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Motivation

Last 30 years: a lot of progress developing macro models with
rich heterogeneity in income, wealth, consumption in micro data

Promising tool for macroeconomics

* implications for policies differ: inequality matters for macro

* distributional implications: macro matters for inequality

Not yet part of policymakers’ toolbox. Two excuses:
1. computational difficulties because distribution endogenous

2. perception that aggregate dynamics similar to rep agent

* Qur paper: these excuses less valid than you thought



These excuses are less valid than you thought

1. Efficient and easy-to-use computational method
e open source Matlab toolbox online now
 extension of linearization (Campbell 1998, Reiter 2009)
« different slopes at each point in state space

¢ exploit advantages of continuous time (Achdou et al. 2017)

2. Use methodology to illustrate interaction of macro + inequality
e match micro behavior = realistic aggregate C + Y dynamics
e aggregate shocks generate inequality dynamics...

e ... and IRFs in HA model can differ dramatically from RA case



Outline

1. Explain methods in one-asset (Krusell-Smith) model
¢ model description
* linearization
¢ dimensionality reduction
* illustrative results

® https://sehyoun.com/EXAMPLE_PHACT_KS.html

2. Two applications to illustrate macro + inequality interactions
* richer two-asset (Kaplan-Moll-Violante) model

3. (Not in paper) a simple one-asset HANK model

® https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html


https://sehyoun.com/EXAMPLE_PHACT_KS.html
https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html

One-Asset Heterogeneous Agent Model with
Aggregate Shocks (Krusell-Smith)



Households

[o¢]
max EO/ e Ptu(ce)dt such that
0

{cit}e>o0
ajt = WeZjt + rtaje — G
zjt € {z, z,} Poisson with intensities Ag, A,

ajtzo

* ¢j+: consumption

u: utility function, v’ > 0, v’ < 0.
* p: discount rate

r+ © interest rate



Production

* Aggregate production function
Y = e“tKENF* with dZ, = —vZ,dt + odW,;

e Perfect competition in factor markets

* Market clearing
Kt :/agt(a,z)dadz,

Ny = /zgt(a,z)dadz =1



Warm-Up: Stationary Eq without Aggregate Shocks

¢ This slide only: turn off aggregate shocks Z; = 0

pv(a, z) =max u(c) + 0,v(a, z)(wz +ra—c)
< (HJB SS)
+ X (v(a, ') — v(a, 2))

0=—0,s(a,2)9(a 2)] = X-9(a, z) + Arg(a, ) (KFSS)
w=(1-0a)K% r=aK*l-yg

(PRICE SS)
K= /ag(a,z)dadz



Equilibrium with Aggregate Shocks

Aggregate state: (g¢, Z;) = absorb into time subscript ¢
¢ Recursive notation w.r.t. individual states only
¢ [E; is expectation w.r.t. aggregate states only



Equilibrium with Aggregate Shocks

Aggregate state: (g¢, Z;) = absorb into time subscript ¢
¢ Recursive notation w.r.t. individual states only
¢ [E; is expectation w.r.t. aggregate states only

pve(a, z) =max u(c) + 0 ve(a, z)(wez + rra — ¢)
‘ ) (HJB)
+X:(vi(a, ") — ve(a, 2)) + EEt [dv¢(a, 2)],

0tgt(a, z) = — Oalse(a, 2)ge(a, 2)] — Xz9:(a, 2) + Az ge(a, ZI): (KF)
Wt:(l—a)erKto‘, rt:anfo‘*l -0 P)
Kt :/agt(a,z)dadz

dZt = —Utht+Uth

Note: %Et [dvt] means |im5¢0 Et [Vt+5 — Vt] /S



Linearization



Extension of standard linearization

1. Compute non-linear approximation to non-stochastic steady state

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation



Warm Up: Linearizing a Representative Agent Model

e Optimality conditions in RBC model

dcC,
E: |dK:| = f(Ct, Kt, Z3)dt, f:R> = R3
dZ;

C; = consumption

K¢ = capital

Z¢ = productivity

f1 = Euler equation

f> = resource constraint

f3 = productivity process



Warm Up: Linearizing a Representative Agent Model

Optimality conditions in RBC model

dcC,
E; |dK:| = F(Ce, Ke, Z2)dt, f:R> = R3
dZ;

C; = consumption = control variable

K = capital = endogenous state variable

Z+ = productivity = exogenous state variable

f1 = Euler equation

f> = resource constraint

f3 = productivity process
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1. Compute non-stochastic steady state (C, K, Z = 0): by hand
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1. Compute non-stochastic steady state (C, K, Z = 0): by hand

2. Compute first-order Taylor expansion of f(Cy, K¢, Zt)

dCy
th :f(Ct,Kt,Zt)dt
dZy

Eq
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Warm Up: Linearizing a Representative Agent Model

1. Compute non-stochastic steady state (C, K, Z = 0): by hand
2. Compute first-order Taylor expansion of f(C¢, K¢, Zt)
E: |dK:| = |Bkc Bkk Bkz| |K:| dt

dft 0 0 BZZ Zt
B

dCy [Bcc Bck B/\Z] Ce

3. Diagonalize matrix B, hope same number of stable eigenvalues as
state variables (2 in this model)

Set control variables 1 to unstable eigenvectors = policy function

61_- == DKI’?t + DZZ_L



Main Event: Linearizing a Heterogeneous Agent Model

1. Compute non-linear approx. of non-stochastic steady state

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation



Main Event: Linearizing a Heterogeneous Agent Model

1. Compute non-linear approx. of non-stochastic steady state

¢ Finite difference method from Achdou et al. (2017)
» Steady state reduces to sparse matrix equations

» Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation



Step 1: Compute non-stochastic steady state

pv(a,z) =max u(c) + d,v(a, z)(wz+ra—c)
c (HJB SS)
+ X (v(a, ') — v(a, 2))

0=-0als(a z)g(a 2)] = Az9(a,2) + Azg(a.2)  (KFSS)

w=(1-a)K% r=aK*!l-yg
(PRICE S9S)
K= /ag(a,z)dadz



Step 1: Compute non-stochastic steady state

pv,-,j :U(C,'J') + 63V,"J'(WZJ' +raj — C,'J‘)

, 1 (HJB SS)
+ >‘j(Vi,—j - V,'J'), with Gij=u (Gav,-,j)
0=—0,s(a 2)g(a 2)] — Xzg9(a, z) + A\yg(a, 2') (KF SS)
w=(1-a)K* r=aK*l-y,
(PRICE SS)

K:/ag(a,z)dadz



Step 1: Compute non-stochastic steady state

ov=u(v)+A(v;p)v (HJB SS)

0=—0a[s(a 2)9(a 2)] = Az9(a. 2) + Azg(a, Z') (KF SS)

w=(1-a)K* r=aK*?!-4,
(PRICE SS)
K:/ag(a,z)dadz



Visualization of A (output of spy (4) in Matlab)
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spy(A)

Step 1: Compute non-stochastic steady state

ov=u(v)+A(v;p)v (HJB SS)

0=—0a[s(a 2)9(a 2)] = Az9(a. 2) + Azg(a, Z') (KF SS)

w=(1-a)K* r=aK*?!-4,
(PRICE SS)
K:/ag(a,z)dadz



Step 1: Compute non-stochastic steady state

ov=u(v)+A(v;p)v (HJB SS)

0=A(v;p)'g (KF SS)

w=(1-a)K* r=aK¥1l-yg
(PRICE S9S)
K= /ag(a,z)dadz



Step 1: Compute non-stochastic steady state

ov=u(v)+A(v;p)v (HJB SS)
0=A(v;p)' g (KF SS)
p=F(g) (PRICE SS)

¢ More generals models: (PRICE SS) becomes

0=F(g.p)



Linearization: three steps

1. Compute non-linear approximation to non-stochastic steady state

¢ Finite difference method from Achdou et al. (2017)
» Steady state reduces to sparse matrix equations

» Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation



Linearization: three steps

1. Compute non-linear approximation to non-stochastic steady state

¢ Finite difference method from Achdou et al. (2017)
» Steady state reduces to sparse matrix equations

» Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state

¢ Automatic differentiation: exact numerical derivatives
 Efficient Matlab implementation for sparse systems

 Different slopes at each point in state space

3. Solve linear stochastic differential equation



Step 2: Linearize discretized system

¢ Discretized system with aggregate shocks

1

tht[th]

pve = u(ve) + A (vepe) ve +

d
% = A(vt;pt)T gt
p: = F(9¢; Z¢)

dZt: —IJtht‘i‘ O'th



Step 2: Linearize discretized system

¢ Discretized system with aggregate shocks

1
ove = u (Vi) + A (vepr) ve + EEt[dvt]

d
% = A(vt;pt)T gt
p: = F (gt Z¢)

dZt: —Utht+ Uth

¢ Write in general form

th Vi
d
E: It | _ f(ve, 9e, P, Z1)dt, Je
0 Pt
dZ; Zt

control
endog state

prices
exog state



Step 2: Linearize discretized system

* Discretized system with aggregate shocks
1

tht[dvt]

ove = u(ve) + A (Vepe) ve +

d
% = A(vt;pt)T gt
p: = F (gt Z¢)

dZt: —Utht+ Uth

* Linearize using automatic differentiation (code: @myAD)

dvi; B, 0 B, 0 Vi
d/g\t _ BgV ng ng 0 /g\t
Belo | =] 0 By -1 By |pe|"

dZt 0 0 0 —V Zt



@myAD

Linearization: three steps

1. Compute non-linear approximation to non-stochastic steady state
« Finite difference method from Achdou et al. (2017)
e Steady state reduces to sparse matrix equations
¢ Borrowing constraint absorbed into boundary conditions
2. Compute first-order Taylor expansion around steady state
* Automatic Differentiation: exact numerical derivatives
* Efficient Matlab implementation for sparse systems
« Different slopes at each point in state space

3. Solve linear stochastic differential equation



Linearization: three steps

1. Compute non-linear approximation to non-stochastic steady state
« Finite difference method from Achdou et al. (2017)
e Steady state reduces to sparse matrix equations
¢ Borrowing constraint absorbed into boundary conditions
2. Compute first-order Taylor expansion around steady state
* Automatic Differentiation: exact numerical derivatives
* Efficient Matlab implementation for sparse systems
« Different slopes at each point in state space
3. Solve linear stochastic differential equation
* Moderately-sized systems — standard methods OK
e |arge systems = dimensionality reduction



Model-Free Reduction Method

* Key insight: only need distribution g, to forecast prices

1. Krusell & Smith: guess moments ex-ante, check accuracy
ex-post
2. Our approach: computer chooses “moments”, guarantee
accuracy
* Approximate N-dimensional distribution with k-dimensional basis
Ot = Y1eX1 + ..o+ Ve Xk
= how to choose the basis x1, ..., x,?
e State-space reduction tools from engineering literature (Reiter 2010)

¢ use “observability” criterion = matching impulse responses
e adapt to problems with forward-looking decisions



Approximate Aggregation in Krusell & Smith Model

TFP Output
0.8 08
" Full model
Z 06 — — Reduced model 0.6
g
Z 04 0.4
3
<02 0.2
=
0 0
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Consumption Investment
014
4 012
g
E o1
£ 008
g 006
% 004
0.02 0.5
0 10 20 30 40 50 0 10 20 30 40 50

Quarters Quarters

e Comparison of full distribution vs. k = 1 approximation
= recovers Krusell & Smith’s “approximate aggregation”



Approximate Aggregation in Krusell & Smith Model

TFP Output
0.8 08
" Full model
Z 06 — — Reduced model 0.6
g
Z 04 0.4
3
<02 0.2
=
0 0
0 10 20 30 40 50 0 10 20 30 40 50
Consumption Investment
014
4 012
o1
£ 008
g 006
% 004
0.02 05
0 10 20 30 40 50 0 10 20 30 40 50
Quarters Quarters

¢ Large-scale models in applications require k = 300
=> NO approximate aggregation



Our Method Is Fast, Accurate in Krusell & Smith Model

Our method is fast

w/o Reduction w/ Reduction

Steady State  0.082 sec 0.082 sec
Linearize 0.021 sec 0.021 sec
Reduction X 0.007 sec
Solve 0.14 sec 0.002 sec
Total 0.243 sec 0.112 sec

e JEDC comparison project (2010): fastest alternative ~ 7 minutes



Our Method Is Fast, Accurate in Krusell & Smith Model

Our method is fast

w/o Reduction w/ Reduction

Steady State  0.082 sec 0.082 sec
Linearize 0.021 sec 0.021 sec
Reduction X 0.007 sec
Solve 0.14 sec 0.002 sec
Total 0.243 sec 0.112 sec

e JEDC comparison project (2010): fastest alternative ~ 7 minutes

Our method is accurate

Agg Shock o 0.01% 0.1% 0.7% 1% 5%
Den Haan Error 0.000% 0.002% 0.053% 0.135% 3.347%

¢ JEDC comparison project: most accurate alternative ~ 0.16%



Applications



A Model of Distribution of Income, Wealth, and MPCs

* Households: two-asset incomplete markets (Kaplan-Moll-Violante)

e liquid asset

* illiquid assets subject to transaction cost

* Aggregate production function with growth rate shocks
Y = QeKEN;
d |Og Qt = tht
dZt = —'r]tht + Uth
* Market clearing:
* K = illiquid assets

¢ B =liquid assets (fixed supply)



Application 1: Inequality Matters for C + Y Dynamics

¢ Campbell-Mankiw (1989): how match aggregate C + Y dynamics?
¢ Calibrate model to match

1. Household side: distribution of income, wealth, and MPCs

2. Firm side: dynamics of A log Y%

05 Quarterly Responses to $500 Rebate Quarterly MPC $500
0.4 0.6

05

0.4
03

03

02
0.2 01

0

400

0.1 20

— 20
o

0 0.2 0.4 0.6 0.8 1 Liquid Wealth ($000)

Tliquid Wealth ($000)

24



Application 1: Inequality Matters for C + Y Dynamics

* Campbell-Mankiw (1989): how match aggregate C + Y dynamics?

e Calibrate model to match

1. Household side: distribution of income, wealth, and MPCs
2. Firm side: dynamics of Alog Y;

Data Models
Rep agent Two-Asset CM

Sensitivity to Income

IV(AlogCy on AlogY: 0.503 0.247 0.656
using Alog Yi—1)
Smoothness

(Alog Ct)
(Aloa Vi) 0.518 0.709 0.514




Application 1: Inequality Matters for C + Y Dynamics

* Campbell-Mankiw (1989): how match aggregate C + Y dynamics?

e Calibrate model to match

1. Household side: distribution of income, wealth, and MPCs
2. Firm side: dynamics of Alog Y;

Data Models
Rep agent Two-Asset CM

Sensitivity to Income

IV(AlogCron AlogY: 0.503 0.247 0.656
using Alog Yi—1)

Smoothness
Alog Ce)

ET) 0.518 0.709 0.514 0.676

0.505




Application 2: Agg Shocks Matter for Inequality

¢ With Cobb-Douglas prod’n, labor income inequality exogenous

labor income = w; X zj;

* Modify production function to generate endogenous inequality

1

Vo= [B(ZINE)T + (1= 1) (AKE + (1 - A)(Nf)p)%} :

» NY: unskilled labor w/ low persistent productivity Zjt
. Nf . skilled labor w/ high persistent productivity z;;
« ZY: unskilled-specific productivity shock

e Calibrate o and p to generate capital-skill complementarity



Unskilled

-Specific Shock Increases Inequality...

¢ Fluctuations in income inequality ~ aggregate income

Unskilled Wage

—— Unskilled wage
— — Skilled Wage

Consumption Inequality




. And Generates Sharp Consumption Bust

Consumption

—— Two-asset model
— — Rep agent model

* Many low-skill households hand-to-mouth
= larger consumption drop than in rep agent model



One-Asset HANK Model



One-Asset HANK — Model Outline

For details see https://github.com/gregkaplan/phact/blob/master/examples/

one_asset_HANK/docs/one_asset_hank_no_capital.pdf
Households:
e as in Krusell-Smith model + endogenous labor supply
* policy functions ¢;(a, z), £:(a, z), distribution g;(a, z)
Firms:
¢ monopolistic intermediate-good producers, labor demand L

e quadratic price adjustment costs a la Rotemberg (1982)
* = New Keynesian Phillips curve

Government: issues liquid debt BY, spends, taxes/transfers

Monetary authority: sets nominal rate based on a Taylor rule

Equilibrium:
BY = /agt(a,z)dadz, Ly = /Zt(a,z)gt(a,z)dadz


https://github.com/gregkaplan/phact/blob/master/examples/one_asset_HANK/docs/one_asset_hank_no_capital.pdf
https://github.com/gregkaplan/phact/blob/master/examples/one_asset_HANK/docs/one_asset_hank_no_capital.pdf

Walking you through the code

® https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html


https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html

Macro With Inequality: No More Excuses!

1. Efficient and easy-to-use computational method

e Open source Matlab toolbox online now
2. Use methodology to illustrate interaction of macro + inequality

¢ match micro behavior = realistic aggregate C + Y dynamics
e aggregate shocks generate inequality dynamics...
e ... and IRFs in HA model can differ dramatically from RA case

3. Check out one-asset HANK model at
https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html

¢ Estimating models w/ micro data on distributions within reach

¢ |ots of cool applications: come talk to us!


https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html

Fully recursive notation

w(g, Z) = (1 —a)e’K(9)*, r(9,2) = ae’K(9)* " = 3§ (P)
K(g) = / ag(a, z)dadz (K)
pV(a,z,9,2) = max u(c)+8,V(a 2,9, 2)(w(g, 2)z + r(g, Z)a— c)
C +X,(V(a,Z,9.2)-V(a z,g9,2))
+0zV(a, 2,9, Z)(—vZ) + %GZZV(a,Z,g, Z)o?

o0V(a,z, g9, 2)

gz \Kz9)(a 2)dadz

(cod HJB)

(Kzg)(a,z) = —0a[s(a. 2,9, Z)9(a, 2)] = X\.9(a,z) + Azg(a, 2')
(KF operator)

s(a,z,9.2)=w(g, 2)z+r(g9,Z2)a—c*(a,z, 9, 2)

* $V/bg(a, z): functional derivative of V wrt g at point (a, z)
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