with $\sum_{z} \gamma_{z} = 1$

2. Y_z produced using Cobb-Douglas tech with skill-specific exponent α_z

$$Y_z = \left(\frac{k_z}{\alpha_z}\right)^{\alpha_z} \left(\frac{\psi_z \ell_z}{1-\alpha_z}\right)^{1-\alpha_z}$$

 α_z = share of tasks technologically automated. Automation: $\alpha_z(t)$ \uparrow

3. Capital mobile across sectors, labor immobile

Derivation from Task-based Model (Zeira, Acemoglu-Restrepo)

For simplicity, derivation with only one skill type. Reduced form:

$$Y = \left(\frac{\kappa}{\alpha}\right)^{\alpha} \left(\frac{\psi L}{1-\alpha}\right)^{1-\alpha} \tag{(*)}$$

Comes out of following task-based model:

1. Final good produced combining unit continuum of tasks u

$$\ln Y = \int_0^1 \ln \mathcal{Y}(u) du$$

2. Tasks produced using capital k(u) or labor $\ell(u)$ at prices R and w

$$\mathcal{Y}(u) = \begin{cases} \psi \ell(u) + k(u) & \text{if } u \in [0, \alpha] \\ \psi \ell(u) & \text{if } u \in (\alpha, 1] \end{cases}$$

- α = share of tasks technologically automated. Automation: $\alpha(t)$ \uparrow
- Example: HR manager, tasks = screen CVs, interview applicants,...
- Displacement vs productivity effects

Derivation from Task-based Model (Zeira, Acemoglu-Restrepo)

For simplicity, derivation with only one skill type. Reduced form:

$$Y = \left(\frac{K}{\alpha}\right)^{\alpha} \left(\frac{\psi L}{1-\alpha}\right)^{1-\alpha} \tag{(*)}$$

Comes out of following task-based model:

1. Final good produced combining unit continuum of tasks u

$$\ln Y = \int_0^1 \ln \mathcal{Y}(u) du$$

2. Assumption 1 (full adoption): $w/\psi > R$ (sufficient to have $L < \overline{L}$)

$$\mathcal{Y}(u) = \begin{cases} \psi \ell(u) + k(u) & \text{if } u \in [0, \alpha] \\ \psi \ell(u) & \text{if } u \in (\alpha, 1] \end{cases}$$

Derivation from Task-based Model (Zeira, Acemoglu-Restrepo)

For simplicity, derivation with only one skill type. Reduced form:

$$Y = \left(\frac{K}{\alpha}\right)^{\alpha} \left(\frac{\psi L}{1-\alpha}\right)^{1-\alpha} \tag{(*)}$$

Comes out of following task-based model:

1. Final good produced combining unit continuum of tasks u

$$\ln Y = \int_0^1 \ln \mathcal{Y}(u) du$$

2. Assumption 1 (full adoption): $w/\psi > R$ (sufficient to have $L < \overline{L}$)

$$\mathcal{Y}(u) = \begin{cases} k(u) & \text{if } u \in [0, \alpha] \\ \psi \ell(u) & \text{if } u \in (\alpha, 1] \end{cases}$$

• 1. and 2. with $k(u) = K/\alpha$, $\ell(u) = L/(1-\alpha)$ imply (*).

2. Characterizing Steady State

Output, Factor Payments and Capital Demand

Aggregate output:

$$Y = \mathcal{A} \mathcal{K}^{\sum_{z} \gamma_{z} \alpha_{z}} \prod_{z} (\psi_{z} \ell_{z})^{\gamma_{z} (1 - \alpha_{z})}$$

 $\alpha = \sum_{z} \gamma_{z} \alpha_{z}$: aggregate capital-intensity, $\mathcal{A} = \text{constant}(\alpha_{z}, \gamma_{z})$

Factor payments:

 $w_z \ell_z = (1 - \alpha_z) \gamma_z Y$, $RK = \alpha Y$, $\overline{w} = (1 - \alpha) Y$

 α_z 's \Rightarrow relative wages, factor shares. But effect on levels unclear

Aggregate capital demand

$$rac{K}{ar{w}} = rac{lpha}{1-lpha}rac{1}{R}$$

• Expositional assumption for presentation: $g = 0, \delta = 0 \Rightarrow \mathbf{R} = \mathbf{r}$

Households' consumption and saving decisions:

$$c_{z}(s) = \left(\frac{\rho - r}{\sigma} + r\right) \left(a_{z}(s) + \frac{w_{z}}{r}\right)$$
$$\dot{a}_{z}(s) = \frac{1}{\sigma}(r - \rho) \left(a_{z}(s) + \frac{w_{z}}{r}\right) \qquad (*)$$

Useful later: relevant state = effective wealth = assets + human capital

$$x_z(s) := a_z(s) + \frac{w_z}{r}$$

Find aggregate capital supply by integrating (*) with $\overline{w} := \sum_{z} w_{z} \ell_{z}$:

$$0 = \dot{K} = \underbrace{\frac{1}{\sigma}(r-\rho)\left(K+\frac{\overline{w}}{r}\right)}_{\text{Wealth accumulated by}} - \underbrace{pK}_{\text{integration}} \Rightarrow \frac{K}{\overline{w}} = \frac{1-\rho/r}{\rho+p\sigma-r}$$
Wealth accumulated by Imperfect dynasties

Steady-State Equilibrium: Return to Wealth

Same diagram as in richer theories (Aiyagari, Benhabib-Bisin,...)

Automation \Rightarrow higher *r* and modest expansion in *K*

Proposition: stationary distribution of effective wealth by skill type is

$$g_z(x) = \left(\frac{w_z}{r}\right)^{\zeta} \zeta x^{-\zeta-1}, \qquad \frac{1}{\zeta} = \frac{1}{p} \frac{r-\mu}{\sigma}$$

Pareto distribution with scale w_z/r and inverse tail parameter

Proposition: stationary distribution of effective wealth by skill type is

$$g_z(x) = \left(\frac{w_z}{r}\right)^{\zeta} \zeta x^{-\zeta-1}, \qquad \frac{1}{\zeta} = \frac{1}{\rho} \frac{r-\rho}{\sigma}$$

Pareto distribution with scale w_z/r and inverse tail parameter

Proposition: stationary distribution of effective wealth by skill type is

$$g_z(x) = \left(\frac{w_z}{r}\right)^{\zeta} \zeta x^{-\zeta-1}, \qquad \frac{1}{\zeta} = \frac{1}{\rho} \frac{r-\rho}{\sigma}$$

Pareto distribution with scale w_z/r and inverse tail parameter $\frac{1}{p} \frac{r-\rho}{\sigma}$

Proposition: stationary distribution of effective wealth by skill type is

$$g_z(x) = \left(\frac{w_z}{r}\right)^{\zeta} \zeta x^{-\zeta-1}, \qquad \frac{1}{\zeta} = \frac{1}{p} \frac{r-\rho}{\sigma} = \alpha \quad (\text{recall } r = \rho + p\sigma\alpha)$$

Pareto distribution with scale w_z/r and inverse tail parameter α

Distribution of Wealth

• Closed form for entire distributions:

- Automation has two effects on wealth distribution
 - 1. via wages: determine scale of wealth distribution by type
 - 2. via return: determines fatness of tail

Distribution of Income

- Again, two sources of inequality: wages and return to wealth
- Again, closed form for entire distributions:

$$\Pr(\text{income} \ge y|z) = \left(\frac{\max\{y, w_z\}}{w_z}\right)^{-1/\alpha}$$
$$\Pr(\text{income} \ge y) = \sum_z \ell_z \left(\frac{\max\{y, w_z\}}{w_z}\right)^{-1/\alpha}$$

Wage Stagnation with Upward-sloping Capital Supply

- CRS aggregate production function with technology indexed by θ
 F(K, {ℓ_z}_{z∈Z}; θ), F_θ > 0
- Question: effect of technological change $d\theta > 0$ on factor prices?

$$\underbrace{d\ln \text{TFP}}_{\text{TFP gains }>0} = \alpha d\ln R + \underbrace{(1-\alpha)d\ln \overline{w}}_{\text{change in average wage} \leq 0}, \quad \overline{w} := \sum_{z} w_{z} \ell_{z}$$

(Derivation: see e.g. Jaffe-Minton-Mulligan-Murphy (2019), uses $F = RK + \sum_{z} w_{z}\ell_{z}$)

- Bulk of literature: $d \ln R = 0$ because perfectly elastic capital supply
 - rep agent or small open economy (Acemoglu-Restrepo, Caselli-Manning, ...) \Rightarrow all productivity gains accrue to labor, wages track TFP
- Our paper: *d* ln *R* > 0 ⇒ wages may stagnate or even decrease
 ⇒ lackluster investment response

3. Transition Dynamics

Skip this today

4. Model meets Data

Consequences of automation for income inequality and aggregates?

- interpret each z as percentile of wage dist; focus on 1980-2014
- use variation in routine jobs across wage percentiles z

(Autor-Levy-Murnane, Autor-Dorn, Acemoglu-Autor, ...)

 $\Delta \alpha_z(t) \approx -\exp osure_z \times \Delta Labor share(t)$

exposure_z: share of wages paid to routine jobs in z (2000 Census) scale: automation drives decline in Labor share(t) = $1 - \alpha(t)$

- calibrate ψ_z so automation yields cost-saving gains $\ln \frac{w_z}{\psi_z R} = 30\%$
- calibrate p = 3.85% to target capital-supply elasticity $\frac{d \log K}{dr} = 50$

Macroeconomic Aggregates and Factor Prices

• 1 pp increase in return to wealth \bigcirc Data; 15% increase in $K/Y \bigcirc$ Data).

Declining wages except at top

Empirical counterpart: uneven growth in IRS, Piketty-Saez-Zucman data

Caveat: model transition too slow

Good news: know how to fix this (Gabaix-Lasry-Lions-Moll)

heterogeneous returns or saving rates

Conclusion

- Tractable framework to think about uneven growth
 - have used it to study distributional effects of automation
 - not just on wages but also on income and wealth distributions
- Technology \Rightarrow returns \Rightarrow distributional effects
 - rising concentration of capital income at top
 - stagnant or declining wages at the bottom
- Framework has lots of other potential applications
 - trade: globalization's impact on income and wealth inequality?
 - PF: optimal capital income and wealth taxation?
 - ...
- Needed: better evidence on asset returns (x-section & time-series)

Thanks for listening!

