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J Proof of Proposition 2

Xavier Gabaix, Jean-Michel Lasry, Pierre-Louis Lions, Benjamin Moll and Zhaonan Qu

J.1 Proof of Proposition 2: Case without lower bound (“non-
ergodic”).

The proof strategy is roughly as follows. We take an initial distribution that is essentially
completely in the “upper tail” (above some very large R > 0). There, the process is basically
a constant-coefficient process. Then, as in Proposition 1, the speed of convergence is §. For
an arbitrary initial distribution, there is a small perturbation, with a small mass in the upper
tail, that ensures a speed arbitrarily close to d.

Take ¢ (z,t) = € (p (z,t) — poo (x)). Then,

2
0= (ua), + (Da),.  Dlx) = T2
with initial condition ¢(z,0) = qo(z) = po(z) — poc(z).
Call S (t) the solution semi-group for the equation ¢ = — (1q), + (Dq),,, i.e. q(x,t) =
(S(t)q) (x) and S (t+s) = S (t) S (s).
We define ]
Ag) = —mmoog log |5 (t) gl 1x (94)

Given that for all ¢, ||S (¢) ql| ;1 < ||¢||;:, we have A (gq) > 0.

Observe that semi-group S (¢) “removed a factor 6”. Hence, proving the Proposition 2
here is proving that, for a given py, there is a py arbitrarily close to pg such that A (pg — pso) =
0.

We start with a generally useful lemma.

Lemma 11 (The slowest convergence wins) Suppose two distributions q,r with A (q) < A (7).
Then, A(qg+ 1) = X(q).

Hence, if there are two distributions with A (q) < A(r), the convergence rate of ¢ + r is
the convergence rate of ¢, the slowest (if A (¢) = A (r), we could have A (¢ + 1) < A(q)).
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Proof of Lemma 11 The definition (94) implies that, for all £ > 0 small enough,
3TVt > T
1
Llog 1S ()l < A (g) + 2

and there is a series (t,), t,, — 00, such that

1
log S () all = —A(a) — €

n

There is an equivalent characterization of A (¢) that we will use, by exponentiating and
introducing constants: for all € > 0 small enough, 37, C > 0, Vt > T

1S () || < CeP@=2)t -
and there is a series (t,), t, — 00, and a constant C’ > 0, such that
1S (tn) ¢l > ' e~ Ma)+e)tn .

Now, given a small ¢ > 0, the above characterization gives T,, C, etc. Set T' = max (T, T,).
We have, for all t > T,

15(®) (g + ) < IS @) gll + 1S () 7| < Cpe™ M@= 4 Cem =2
1S (1) (g + )| < (Cy + Cr) e” 7 (97)

Next, we have a series t,, such that ||S (¢,) ¢|| > C’;e’(’\(Q)Jrs)t”. That implies:
IS (ta) (g + 7)1 2 1S (ta) all = 1S (1) 7| = Coem Q@+ — G em A=

We suppose that ¢ is small enough so that A(¢) + ¢ < A(r) —e. For ¢, large enough,
Cre~AMn=e)tn < %Cée*wq)“)t", so that

1 - €
1S (tn) (g + 1) = 5 Cqe” @+ (98)
Letting € — 0 proves that A (¢ +7) = A (¢q).0
We define |||l 100 := [[fllzs + [/l ;c = [ |f]dz + sup, |f (z)] is the sum of the L' and

L* norm, which is a norm for L»* := L' N L.

We show a Lemma which means, in some sense, that the worse case speed has to be 0.
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Lemma 12 For all € > 0,
sup {HS(t) ol 02 0ol <1, [0 = 0} . (99)

Proof of the Lemma 12 Suppose by contradiction that (99) is not true. There is a
e>0and a C' > 0 such that for all [qoll, ., <1, [ g =0

/ lq (z, )] dv < Ce™". (100)

We will reach a contradiction. Define,
¢ (2) = qz+R), pP@)=p@+R), D¥(r):=D(x+R)
so that ¢ satisfies the equation

g = = (uPg®) + (D)

xr

Let’s consider a given distribution Qg () which is C*° and with compact support and
with [|Qol|; .. £ 1. Consider the particular initial condition

¢ (,0) = Qo(x). (101)

Consider also the equation ¢; = — (uq) ,+(Dq),, with initial condition g (z) := Qo (x — R).
Then, for all time ¢,
q(z,t) = ¢ (z — R, t). (102)
Also, it follows from (100) that [~ |q(z,t)|de < Ce™<'. Given that [~ |q(x,t)|dz =
22 |a"® (%,t)| dz we have:
/ ‘q(R) (z,t)| de < Ce™™.

o0

Now, taking the limit as R — oo and using Fatou’s Lemma, we have®® a limit function

83The argument for the existence relies on Prokhorov’s Theorem. The family of measures |¢¥(z,t)| is
tight, so by Prokhorov’s Theorem there exists a subsequence converging weakly (in the sense of measures)
to some limit. Then pass to the limit in the sense of distributions (say) the limit is a solution of the limit
equation. It is unique and smooth, as in the theory of the heat equation.
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q*), with initial condition ¢(*)(z,0) = Qo(x), such that:

/ |q(°°) (z,t)| dv < Ce™ (103)

o0

where ¢(>) satisfies
4 = (1), + (D), (01

But this is exactly the same equation as (69) in the Proof of Proposition 1. And we saw that
the solution ¢! (z) does not decay exponentially (via the heat equation). This contradicts
(103).0

We next refine Lemma 12 to show the existence of a particular ¢, such that A (¢,) = 0.

Lemma 13 There is a g, € L' N L>® with fq* = 0 such that X (q.) = 0.

Proof of Lemma 13 From the Banach-Steinhaus theorem® and (99), there is a ¢, €
LY | gell preo <1, [ guda = 0, such that

sup [|S (t) g.|| 1 " = o0
>0

i.e. A(g.) <0. Given that for all ¢, A(¢) > 0, we have A (¢,.) = 0.00

Let us conclude the proof. We start from a given pg. If A (py — poo) = 0, we are all
set. If A(po — po) > 0, take a ¢, given by Lemma 13. We consider a nearby density
Do := (1 — &1) po + €1Peo + €2Gx, With €1 > 0 arbitrarily small. To make sure that py > 0, we
impose: €3 ||qx|| ;00 < €1 ||Pool| foe- Next, we have pop—poe = (1 — €1) (Do — Poo) +€2¢«. Applying
Lemma 11 to ¢ = €3¢, and r = (1 — &1) (po — Poo) With A(q) =0 < A (1) = A (po — Po), We
obtain: A (q+ 1) =X(q) =0, i.e., given Py — poo = q + 1,

)‘(ﬁo_poo>:()

Hence, we found a pg arbitrarily close to py, whose speed of convergence is 0.[]

J.2 Proof of Proposition 2: Case with a lower bound (“ergodic”)

We here prove the statement for the case with a lower bound on income (either a reflecting
barrier or exit with reinjection). For simplicity, we first focus on the case without death
d = 0 and constant coefficients u(x,t) = f,0(z,t) = 6. The generalization to variable

84Here the family of continuous mappings is S(t)e*! indexed by t from L' to L.
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coefficients is then relatively straightforward using a “translation at infinity” argument, and
the case 0 > 0 will also be a direct generalization. Note that the constant coefficient case
with reflecting barrier has already been proven in Proposition 1. However in this section
we employ a different approach involving “energy methods” that gives a treatment to a

one-parameter family of models emcompassing both reflection and exit with reinjection.

J.2.1 Setting the stage: a unified one-parameter model with a lower bound

We start by remarking that one can embed the model with exit and reinjection and the
model with a reflecting barrier in a one-parameter family of models.
Let A* be the operator
a? 0%*p 8p o?1—10

with ¢ < 0 and boundary condition

o? 0?1 -6

—p.(0) — 0) = ——"9(0 105

5 Po(0) = up(0) = - ——p(0) (105)
where 6 € [0,1]. This recovers the special cases of pure reflection, § = 1, and pure exit
with reinjection, # = 0. When 6 = 1, we get A* = ";% — u% with boundary condition

%px(O) — up(0) = 0, consistent with the pure reflection case. When 6 = 0, (105) implies the
boundary condition p(0) = 0 and

. o*1-40 o2

lim = —=p(0) = 5-p.(0) (106)
and therefore substituting into A*p = %2 a—p n + 2 1-95(0)p(x), we have A*p = %? —

,u% + %pr(O) p(x) consistent with the exit with reinjection case.

Let po be the solution® to
o? 0? 0 0?1 —0

Poo = 5 5 5Po0 ~ H5Poo + o~ Pec(0)p =0 107
A'p 5 2P ~ g P+ o5~ Po(0)p (107)

We would like p, to be the generalized stationary distribution, that is p > 0 and fooo Poodr =
1. Note that p,, multiplied by any constant ¢ remains a solution of (107), so we can rescale
Poo SO that %po@(()) > 0. Then —%- axzpoo—i—,ua—azpoo > 0 on [0, 00), so by the strong maximum
principle for uniformly elliptic operators, po.(x) > 0 on (0, 00).

85 A sufficient condition for the existence and uniqueness of a decaying solution is p < 0.
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Integrating the equation above from 0 to x and using the boundary condition for A4*, we
obtain

2 ple) = o) = 5 5 0l0) [ )y (108)

for x € (0,00). If p has compact support, then for all large x, po(z) = Cest™, T 0 € (0,1)
and p(0) = 0, then %28%])00(:6) — Upso(z) = 0 for all z € (0,00), whence po(x) = Cez%x,
contradicting po.(0) = 0. Thus for 6 € (0, 1], poo(0) > 0. Similarly, when 6 = 0, a%poo(()) > 0.

Recall that by Assumption 4, p(x) = o(e%x) as © — oo. Thus [ p(y)dy = o(e%x)
as well. Multiplying (108) by e ot" gives (%%pw(x) —upoo(x)> e = o(1). Thus

";%(poo(x)e*c%x) = 0(1), S0 peo(x) ~ Coes" as x — 00, where Cj is a constant depending

on #. In particular, p, is integrable. Also, since p,,(0) = 0 and 8%1000(0) > 0 when 6 = 0,
Poo(®) ~ (Zpsc(0)) z as  — 0.

We can now rescale p,, so that f Poodr = 1, i.e. ps is a probability distribution on
[0,00). As shown above ps, then generalizes the stationary distribution in cases of reflecting
barrier and exit with reinjection.

With A* defined above, let

o? 0? 0

where 1 < 0 with boundary condition

0w (0) + (1 — 6) (u(O) - / u(x)p(ac)dx) — 0 (109)

We can check through integration by parts that A* with boundary condition (105) is indeed
the adjoint of A with boundary condition (109). Here we also remark that if a function u
satisfies yu(x,t) = Au(x,t) with the boundary condition for A, and @(z,t) = u(z,t) + ¢ for
some constant ¢, then 0,i = Au with the boundary condition of A as well. This is because
the boundary condition (109) is invariant when we add a constant to w.

Intuitively, the boundary condition (109) describes the following behavior: if the process
ever reaches x = 0, then, with probability #, the process is reflected; and with probability
1 — 0, the process jumps to some x > 0, drawn from the distribution p(x).
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J.2.2 Proof Strategy for Proposition 2

When 6 < 1, i.e. when we depart from the pure reflection case, one can no longer construct
a self-adjoint transformation B of A as in the proof of Proposition 1. Therefore, it is no
longer possible to obtain an explicit formula for the spectral gap of the operator A.%5% We
instead follow an alternative approach that works directly with the operator A using “energy
methods” (i.e. techniques techniques involving L?-norms of various expressions — see Evans
(1998) for their usefulness in other applications).

The proof of Proposition 2 has three parts. The first part proves that the cross-sectional
income distribution converges to its stationary distribution exponentially at some rate A > 0.
This is proved in Lemmas 14 and 15. The second part is to prove that this rate A satisfies
A < £ which is the content of Lemma 16. The third part simply concludes the proof by

202

combining the two previous parts.

J.2.3 Part 1: exponential convergence to stationary distribution

A Poincaré-like inequality. We first establish the following Poincaré-like inequality using
energy methods.

Lemma 14 Let py, be the solution to (107). Letu be the solution to dyu = Au, supplemented
with the boundary condition (109), and with the orthogonality condition [ pecu(z,0)dx =
[ poctio(z)dx = 0. For 6 € (0,1], let

1 21-0 ? 2
A= §inf {02/uipoodx+ %Tpoo(O) [(U(O) — /updy) +/ (u — /updy) pdx]
s.t. /quoodx =1, /upoodm = 0}. (110)

and when 0 = 0, replace %1779]?00(0) with %2(]?00)51:(0)-
Then

/u(x,t)zpoo(x)dx < ez’\t/uo(m)ono(x)dx : (111)

Remark: Note that the constraint f upsodxr = 0 is needed to ensure A > 0, since without

it, A = 0 with minimizer u = 1.87 As we shall see in the special case # = 1, this constraint

86Tt may be possible to have an explicit bound on A, which requires further investigation of the operator
B* defined later.
8"More precisely, let C € R be an arbitrary number. Notice that if u satisfies f u?poo = 1 and f UPso = 0
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is also natural as it is closely related to the orthogonality condition when calculating the
second smallest eigenvalue of a self-adjoint operator using the min-max principle.
In the pure reflection case, one indeed recovers A = -2’% To see this, note that with § = 1

1
A = —inf {02 /uipoodx s.t. /quoodx =1, /upoodx = 0}. (112)

2 u
The stationary distribution ”—22825 2 — uag—;" = 0 with boundary condition "7219@0(0) —
T 0'2 l .
1Pso(0) = 0 is given explicitly by ps = —%. Define v(z) = p&u(x). Then v satisfies

Jvidz =1 and fvpéodx = 0.

Through an integration by parts, we have

| e = [ weods = [T ChP ks - G010

4 o2

whence

o [* o [ I 2 Hoo
?/0 (ux)poodeE/O (V) d$+f‘2 vdx+§v (0)

Note that the second term is % The first term is positive while the third term negative,

but it isn’t obvious that under the constraints for v that they can cancel each other.

o0
0

Recalling from Lemma 6 that v satisfies v; = Bv := ";vm - %’;—zv with boundary condition

then v = u + C satisfies [vpo = C and [v?po = [u?pes + C? = 1+ C2. Moreover, adding a constant to
u does not change the value of the terms in the definition of A. Now let @ = v/v/1+ C2. Then [ a?ps =1
and [@ps = C/V1+ C?. It follows that

A= %(1 +C2)i%f{a2/a§poodx+ ?%pm@) l(a(()) - /ﬁpdm)2 +/ (u /apdy>2pdx1

C
s.t. > odr =1, UPoodr = .
/ P / b 1+C2}
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Thus

A= / Bv - vdzx

Jvi= 1fvp

Since B is self—adjoint1 with non-positive eigenvalues, and péo satisfies Bpéo = 0, the orthogo-
nality condition [ vpZ = 0 implies, by the min-max principle, that A is the second smallest
eigenvalue of —B, i.e. %
Proof of Lemma 14: We first show that A > 0 for all § € [0, 1] when p vanishes for z > 0
large. This condition on p implies py(x) = Ce 2" for all large x. The case of general p
follows with minor modifications. Then we show the exponential decay.

To prove A > 0, we argue by contradiction and assume A = 0. Since all terms in the

definition of A are non-negative, there exists a sequence (u(™),>; such that
| pctardn 0
0

with [ u™(2)peo(x)dz = 0 and [°(u!™(2))*pos(2)dz = 1.

Step 1. We show that the assumption implies that u(™ converge strongly in H'(9, %)
and uniformly on (9, %) to 0 for any 0 < 0 < 1, and that u(")péo converge weakly in L?(0, c0)
to 0.

First recall that p(z) > 0 on (0, 00). For any fixed 0 < § < 1, po(2) > ¢5 > 0 on (4, 5).
Thus on (4, 1),
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Letting n — oo, the right hand side tends to 0, so that hmn%oo f5 ul de = 0.
Thus u” converges strongly in L?(4, 5) to 0, and so sup,, ||u;r ||L2(573) < oo. Moreover,

I (™ (2))?poo(z)dz = 1 and the positivity of p. implies

1

1
5 1 5 1
/ (u(”))de < — (u("))2poo(x)dx < —
5 Cs Js Cs

Thus,

sup ||U(n)||H1(5,§) < 00

By the Banach-Alaoglu Theorem, we can extract a subsequence of u(™ that converges
weakly in H'(J, l), and by the Rellich Compact Embedding Theorem, we can extract a
further subsequence that converges weakly in H'(4,3), and strongly in L*(6,3) to some
function u9. Setting § = E and using a standard diagonalization argument, we can conclude
that there exists a function u on (0, 00), such that for any § € (0,1), u(™ converges weakly
in H'(6, }) and strongly in L*(4, §) to u. Note that the convergence may fail on (0, c0).

Since ug(g n) converges in L?(d, 3) to 0, u, = 0, and u = A for some constant A.

1 1

Next, we show u(™p2, converges weakly in L?(0, 00) to ApZ,. This is because finite linear
combinations of indicator functions of finite open intervals (simple functions) are dense in
L*(0,00), and for a indicator function g = x (45 with 0 < a < b,

00 1 b 1
[ = apkgds] < [ 1u® - Alpas
0 a

(/ab(u(") — A)%dx)'/?. (/Ooopooda:)m

IN

and this tends to 0 smce u(™ = Ain LQ(a b).

Since u™py = u” )poo poo, and pZ € L*(0,00), we deduce that

n—oo

S ) 1 1
0= lim uMpodr = / Apk - pikdr = A
0 0

Hence, u™ converges to 0 strongly in H(6, %), and thus uniformly on (5,%), since the
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H'(6, ) norm dominates the uniform norm in R:

) — f@)] = / " poyde
< / TPy 2 — 2

< Jo = yl"*|1 fllms.2)

6

and if we let y € (4, 3) be such that |f(y)| < inf . (5.1) ) [f(@)| + €, then for any = € (4, 5),
[F(@)] < 1f(y) = f@)] +[f ()l
1 g 1 5
<15 =0l + gy [ (5@ + O

6

= O6(||f“H1(5,§)) te

Notice that if p,(0) > 0, i.e. # > 0, then all the above convergence are on (0, §) instead of
(6, ) by the same argument since poo(z) is bounded from below on (0, 5) for any ¢ € (0,1).
Step 2. We show that for any z € [1,00), [; poo(x ( (M)2dxr — 0. Note that when
Poo(0) > 0, this is clearly true by uniform convergence of u™ to 0 on (0, %)
Suppose poo(0) = 0. We know that py(x) ~ cox as x — 04 for some ¢y > 0 and for
e > 0, we can find ¢ such that

T T 1)
/ z(ul)? dx—/ a:(u;”))de%—/ z(u™)2dx
0 5 0

T 0
< :1:/ (ul™)2da +/ o (ul™)?de
5 0

Letting n — oo, the first two terms vanish, so that lim,_, foj x(uén))zdx < ¢ for arbitrary

€, thus lim,,_, foj x(u&"))de =0.
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Next, we write for z € (0, Z)

[ ()] < [u () y+/ ) (4 dy
< |u™(z)| + (/O ylul (y)|2dy)1/2(/x Y~ Ldy)V?

x
z

< ™ (@)] + | log T — log 2] *( / y(ul (y))?dy)
0

Therefore, since u™(z) — 0 and [ y( J(y))2dy — 0,

/0 (™ ())da < / " (™ (@)] + | log T — log 2] *( / Tyl () 2dy) V)

S Cien

where ¢, — 0 and C} is a fixed constant depending on z. We conclude that, in particular,

/Ox poo(x)(u(”))Qdm -0

since u™ converges uniformly to 0 on (4, 1), and pe(z) ~ coz as z — 0T,

Step 3. We choose Z large enough such that for x > z, p(z) = 0, hence p(z) = Ceo2”
for some C' > 0 and = > 7.

First, notice that

u™(z) — 0

oo

poou" Y2dx — 0
Poo (U 2d:L‘—>1

b
I

/ oot ™Mdz — 0

using steps 1 and 2. Since [;° poo(z)(u ()2dz — 0 and the integrand is nonnegative,
f;o Poo () (n))Qdm —> 0. Since fo Poo (1) (u™)?dz = 1 and fox Poo () (u™)2dz — 0, f;o Poo(
1. Finally, that u(™ pOO converges weakly to 0 in L?(0, co) implies [2° poou™dz — 0.
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Next, let v (z) = u™(z + z) for x > 0. By a change of variables,
v™(0) = 0
/Oo(v;”))zpoodx —0
0
/00 v poodr — 0
0

/ (V™) poodz — e 57
0

and this essentially contradicts the explicit spectral gap A = % > (0 shown in the pure
reflection case (0 = 1).

Indeed, we compute

/ (002 pood = / (0pk e
0 0

Therefore, [;(v™)?podz — 0 and we get a contradiction.

Step 4. When p does not have compact support, steps 1 and 2 remain unchanged.
When p does not have compact support but satisfies Assumption 4, we have shown that
Doo(T) ~ Ceot™ as & — oo. Step 3 follows with minor modifications.

Now we show the exponential decay

/OOO u(z, 1) *pos (z)da < ™M /OOO o () pos ()t

In what follows we omit the limits of integration which are always assumed to be from 0 to
0o0. Morever we write u(x) to denote u(z,t), whenever time ¢ is implicit.

Step 5. Suppose u(z,t) satisfies yu = Au, with [ u?pedr =1 and [ upodr = 0. Start
by writing the equation for u?:

)
azﬂ — Au? +o*u? =0 (113)
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We next show that multiplying this equation by p., and integrating we obtain

2 [wtnatrsat [ natrs 212 0) [(um)— / updy)2+ / (u— / updy)zpdx] ~0.
(114)

This is shown by means of the following computations. Using integration by parts, we have

2 92 9,
/(.AuQ)pood:c = / <<%@ + u%> u2) Pood

2 Oz O 2
— [ s = 520 0) [ apds - T )0 0)
+ (@) (0)(poc)(0) = pr* (0)pc (0)

Next, observe that (u?),(0) = 2u,(0)u(0). When 6 > 0, (109) implies®®

1 (0) = # (u(O) - / upd:c) |

%2(1700)3:(0) = Upeo(0) + %2#1?00(0)

Inserting also (107), we obtain

and by (105),

/uQA*pooda: =0

)0 0) = 0" o (0)(w(0) — [ wpd)u0)
= (p)a(0)u*(0) = upc(0)u*(0) + %#poo@)u?(o)

88When 6 = 0, we note that %2(u2)m(0)poo(0) = 0 and so need to use u(0) — [up = 0 instead of u,(0) =
% (u(O) — fup) The subsequent calculations follow exactly by replacing %z%pm(O) with %2(;000)1;.
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Summing up, we have

2

/Au Pocdr = —0—1 ; epoo(O) /u pdx — o1-0 ; epoo(O) - 2(u(0) — /updw)u(O)

2
c21—40

+ oo (0)u*(0) + = —5—=Poc (0)u*(0) = pu*(0)poo (0)

0?1 -0 9 2
— _771900(0) u®pdx — 2u(0) pudzx | + u*(0)
Furthermore,

w(0)2 — 2u(0) / updz + / 2 pda = <u(0) - / u,ody)2+ / <u— / updy)2 pd.

and so

/ Aupoods — ——¥pm(0) [(u(O) - / u,ody)2 + / (u— / updy)dex]

Substituting into (113), we obtain (114).
Step 6. We next derive the exponential bound (111). Define

X(t) = / (e, )2 (2)da (115)

Note that the definition of A in (110) confines attention to functions u that are orthogonal
t0 Poo, [ Upsodr = 0. To check this for our u(x,t) for all ¢, recall that ug is orthogonal to
Poos | Uo(%)poo(z)da = 0. Moreover, since A* is the adjoint of A,

B u(z,t)poo(v)dr = /Au Z, )poo()dx

:/u(x,t)A*poo(x)dx
—0

which implies that u(x,t) remains orthogonal to p., for all ¢.
From the definition of A in (110), it then follows that for all such functions wu:

IX(1) < o / zpood:c—i-%lgepoo(()) [(u(())— / updy)2+ / (u— / updy>2 pd:v]
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Combining with (114), we have
B.X(1) + 20X (1) < 0
But then also 9;(e*M X (t)) = M (9, X (t) + 2AX (¢)) < 0 and thus
X(t) <e™MX(0), Wt (116)

or equivalently (111).00

The Exponential Decay Estimate. Next, we want to show that this implies the follow-
ing more general exponential decay estimate.

Lemma 15 Consider p(x,t) with p, = A*p and initial condition poy (x) € L%O,oo)' Then,
there exists a constant Cy such that:
/ Ip(2,8) — Jpeo] dar < Cpe™ (117)

where J := [ po (y) dy is not necessarily 1.

The role of J is to facilitate the proof of the general case when o > 0, where we need
J = 0 instead of J = 1. The desired convergence result in Proposition 2 with § = 0 and
constant coefficient is the special case J = 1.

Proof: We claim that if u and p satisfy u; = Au and p, = A*p, with [ udpe.dr < co and
the respective boundary conditions, then we have the dual property®

/u(a:,t)po(x)dx = /uo(ac)p(x,t)dx. (118)

89For convenience, we reproduce the proof given earlier. Let I(s) = [u(z,t — s)p(x, s)dz. Then
d
d—I(s) =— [ Swu(z,t —s)p(x, s)dx + | u(x,t — s)dsp(x, s)dx =
s

- /.Au(x,t — s)p(z, s)dx + /u(m,t —s)A*p(xz,s)dz =0

Setting s = 0 and ¢ gives the result.
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Therefore

/(u—/uopoody> podx = /uopdx— J/uopoody: /uo (p — Jpso) dx. (119)

Note that we are no longer requiring [ ugpooda = 0. But recall [ u(x, t)poo(x)dz = [ ugpoode,
S0 U= u — [uppecdy satisfies

/ﬂ(a:, t)Poo(z)dr =0

for all ¢ > 0. Moreover, u also satisfies @; = Au with the required boundary conditions for
A. So we can apply Lemma 14 to a(z,t) = u(z,t) — [ uppeodz.
Applying Cauchy-Schwarz to (119) and Lemma 14 to @, we have®

| (s f ) s
_ / (<u(x,t)— / uopoody)2poo> " ]%dx

(22" (f (- v )
< Coe™ < Jw- [ uopmdyypmdx) v

— Cpe™ ( / (tt0)2poctl — ( / uopwdx)z) v

< Cpe ( / (uO)onodx) v

1/2
where we need to show that ( f de) < 0.

‘/Uo (p(x,t) — Jpeo) dx

1/2

IN

Recall Assumption 1, which states that f %@ gy < 00, where Py = —i—‘ge% is the
surrogate steady state, which coincides with the true steady state p,, when 6 =1 and § =0,

9Note that since [ u(x,t)poo(z)dr = [uo(z)poo(x)dx for all t > 0, the first equality can also be written
1/2
as | [ uo (p(x,t) — Jpos) d| = | [ (u(x,t) — [ uopocdy) (po — Jpoc)da|, resulting in Cp = (f (po_p%“ﬁdm)
1/2 1/2
instead of Cy = ( S/ (’;%jdx) . There is no fundamental difference here, but Cy = ( S/ (pofp‘]%ydx) will

be used later to show that A < %
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but are otherwise different. However, we have shown the asymptotic behavior of p,, and ps.
are both O(e=2") when z — co. Moreover, recall that when 6 > 0, p.(0) > 0. When 6 = 0,
Poo(2) ~ cx as x — 0, but the boundary condition of A* also requires py(0) = 0.9 Tt follows

that for any 6 € [0, 1],
2 2
/de<oo = /de<oo
Do Poo

i.e. Assumption 1 is equivalent to [ %dm < 0.
Now dividing the inequality | [ ug (p(z,t) — Jpoo) dz| < Coe™ (f(uo)onodx)l/Q by (f(uo)onodx)l/Q,

we get
| [ uo (p — Jpso) dx|

(f (Uo) poodflf)l/ i

The above inequality holds for any ug satisfying [ (ug)?pscdz < co. We would like to choose
ug = (p(z,t) — Jpso)/Poc-?* We need to check [(ug)*pocdr < oo, i.e.

/(Uo)2poodx = / (p(x,1))? — 2Jpeep(x, t) + J?p,

Do

C«Oe—/\t

Similar to Lemma 2, |p| is a subsolution associated to A*, i.e. |p|; < A*[p|. Thus®?

> ®o’Pp| 9|  o*1-0
< _
O /0 Ip(z,t)| < /0 592 Moy T3 g 1p(0)|p(x)dx

= =Tk () + o)+ T (0]
= =T 0]+ o)+ T p00)

<0

where the last inequality follows from the boundary condition épx(()) — pup(0) = é%p(O)

for A*. We have shown p(z,t) remains bounded in L' for all ¢.%4

9"When 6§ = 0, recall that the boundary condition of A* requires po(0) = 0, and % 5 2 9py ,uapo +

Ox?
"2 8p°( )p pi(x,0). Also ps(0,t) = 0 for all ¢ since p(0,t) = 0, so ”—3(;’22( ) _ Mapgio) + %6p§w(0) (0) =0,
or % 85;02(0) =(p-% p(O))apgio), with ¢ < 0. Thus the first derivative and the second derivative of pg(x)

at & = 0 must have opposite signs or are both zero. In either case, we have py(z) = O(z) when = — 0.
92This choice comes from the first order condition of the optimization problem max,, [ uo(p(z,t)—Jpso)dx
st [udpes = 1.
93 As before when 6 = 0 replace "——|p( )| with %2|pa; (0)].
94We can also show that the L' norm of p(x,t) = po* Fy(x) is bounded for all ¢ by using Young’s inequality
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It remains to check [ (1”(;%)2 < oc0. We already know that [ (17‘;(%)2 < oo. To prove

this for general ¢ > 0, we define ¢ = pps> and show that ¢; — B*q = f for some uniformly
elliptic operator —B* and some f(x) € L?.% Then the inequality [ ¢*(z,t)dz = [ ’Zi()—ga? < 00
will follow from L? estimates of second order uniformly parabolic equations and the initial
condition [ ’% <o = [¢g=] ’% < oo from Assumption 1, where we again note
Doo = —i—g‘e%x is in general different from p...

First recall the integrated equation for p.:

o? 0 0?1 -0 >
() = o) = G n0) [ )y

2p 2p

where p(z) = o(es?") as  — oo. Thus r(z) := [~ p(y)dy is also o(e=2"), so

0 2

o?21—4
%poo{x) =

(o) + G5 0 @))

o2

which we use repeatedly below to replace first order derivative of p,, with p, and r.
We have

(NI

_ L (o & 0 0?1 —0
o= st = (G gran(o) =~ nplo) + G 00l

On the other hand,

Gz = (PP’ )z
_1 1 _3
- pxpoo2 — ippooz (poo)z
-1 J 0?1 -0
= PzPoo” — ;pp (:upoo(x> + ?Tpoo(o)r<x)>

and Gaussian estimates of the L' norm of F;.

1 1

950ne should compare the definition of ¢ = ppo® to that of v = up2 used earlier. Note also that our choice
of notation B* is not coincidental. Indeed, as we shall see in the special case § = 1, B* with appropriate
boundary conditions is the adjoint of the operator B defined in Lemma 6.
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Differentiating again,

i -1 1 o -3 11-0 -3
Qe = (Pae — —5Pa)Pos” = 5(Pa = —5P)Poc” (Poc)e — 5= Poc(0) (ppoo27“(:v)>
o 2 o 2 0

T

Thus, after some calculations, we obtain

o? 12 o?1—40 1 o?1—40 1
qr = ?q:rzp - 5;(] + 771900(0)(7"(90)]000 )Qx =+ ZTPOO(O) -q (poo 7“(95))1
o2 1-40 B o21—4 11
+ <§(—0 )2p§o(0)7“2(x)p002> 4+ 5 —5—4(0)pps’p(0)

So ¢ = B*q + f(x) where

Bq = %qm + %%pm(o)(r(x)pool)qm
) (200, - d 4 (SR 0 @2 )|«

and

1

@) = T2 q(0)p(0)p(x)p? (x)

In general B* is not self-adjoint. However, when 6 = 1, ¢, = B*q = %26111 - %q with
boundary condition ¢,(0) = 45¢(0). This is the dual structure to Lemma 6 since B defined

there is given by Bv = évm — 24 with boundary condition v:(0) = £v(0). Thus in this

202
case B is self-adjoint. Also, if p has compact support, then r(z) = 0 for all large z, so
2

B'q(v) = % eal(w) — 42(x) for large . 2

Moreover, because p,r = o(eﬁm) and po, = O(ea%x), the coefficients of ¢, and ¢ in B*q

2

are both bounded. Recall that Assumption 1 is equivalent to [¢5 = [ % < 00. Since
q = B*q + f(z) and —B* is uniformly elliptic, by energy estimates for uniformly parabolic

operators?®

lg(, )2 < [ fllzz + llg(z, 0[] 2

< C(llppes’llz2 + lla(z, )] 2) < o0

as was to be shown.

96See for example Evans (1998) Page 376.
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|/ wo(p(a.t)— Tpoo)de|
(f(uo)%oal:r)l/2

1/2
( / (p(x. ) — Ipsc)’ dl,) et = Ipdal _

Doo (f(uo) poodx) 12

< Cye ™, we obtain

Putting up = (p(z,t) — Jpso)/Poo into

Finally, by Cauchy-Schwarz inequality

e t) — Tp)?, ) 12
[ vt = ol an < [ HED=I0) g, ( / poodx) < Che ™,
P

which is the desired result.[]

J.2.4 Part 2: the rate of convergence cannot be larger than %

Note that as an intermediate step in the proof of Lemma 15, we have shown

(p(z,1) = Tpoo())? Cont [ (Po(2) = Tpos())?
/ () dr <e / () dx (120)

for all continuous initial probability density p, with p; = A*p and A*p,, = 0, where \ is

defined in Lemma 14 and J = [ po. In fact, the inequality with J = 0 implies the inequality
with J # 0. To see this, note that if [ py # 0, then defining po(z) = po(z) — Jpeo(z) we
see [po = 0. Moreover, if p(x) is the solution to p; = A*p with initial condition py, then
D= p J poo where p solves py = A*p with initial condition py. So the inequality with J =0

—2xt [ (Po(x))? (p=Jpos)? Jpoo 24t [ (Po—Jpso)?
f dxlef dr < Ce™ f e dz.
In the pure reﬂectlon case # = 1 with no death 0 =0, we know that A\ = 2. Now we

show that under the sufficient condition p < 0 for the existence of a unique steady state poo,
the Validity of (120) for all py and p(x,t) satisfying p, = A*p with initial condition py implies
A < 45 for all 6 € [0,1] in the generalized model incorporating reflecting barrier (0 = 1)
and ex1t with reinjection (# = 0), with 6 = 0.

Lemma 16 For all 0 € [0, 1], the constant \ defined in Lemma 14 satisfies A < -2%

Proof: We argue by contradiction and suppose that A> o5 2 Then the bound (120) holds
for some C' > 0 and all py, p(z,t) with this A > 455, We ﬁrst prove the lemma in the case
when p has compact support. .

Define as before ¢(z) = p(x)pso’ (x ) Denote the upper end of the support of p by Z. As
before, A*p = p; implies ¢; = B*q + %5~ (O)ppoo poo( ) with B* defined before, and that
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for x > z, B*q = %qu — %q, so that for z > &

o2 12
e+ 550 = 0 (121)

Qt—2

Given the reasoning above, it suffices to derive a contradiction for the inequality with J = 0.
With J = 0, the inequality implies

(/OOO q(:v,t)zdx>§ < cpe M. (122)

We now obtain a contradiction to (122). Let ¢ be a positive, smooth function with compact
support and [ ¢(z)dx = 1. Then let qo( ) = ¢(z — R), and let ¢®(x,t) be the solution
to the equation ¢ = B*q + % 5%¢(0)ppc p;(O) with initial condition ¢f(x). On the other
hand, define ¢ to be the solutlon to (121) on R. Note that ¢ solves (121) for z > 7,
but not in general, whereas ¢ is defined to solve (121) on the entire real line, so ¢ #
Bj+ % 199q(0)pp;§p§o(0) for < z. The key to the translation at infinity method is that
for ﬁxed t, ¢®(z + R, t) converges locally in L?(x) to §(x,t) as R — oco. Given this, since
(122) implies ([;° ¢%(z + R t)de)é < cpe ™ for all R, we have

1
% 3
(/ q~(:v,t)2dx) < cpe M
0

To show the local convergence, note that intuitively, we are translating the initial condition
po further and further to the right by R then letting it evolve to a certain pomt t in time
according to ¢ = B*q + < 199q(0)ppOo poo(O) (which is just ¢, — % & o + o zq for v > ),
then translating it back to the left by R. As R gets larger this looks more and more
like ¢; — %ZQM + %q = 0 starting with pg. More precisely, for every fixed ¢ and » < Z,
q%(z,t) — 0. By Dini’s Theorem this implies ¢%(x,t) — 0 uniformly on [0,Z]. By writing
q"(z,t) = ¢"(z, )X, + ¢" (2, t)(1 — Xo,57), With X[z the indicator function, we can show
that for every z > 0, ¢f'(x + R,t) — §(x,t) pointwise. Thus on any compact I C (0,0),
q"(x + R,t) = G(z,t) in L?, by dominated convergence theorem.

In summary, we have found a function ¢(x,t) which is a solution to ¢, — 22 Qox —I— 202(] =0
on R with ¢(z) = go(x) as initial condition, and which satisfies ([, ¢(z,t)%dx) < coe M.
For simplicity of notation, denote ¢(z,t) simply by ¢(x,t) from now on.

Using the fact that (121) is the Kolmogorov Forward equation for a Brownian motion
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with death rate 4. we obtain®”

227

22

e e 2%
q(z,t) = e 22" | qo(x) ¥ —— (123)
V2mo2t
where x is the convolution operator. Therefore, for > 0,
i’ t [e) 2 2 t [e) i’ t
e 207 (z—y) e 207 o2 x 2 e 202 a2
q(x,t) — qo(y)e 2agt d > —————¢ 20% qo(y)@a'}te zi% dy > c——¢ 202t

Vi 27ra2t

for some ¢ > 0. Thus

V2omo?t 0 V2mo?t

1
o0 2 2 o0 12
lim </ q(m,t)2dx) €22/ 2r02tt~ 14 > lim c(/ e 22t 2 x) /2
0

t—ro0 t—o0 0
o o
= c(/ e27 dz)Y/? > 0
0

We now obtain a contradiction to the asymptotic property

t—o00

1
o0 22 1
lim (/ q(:c,t)2d1:> €202V 21021 > 0 (124)
0

1 2
We have shown ( [~ q(x,t)%dz)? < coe™ with A > 25 s (foo q(z, t)de> * o202t/ 2ot <

coe_’\tJr 'V2mo?ti — 0 as t — co. However, this contradicts the behavior (124) thereby
proving the result for p with compact support.
When p does not have compact support, the inequality

1
% 3
(/ q(a:,t)zdx) < cpe
0

97This can be seen by taking the Fourier transform of the equation Alternatively, the fundamental solution
N7l t

2
of the operator 9; — 7@ + 2102 is given by \/ﬁe 3070 202 , the heat kernel multiplied by e~ 20
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still holds if J = 0. This time ¢ satisfies

B'q+ 5 —5—a(0)pps *p.(0)

= T+ T O s
%#1%0(0) (), - (%(1;9) P2, (0) (a:)p;f)]
a0k 0

when 6 > 0, and we replace U—QHpOO( 0) with %( 50(0))z when 6 = 0, and where 7(z) = [ p.
Note r(z)pt(z) = 0, (ptr(z)), — 0, ppss’p3(0) = 0 as © — oo. Thus the translation

at infinity argument applies to ¢, and we can conclude that again A\ > % results in a

-

contradiction.?® [

J.2.5 Part 3: conclusion of proof of Prop. 2

Combining Lemmas 15 and 16, we see that when 6 = 0 and u < 0,

o) 2
- hm log/ Ip(z,t) — poo(x)|dz > A with A < — a
0

—00 20'2

Now it remains to show that the rate of convergence \ = % t0 Poo 18 generically attained.
Now we show that given any pg, an arbitrarily small perturbation will result in a rate

of convergence at most Then we will have shown that for any initial distribution py

2 952 *

satisfying Assumption 1, the rate of convergence is at least A\, with A < 5, and an arbitrarily

2029
small perturbation of py will have a rate of convergence at most .
The case # = 1 was already shown in Section F.2.1. For 6 € (0, 1), we recall that
% 0%*p op o021-0

A*p: = ?@—M%—F?T (0)p(x)

with boundary condition %2]%(0) — up(0) = "7 5-p(0). Given fy a smooth compactly sup-
ported function, uniformly bounded by 1 and with mass concentrated near the origin, with

f solving f, = A*f with initial condition fy(z), we let n(z,t) = f, — (Zp + —)f so that

98 Alternatively we can also use the fact that the fundamental solution F(t,z) of 9, — B* is bounded below
22

2 —
by aeizljyizt e 202t

for some a > 0. See for example the paper Aronson (1967). Thus g(z,t) = qo *x F' >

V2rmo2t
_w? 2
e e 3.7
V2mo?t
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n(0,t) = 0, and thus n(z,t) solves Z TW - ugz = 1;. We can again extend 7 to the real
line by reflecting around the origin, and we have come back to the case when § = 1. Thus
—limyo0 1 log [ |n(z, t)|dx < ;'—22 By perturbing any initial distribution py by eno(z), we
will obtain a rate of convergence at most 2“—22

When 6 = 0, the boundary condition for A* is already p(0) = 0, and A*p = %6_;9 — ,ugi +
%pr(O)p(x). Given f, a smooth compactly supported function with f¥ solving f, = A*f
with initial condition fy(x — R). Using the translation at infinity argument we can let
R — oo and obtain a function f(z,t) that satisfies f(0,¢) = 0 and %- i giﬁ B _ uafait =0,

and we can then apply the case § = 1 as before. Thus the rate of convergence A= 2—2 is

generically attained.
When 6 > 0, p satisfies

a? 0%p 8p o?1—19

Pe=5ga T, + —TP(O)P(x) — op(z) + 69 (x)

where § is the rate of “death” and “rebirth”, and (x) is the distribution of income from
which a newborn worker is drawn following the death of an individual. The boundary

condition for p remains unchanged:

o2 021 -0
5 Pe(0) = up(0) = 5 ——p(0).
Let p. satisfy
o? 82]900 apoo 0>1—0
S ag Mt g g Peo(0)p(a) = Opeo(z) + G() =
and define
pla,t) : = € (p — poo)

so that p satisfies
020 op o0°1—-406
Pe=5as T %‘F—TP(O)P( z)

with boundary condition %Qﬁx(O) — up(0) = %210%915(0). Thus the results for 6 = 0 applies to
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p. Since J = [po = [po — [ peo = 0, Lemma 15 with J = 0 applied to p gives
A=—1 ! 1 D
= — lim —log||p|
which is equivalent to
A+0=—1 L 1 t
+0 =~ lim —log|[p(z,¢) — pec(2)]
as was to be shown.

J.2.6 Extension of Prop. 2 to income-dependent coefficients u(z,t) and o(z,1)

So far we have proven 2 when p and o are constant. We now extend this to the case when
w(z,t) and o(x,t) depend on z and ¢,% but satisfy the conditions given in Assumption 2.

Essentially, we need to extend the results Lemmas 14, 15, 16 to the variable coefficient case.

Extension of Lemma 14 First we show that the exponential decay similar to that estab-
lished in Lemma 14 still holds, provided that we make modifications to terms with ¢ and p,
and we define A*, which now depends on time, as

wtope) = (Z5) oo, + ZE ot

2

with the time-dependent boundary condition <Mp) (0) — u(0,t)p(0) = 2*(04) 1204(0),
where we note that o and i depend on ¢t. We also define

2 2

Al)u(z) #%u + (e, t)%u
with boundary condition —6u,(0) + (1 — 6) (u(0) — [ u(z)p(z)dx) = 0. We check that with
the above extended definitions, A(t) and A*(t) are indeed adjoints of each other for fixed
t. Let Ay and A’ denote the operators with time-independent coefficients &(x) and fi(x),
and let poo(z) be the time-independent steady state solution A*_(t)poo(x) = 0. As before,
Pso can be rescaled to be a probability distribution function, and p..(x) ~ Ces® as z — 0.
For simplicity of notation, we will sometimes write p, o instead of u(x,t) and o(z,t) when

there is no confusion.

99The intermediate case when p(z) and o(z) depend on = but not on t requires much less work, and can
be obtained by directly adapting the arguments for the constant coefficient case. It is the time-dependent
case that requires some new ideas.
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We start from the equation satisfied by u?:

0
—u? — At)u® + 0 (ug)? = 0
ot
where we note the time dependence of A(t).
Now multiply the equation by p., and perform integration by parts, but pay attention

to the boundary conditions:

/(Auz)pooda: = / ((@5—; - u%) u2) Dood (125)

— [ () — (s = 5 0.0)(0).0)pc(0)

— 110, £)u*(0)poc (0) (126)

= [aropede - T30 0) [apte - T ), 0000
o%(z,t)

—pm)x(o) - M(Oa t)u2(0)p00(0)

Unlike before, [ u?A*(t)podz # 0, but [u?(z,¢)dz is bounded by [ uidx for all t'%°, and by
our assumptions on the uniform convergence of u(x,t) and o(x,t) and the fact that p,.(x) €
L oy A" (O)pos(x) = AL poo(x) = 0 uniformly as ¢ — oo, so that Ju? A*(t)poodz — 0 as
t — oo. Moreover, when 6 > 0, (Poo)z, (Poo)ze < Cpoo, for some universal constant, and

when 6 = 0, this is true for z away from 0, since p.,(0) = 0. Therefore, we have the estimate

| / WA (H)pacdz| < Di(t)( / Wpaodz + /0 luﬂdx)

where fol u?dz is only needed when 6 = 0 and p..(0) = 0. Now a Hardy-inequality type

1
/ wldr < O (/ uipood:v + /quoodas)
0

for some universal constant C;. Indeed, write

argument gives

d
d—(xu2) = 2wun, + u?
x

100 Again by energy estimates of uniformly parabolic equations.
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Integrating this expression from 0 to 1, we find

1 Ly 1
/ u?dx :/ —(xu2)dm—2/ ruuydr
0 o dx 0
1 1/2 1
< u?(1) +2 (/ qudx) (/ a:(ux)Qd:U>
0 0
1 1 1/2 1
< C'/ Poo(u® +u2)dz + C (/ pOOUQd:L“) (/ poo(ux)de)
0 0 0

1
C/ Poo (U + u2)dx
0

1/2

1/2

VAN

where we use Sobolev embedding in dimension 1 to bound the uniform norm of u by its
H'(R) norm.
Therefore we have the estimate

| / WA ()pedar] < Di(8)( / Wpda + / W2p..dr) (127)

where D (t) is independent of u, and satisfies D;(t) — 0 as t — 0.

Another challenge comes from the other terms, because p,, does not satisfy the boundary
conditions of A*(t) with time-dependent o?(z,t) and u(z,t). We have to replace them by
o?(x) and u(z), and show that the error is vanishingly small as ¢ — oco. This is done next.

Observe that (u?),(0) = 2u,(0)u(0). When 6§ > 0, the boundary condition

0w (0) + (1 - 6) (u(O) - / u(x)p(x)dm) — 0

1z(0) = # (u(O) - / updx) ,

and the boundary condtion of A, * gives

for A implies!®!

6%(x)
2

52(0)1— 0
0

( 2

Poo)z(0) = [1(0)pes (0) + Poo(0).

where again note coefficients are time-independent.

101When 6# = 0, we note that (%QUQ)I(O)])OO(O) = 0 and so need to use u(0) — [up = 0 instead of
U (0) = % (u(O) —f up). The subsequent calculations follow exactly by replacing ml%oepm(()) with

(% Poc)(0, ).
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Thus

T 02,00 (0) = 205 e 0)0(0) — [ up)u0)

)00 p)o0) = O 0)2(0) + T (0(0)

We see that in 125 instead of (uﬂ(O)(@po@)x(O) we have (uQ)(O)(@poo)m(O), and sim-

ilarly for other terms. Thus we will replace all the terms with time-dependent coefficients

with those with time-independent coefficients:

2 1— 2 1—
OO l0) [ utpie — ~TP o) [t

PO 2 (0)pe(0) — ~ 2O (02), 010

2 2
)00 T80, 0) > ()00 T, 0)

~—

—1(0, 1)u*(0)poc(0) = —i(0)u*(0)poc (0

Note also that when 6 > 0, poo(0) > 0, so that u?(0,¢) < C [u*(z,t)pe(z)dx for some
universal constant C' and all ¢. Moreover, | [ updx]* < ([u?pdz) < C [ups. If we let R(t)
denote the sum of the differences of these terms, i.e. the “error” term, using these bounds

by [ u*pos, we have the estimate

|R(t)| < DQ(t)/uZpood:U (128)
here Ds(t) is independent of u, and Do(t) — 0 as t — oo, using the convergence of ¢(0, )
and 1(0,1), as well as (9,0 (x,t)) (0) — (9,0(x)) (0).102

Combining the above, we have

/ (Auz)pood:v:—&z(())la%epoo(()) KU(O)— / u,ody)2—|— / (u— / u,ody)2 pd:v]

+ R(t) + /uQA*(t)poodx

102When 6 = 0, note that u(0) = [up, and ps(0) = 0, so the estimate still holds.
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Thus

d

pr quOO(x)dx+/02(x,t)u§pood:U

+@1Tjepw(0) [(u(O)—/updy)2+/ (u—/updy)dex]
—R@—/ﬁﬁ@%mzo

Now we would like to replace u with u — [upsdz, in order to have the orthogonal-
ity condition f upsodr = 0 for all £. This requires bounding the errors, which we de-
note collectively by F(t), by terms involving [u®p again, and show that they vanish
as t — oo. This is not hard: For the [u?psdr term in |R(t)| < Ds(t) [u*pocdz and
| [ w2 A* (t)pocd| < Dy(t)([ u?pocdz + [} u?dz),

/quOOda: - /(u - /upoody)Zpood:c = (/ UPsodr)?
< [

and for 4 [ w?p.(z)dz,

d d

p U oo () dw — pr (u— /upoody)2pcodx = 2/upoodx : /utpoodx (129)
= Q/UpOde : /uA*(t)pooda:
< D3(t)/U2pood£E

where again D3(t) is independent of u and satisfies D3(t) — 0 as t — oo. Terms involving
u, do not change because [u(z,t)psdr depends only on ¢.
Therefore we have

d
pr (u—/upoody)zpoo(x)dx

+ / o?(z, t)ulpeoda + 622(()) 1T76poo(0) [(u(O) — / updy)2+ / (u— / updy)de:v]

—R(t) — /U2A*(t)poodx +F(t)=0
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Using 0?(x,t) > 752 and the estimates (127), (128), and (129) involving D, D, and Ds,
this gives

d
pr (u—/upoody)ono(x)dx

521 — 2 2
+’ya?/uipoodas+ %—poo [( updy) +/ (u— /updy) pdx]
< (Dy + Dy + D3) /quOde + Dg/uipoodm

Noting that [(u — [ upsdy)dz = 0, we can use the reasoning established in 14 to conclude
that the terms in the second line are bounded above by

—9 1 _ 6 2
5 / U2 pood + 7%Tpoo(o) [( updy) ( wdy> pdw]

<A / (u / UPoody)*Pocda

Finally, we obtain the desired Gronwall type inequality

where \ is defined in Lemma 14 with o replaced by &.

d

G [ [wadyipa@dss50) [ [pedy?puioyis <o

where (t) — Ay > 0. Thus

/(u — /upoody)ono(:c)d:c < Ce”/(uo — /uopoody)zpoo(x)dx
for A = Ay > 0.
Extension of Lemma 15 Next, to obtain the exponential convergence

/|p(:v,t) — Ipoo(z)|dz < Ce ™™,
recall that

/u(x,t)po( )dx—/uo( (@, )
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This dual property still holds, using the Feynman-Kac formula, for example. More precisely,

/ u(, )po()de / [uo(X2) | Xo = alpo(x)da
// (X, =y | Xo = 2luo(y)dypo(x)de
- //P[Xt = | Xo = ylpo(z)dzuo(y)dy

_ /E[pO(Xt) | Xo = yluo(y)dy

:/m@m%mw

Thus the calculations in Lemma 15 follows with minor modifications:

/(u— /uopoody) podx = /qudx— J/uopoody = /uo (p— Jpo) dx

and

‘/Uo (p(x,t) — Jpeo) dx

| (s f ) s
_ / (<u(x,t)— / uopoody)2poo> " Z%dx

< ( / %dm) v ( / (u(:c,t) - / zmpoody)2 pood$>
< Cpe™ < / (o — / uopoody)zpoodx) -

— Cpe™ ( / (o) ?psodd — ( / uopoodx)Q) 1/2

< Coe ™ ( / (uo)onod:c) -

where we note that we have [ (u(z,t) — [ uopoody)zpooda: instead of [ (u(z,t) — [ upoody)onodx

1/2

in the inequality. This is a minor issue, because going back to the Gronwall argument above,

we notice that this alteration causes Cy to depend on f u2psodr. In later steps, we only

use uy = %, and by energy estimates of uniformly parabolic equations, we see that
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2
[ ugpsodz < C [ If—o, uniformly bounded. The rest of the proof for exponential convergence
is the same as in Lemma 15. To show that the rate of convergence A is generically obtained,
use translation at infinity to reduce to the constant-coefficient case.

Extension of Lemma 16 Finally, we extend Lemma 16 and show that if the exponential

convergence

/p(“)d <O‘At/lmda:

Poo Poo

holds for all p, then A is no larger than 2‘%
In this case, the asymptotic behavior p,, ~ Cea2® implies that for any fixed € > 0, there
exists £ > 0 such that

1—e< p
662

<1l+-¢

for all x > z. Therefore, we have

/;O pg(x’t)daz < (1+¢) /;O pZ(x;f))da: < (1+¢e)e M /:3 de

eF2e Poo Poo ()
< ﬂe’”‘t /OO pg(i t)d:c
l—e¢ z  eaz”
An inequality of the form above can only hold when A < % This is because p(z) = pe_fr%z
solves
. o2(x) . - o 0%(0)1 -6

05— (N5 ), + a5+ T2y () =0

where b = ji(z) — £5% and a = Q(f),uz + “,(2),1) Note that as © — 00, b = 0 and a — 4,

and of course p(z) —> 0. Then the translation at infinity argument used before shows that
the inequality [>° 2 2 g < Licem2Ar [0 O(x t) dx implies

4%1
eo ecr

/ Fdr < LT Ee-2x / Rda
z 1_5 z

where p satisfies the equation d;p — %pm + %p = (0 on the entire real line R with initial
condition py = pge*&%x, which yields a contradiction if A > -2%22 Proposition 2 for variable
coefficients o(x,t) and p(z,t) under Assumption 2 is complete. [J
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K Closed Form Expressions for the Finite-Time Dis-

tributions

Here are some expressions that we found useful in exploring income dynamics. They gener-
alize the Steindl model in the paper.

Closed form with Pareto initial distribution. We here generalize the Steindl case
of Lemma 1 to the case o > 0. We consider the reflecting barrier case, with death rate § > 0,
and rebirth at the barrier point, x = 0.

We now obtain the general form of the transition function.

Proposition 11 (Closed form for the transitions of reflected Brownian motion) Take the
reflected Brownian motion with drift and death rate 6 > 0 (agents who just died are reborn
at x = 0). Suppose that the counter-CDF P (x,t) := P (z; > x) starts from P (x,0) = e~ **.
Then, the counter-CDF at time t > 0 is

P (:c, t) —e T L Ge (:K, t) e’S (:U’ t) (130)
where
- 2 2u — 2 _
Qe (I, t) _ 6(76+ua+%a2g2)t |:€—az(1) ( (OZO' + N) t+ $> _ e(a—’_ﬁ)z@ ( (OZO‘ + ,U)t 1’):|
oVt oVt

and @ is the CDF of a standard Gaussian variable.
Proof: One can verify by calculation that: (—& — 10y + %28xx — 5) G* =0, and

G* (z,07) = e " for all x > 0,
G (0,t) =0 for all t > 0.

O

We can verify that we obtain Lemma 1 as a particular case when o — 0. 03

103Indeed, take the Steindl case, with ¢ — 0. Then, p > 0, and G® (z,t) = e(_5+a“)t_“””1z>m SO
P(z,t) = e % + G (2,t) — G (x,t) = e % 4 7% (exmimom — eCHI=CEY 1t
so (using (p = 0), if © > pt,

P(.’E,t) _ e—{z + e—(steaut—(w; _ e—(w — e—éte(xut—aw — e—aa:—i—(a—{)ut.
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Finally, Harrison (1985, p.15, 49) gives a formula for the Brownian motion reflected at
0: F(z,t;20) =P (X; > 2| Xo=1p):

—:z:—l—xg—l—ut) oy )0 (—x—xo—ut)
Fla,tyamg) = ® [ —— 10T | ey ( Z2 10T 10 132
(ot =@ (215 - (132)

for xg,x,t > 0. Given an initial density po, this gives P (z,t) fo (x,t;9) po (y) dy.
Equation (130) is more explicit when starting from an exponential py.

Model without lower bounds. We characterize the time path of the distribution for
o > 0 and for more general initial conditions py(z):

Proposition 12 (Closed form solution for the general model without a lower bound) In the

case without a lower bound, the density can be expressed as:

P (2,1) = po () + e 'K [po (z — G}) — poo (x — Gy)] (133)

where Gy := ut + 0Z;, and the expectation is taken over the stochastic realizations of Gy. If
there are jumps, the expressions are the same, except that G, := ut + oZ; + ZZN:H gi, where
N, denotes the number of jumps g; between 0 and t.

Proof: Take the case with no jumps. Call ¢ (z,t) = e (p(x,t) — pso (x)). Then,
G = — gz + %qu: this corresponds to the process dG; = udt + odZ;, with no death. By the
Feynman-Kac formula, g (z,t) = E[g (z — Gy)], i.e. (133). The case with jumps is similar.
U

Note that when ¢ = 0, this leads to the Steindl case (23) for an exponential initial
distribution.

Reflecting barrier. Here is an explicit formula for the case with a reflecting barrier.

Proposition 13 (Explicit formula with a reflecting barrier) Consider the process with a
reflecting barrier at 0. We have the following explicit formula for P (x,t) = P (X, < z):

p? © ~
P(x,t) =e 222" R Qo (z + 0 Zy)

where Qo (z) = sign (z) Py (|z],0) e~ 2% and Z, is a standard Brownian motion.
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Proof: We normalize ¢ = 1 for notational simplicity (the general case is easy from
dimensional analysis). Given p; = —up, + %pm, define P (x,t) = P(X; < z) fo t) dy,
we have:

1

and P (0,t) = 0. Next, define Q (z,t) := e 2P (z,t) for a 3 to be determined soon. From
P (z,t) = eP*Q (x,t), we calculate:

P, =™ (Q. + 5Q),

hence

So, set 8 = u. This gives
2

_lo ¥

and @ (0,t) = 0.
We next define:

Q () = Q(2) Lizo — Q (~) Luco = sign (x) Q (|z]),

then Q is defined for all z € R, not just for z € R, as ) is. Furthermore:

- 1 -~ u? -
= —Quz — — 135
Q= 50— 120 (135)
and Q (0,t) = 0.
Now, set ¢ (z,t) == e'TtQ (x,t). We have:
2 2 2 1~ 2 2 1
. L _ Lt H/_ - . ,LL_ o 2 t_ _
qr = €2 < Q + Qt) 2 ( 92 Q + ZQ:M: 9 Q) €? ZQ:M Qm:m
1
qr = §Q:ma (136)
Hence, ¢ (x,t) just follows the heat equation. Note that the speed of convergence of ¢ is
slower than any exponential: A, :20, so indeed, the speed of convergence of Q is: Ag = *T“Q,
i.e. in dimensional units, Ao = 355
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We also obtain: ¢ (x,t) = E [go (x + Z;)] from Feynman-Kac formula, so that:

Qat)y=e T E[Qu e+ 2)],
P (z,t) = e’Q (x,t) = e"*Q (x,t) = e*§tﬂ”E [QO (x + Zt)} :

In the statement, we add the dimensions in 2. O
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