Outline

2. Literature on inequality and random growth

 • tools: differential operators as transition matrices
 • will be extremely useful for analysis, computation of fully-fledged heterogeneous agent models later on
Power Laws

• **Definition 1:** S follows a power law (PL) if there exist $k, \zeta > 0$ s.t.
 \[\Pr(S > x) = kx^{-\zeta}, \quad \text{all } x \]

• S follows a PL \iff S has a Pareto distribution

• **Definition 2:** S follows an asymptotic power law if there exist $k, \zeta > 0$ s.t.
 \[\Pr(S > x) \sim kx^{-\zeta} \quad \text{as } x \to \infty \]

• Note: for any f, g $f(x) \sim g(x)$ means \(\lim_{x \to \infty} f(x)/g(x) = 1 \)

• Surprisingly many variables follow power laws, at least in tail
City Size

- Order cities in US by size (NY as first, LA as second, etc)
- Graph \(\ln \text{Rank}_{NY} = \ln 1, \ln \text{Rank}_{LA} = \ln 2 \) vs. \(\ln \text{Size} \)
- Basically plot log quantiles \(\ln \Pr(S > x) \) against \(\ln x \)
Surprise 1: straight line, i.e. city size follows a PL

$$Pr(S > x) = k x^{-\zeta}$$

Surprise 2: slope of line ≈ -1, regression:

$$\ln \text{Rank} = 10.53 - 1.005 \ln \text{Size}$$

i.e. city size follows a PL with exponent $\zeta \approx 1$

$$Pr(S > x) = k x^{-1}.$$

A power law with exponent $\zeta = 1$ is called “Zipf’s law”

Two natural questions:

1. Why does city size follow a power law?
2. Why on earth is $\zeta \approx 1$ rather than any other number?
Where Do Power Laws Come from?

- Gabaix’s answer: random growth

- Economy with continuum of cities

- \(S^i_t \): size of city \(i \) at time \(t \)

\[
S^i_{t+1} = \gamma^i_{t+1} S^i_t, \quad \gamma^i_{t+1} \sim f(\gamma) \quad \text{(RG)}
\]

- \(S^i_t \) follows random growth process \(\Leftrightarrow \) log \(S^i_t \) follows random walk

- Gabaix shows: (RG) + stabilizing force (e.g. minimum size) \(\Rightarrow \) power law. Use “Champernowne’s equation”

- Easier: continuous time approach
Random Growth Process in Continuous Time

• Consider random growth process over time intervals of length Δt

$$S_{t+\Delta t}^i = \gamma_{t+\Delta t}^i S_t^i$$

• Assume in addition that $\gamma_{t+\Delta t}^i$ takes the particular form

$$\gamma_{t+\Delta t}^i = 1 + g\Delta t + \nu \varepsilon_t^i \sqrt{\Delta t}, \quad \varepsilon_t^i \sim \mathcal{N}(0, 1)$$

• Substituting in

$$S_{t+\Delta t}^i - S_t^i = (g\Delta t + \nu \varepsilon_t^i \sqrt{\Delta t}) S_t^i$$

• Or as $\Delta t \to 0$

$$dS_t^i = gS_t^i dt + \nu S_t^i dW_t^i$$

i.e. a geometric Brownian motion!
Stationary Distribution

• Assumption: city size follows random growth process

\[dS_t^i = gS_t^i \, dt + \nu S_t^i \, dW_t^i \]

• Does this have a stationary distribution? No! In fact

\[\log S_t^i \sim \mathcal{N}((g - \nu^2/2)t, \nu^2 t) \]

⇒ distribution explodes.

• Gabaix insight: random growth process + stabilizing force does have a stationary distribution and that’s a PL

 • Note: Gabaix uses “friction” rather than “stabilizing force”
 • use the latter because “friction” already means something else

• Simplest possible stabilizing force: \(g < 0 \) and minimum size \(S_{\text{min}} \)
 • if process goes below \(S_{\text{min}} \) it is brought back to \(S_{\text{min}} \) (“reflecting barrier”)

Stationary Distribution

• Use Kolmogorov Forward Equation

• Recall: stationary distribution satisfies

\[
0 = -\frac{d}{dx} [\mu(x)f(x)] + \frac{1}{2} \frac{d^2}{dx^2} [\sigma^2(x)f(x)]
\]

• Here geometric Brownian motion: \(\mu(x) = gx, \sigma^2(x) = \nu^2 x^2 \)

\[
0 = -\frac{d}{dx} [gxf(x)] + \frac{1}{2} \frac{d^2}{dx^2} [\nu^2 x^2 f(x)]
\]
Stationary Distribution

- **Claim:** solution is a Pareto distribution, \(f(x) = S_{\min}^\zeta x^{-\zeta-1} \)
- **Proof:** Guess \(f(x) = Cx^{-\zeta-1} \) and verify

\[
0 = -\frac{d}{dx}[gxCx^{-\zeta-1}] + \frac{1}{2} \frac{d^2}{dx^2} \left[\nu^2 x^2 Cx^{-\zeta-1} \right]
\]

\[
= Cx^{-\zeta-1} \left[g\zeta + \frac{\nu^2}{2} (\zeta - 1)\zeta \right]
\]

- This is a quadratic equation with two roots \(\zeta = 0 \) and \(\zeta = 1 - \frac{2g}{\nu^2} \)
- For mean to exist, need \(\zeta > 1 \) \(\Rightarrow \) impose \(g < 0 \)
- Remains to pin down \(C \). We need

\[
1 = \int_{S_{\min}}^\infty f(x) \, dx = \int_{S_{\min}}^\infty Cx^{-\zeta-1} \, dx \quad \Rightarrow \quad C = S_{\min}^\zeta.
\]
Tail inequality and Zipf’s Law

• “Tail inequality” (fatness of tail)

\[\eta := \frac{1}{\zeta} = \frac{1}{1 - 2g/\nu^2} \]

is increasing in \(g \) and \(\nu^2 \) (recall \(g < 0 \))

• Why would Zipf’s Law (\(\zeta = 1 \)) hold? We have that

\[\bar{S} = \int_{S_{\text{min}}}^{\infty} x f(x) dx = \frac{\zeta}{\zeta - 1} S_{\text{min}} \]

\[\Rightarrow \quad \zeta = \frac{1}{1 - S_{\text{min}}/\bar{S}} \rightarrow 1 \quad \text{as} \quad S_{\text{min}}/\bar{S} \rightarrow 0. \]

• Zipf’s law obtains as stabilizing force becomes small
Alternative Stabilizing Force: Death

- No minimum size

- Instead: die at Poisson rate δ, get reborn at S_*

- Can show: correct way of extending KFE (for $x \neq S_*$) is

\[
\frac{\partial f(x, t)}{\partial t} = -\delta f(x, t) - \frac{\partial}{\partial x} [\mu(x)f(x, t)] + \frac{1}{2} \frac{\partial^2}{\partial x^2} [\sigma^2(x)f(x, t)]
\]

- Stationary $f(x)$ satisfies (recall $\mu(x) = gx$, $\sigma^2(x) = \nu^2x^2$)

\[
0 = -\delta f(x) - \frac{d}{dx} [gxf(x, t)] + \frac{1}{2} \frac{d^2}{dx^2} [\nu^2x^2f(x)] \quad \text{(KFE')}
\]
Alternative Stabilizing Force: Death

- To solve (KFE’), guess $f(x) = Cx^{-\zeta-1}$

$$0 = -\delta + \zeta g + \frac{\nu^2}{2}\zeta(\zeta - 1)$$

- Two roots: $\zeta_+ > 0$ and $\zeta_- < 0$. General solution to (KFE’):

$$\Rightarrow f(x) = C_-x^{-\zeta-1} + C_+x^{-\zeta+1} \quad \text{for } x \neq S_*$$

- Need solution to be integrable

$$\int_0^\infty f(x)\,dx = f(S_*) + \int_0^{S_*} f(x)\,dx + \int_{S_*}^\infty f(x)\,dx < \infty$$

- Hence $C_- = 0$ for $x > S_*$, otherwise $f(x)$ explodes as $x \to \infty$

- And $C_+ = 0$ for $x < S_*$, otherwise $f(x)$ explodes as $x \to 0$
Alternative Stabilizing Force: Death

• Solution is a **Double Pareto** distribution:

\[
f(x) = \begin{cases}
 C(x/S_*)^{-\zeta_- - 1} & \text{for } x < S_* \\
 C(x/S_*)^{-\zeta_+ - 1} & \text{for } x > S_*
\end{cases}
\]
Generalizations and Other Stabilizing Forces

• See Appendix D of “The Dynamics of Inequality” for a pretty exhaustive list
 • death and rebirth with \(S_t^i \sim \psi(S) \)
 • additive term
 \[
 dS_t^i = y dt + gS_t^i dt + \nu S_t^i dW_t^i, \quad g < 0, \quad y > 0
 \]
 •

• In general, distribution will not be exactly Pareto or exactly double-Pareto

• But often, under quite weak assumptions, it will still follow asymptotic power law, i.e.
 \[
 \Pr(S > x) \sim k x^{-\zeta} \quad \text{as} \quad x \to \infty
 \]
Literature: Inequality and Random Growth

• **Income distribution**

• **Wealth distribution**

• **Dynamics** of income and wealth distribution
 • Aoki and Nirei (2014), Gabaix, Lasry, Lions and Moll (2016), Hubmer, Krusell, Smith (2016)
Literature: Inequality and Random Growth

• “Technically, one can indeed show that if shocks take a multiplicative form, then the inequality of wealth converges toward a distribution that has a Pareto shape for top wealth holders […], and that the inverted Pareto coefficient (an indicator of top end inequality) is a steeply rising function of the gap $r - g$.”

• Idea: $\mu(x) = (r - g - \text{constant})x$

• In book this point unfortunately gets lost in discussion about how $r - g$ affects capital share
 • factor income vs personal income distribution
 • no general connection between capital share and inequality
The Dynamics of Inequality
• In U.S. past 40 years have seen rapid rise in top income inequality
• Why?
Question

- **Main fact** about top inequality (since Pareto, 1896): upper tails of income (and wealth) distribution follow **power laws**.

- Equivalently, top inequality is **fractal**

 1. ... top 0.01% are X times richer than top 0.1%,... are X times richer than top 1%,... are X times richer than top 10%,...

 2. ... top 0.01% share is fraction Y of 0.1% share,... is fraction Y of 1% share, ... is fraction Y of 10% share,....
Evolution of “Fractal Inequality”

- \(\frac{S(0.1)}{S(1)} \) = fraction of top 1% share going to top 0.1%
- \(\frac{S(1)}{S(10)} \) = analogous
This Paper

• **Starting point**: existing theories that explain top inequality at point in time
 • differ in terms of underlying economics
 • but share basic mechanism for generating power laws: random growth

• **Our ultimate question**: which specific economic theories can also explain observed **dynamics** of top income inequality?
 • e.g. falling income taxes? superstar effects?

• **What we do**:
 • study **transition dynamics** of cross-sectional income distribution in theories with random growth mechanism
 • contrast with data, **rule out** some theories, **rule in** others

• **Today**: income inequality. **Paper**: also wealth inequality.
Main Results

• Transition dynamics of standard random growth models too slow relative to those observed in the data
 • analytic formula for speed of convergence
 • transitions particularly slow in upper tail of distribution
 • jumps cannot generate fast transitions either

• Two parsimonious deviations that generate fast transitions
 1. heterogeneity in mean growth rates
 2. “superstar shocks” to skill prices

• Both only consistent with particular economic theories

• Rise in top income inequality due to
 • simple tax stories, stories about Var(permanent earnings)
 • rise of “superstar” entrepreneurs or managers
A Random Growth Theory of Income Dynamics

- Continuum of workers, heterogeneous in human capital h_{it}
- Die/retire at rate δ, replaced by young worker with h_{i0}
- Wage is $w_{it} = \omega h_{it}$
- Human capital accumulation involves
 - investment
 - luck
- “Right” assumptions \Rightarrow wages evolve as
 \[d \log w_{it} = \mu dt + \sigma dZ_{it} \]
 - growth rate of wage w_{it} is stochastic
 - μ, σ depend on model parameters
 - see Appendix C: log-utility + constant returns (same trick as AK-RBC model in Lecture 4)
Stationary Income Distribution

• **Result:** The stationary income distribution has a Pareto tail

\[\Pr(\tilde{w} > w) \sim C w^{-\zeta} \]

\[p(x) = \zeta e^{-\zeta x} \]

\(\leftarrow\) slope = -\(\zeta\)

• Convenient to work with log income \(x_t = \log w_t\)

\[\Pr(\tilde{w} > w) \sim C w^{-\zeta} \Leftrightarrow \Pr(\tilde{x} > x) \sim Ce^{-\zeta x} \]

• Tail inequality \(1/\zeta\) increasing in \(\mu, \sigma\), decreasing in \(\delta\)
Stationary Income Distribution

- Have \(x_{it} = \log w_{it} \) follows
 \[
dx_{it} = \mu dt + \sigma dZ_{it}
 \]
- Need additional “stabilizing force” to ensure existence of stat. dist.
 - income application: death/retirement at rate \(\delta \)
 - alternative: reflecting barrier
- Distribution \(p(x, t) \) satisfies \(\psi(x) = \text{distribution of entry wages} \)
 \[
p_t = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p + \delta \psi \tag{*}
 \]
- With reflecting barrier at \(x = 0 \), have boundary condition
 \[
 0 = -\mu p(0, t) + \frac{\sigma^2}{2} p_x(0, t)
 \]
 Derivation: \(\int_0^\infty p(x, t) \, dx = 1 \) for all \(t \), and hence from (*)
 \[
 0 = \int_0^\infty p_t \, dx = \left[-\mu p + \frac{\sigma^2}{2} p_x\right]_0^\infty
 \]
Stationary Income Distribution

- Stationary Distribution $p_\infty(x)$ satisfies

 $$0 = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p + \delta \psi$$

- Find solution via guess-and-verify: plug in $p(x) = C e^{-\zeta x}$

 $$0 = \mu \zeta + \frac{\sigma^2}{2} \zeta^2 - \delta + \delta \frac{\psi(x)}{Ce^{-\zeta x}}$$

- Assume $\lim_{x \to \infty} \psi(x)/e^{-\zeta x} = 0 \Rightarrow$ last term drops for large x & ζ solves

 $$0 = \mu \zeta + \frac{\sigma^2}{2} \zeta^2 - \delta$$

 with positive root

 $$\zeta = \frac{-\mu + \sqrt{\mu^2 + 2\sigma^2\delta}}{\sigma^2}$$

- Tail inequality $\eta = 1/\zeta$ increasing in μ, σ, decreasing in δ
Other Theories of Top Inequality

- We confine ourselves to theories that generate power laws
 - random growth
 - models with superstars (assignment models) – more later

- Example of theories that do not generate power laws, i.e. do not generate fractal feature of top income inequality:
 - theories of rent-seeking (Benabou and Tirole, 2015; Piketty, Saez and Stantcheva, 2014)
 - someone should write that “rent-seeking ⇒ power law” paper
Transitions: The Thought Experiment

• Suppose economy is in Pareto steady state

\[p(x) = \zeta e^{-\zeta x} \]

← slope = $-\zeta$

Log Density, log p(x)

Log Income, x
Transitions: The Thought Experiment

- Suppose economy is in Pareto steady state
- At $t = 0$, $\sigma \uparrow$. Know: in long-run \rightarrow higher top inequality

What can we say about the speed at which this happens?
Which part of the distribution moves first?
Instructive Special Case: $\sigma = 0$ ("Steindl Model")

- In special case $\sigma = 0$, can solve full transition dynamics
 - w_t grows at rate μ, gets reset to $w_0 = 1$ at rate δ
Instructive Special Case: $\sigma = 0$ ("Steindl Model")

- In special case $\sigma = 0$, can solve full transition dynamics
 - w_t grows at rate μ, gets reset to $w_0 = 1$ at rate δ
 - stationary distribution $f(w) = \zeta w^{-\zeta}$, $\zeta = \delta/\mu$
Instructive Special Case: $\sigma = 0$ ("Steindl Model")

- In special case $\sigma = 0$, can solve full transition dynamics
 - w_t grows at rate μ, gets reset to $w_0 = 1$ at rate δ
 - stationary distribution of $x_t = \log w_t$: $p(x) = \zeta e^{-\zeta x}$, $\zeta = \delta / \mu$
Instructive Special Case: $\sigma = 0$ (“Steindl Model”)

- In special case $\sigma = 0$, can solve full transition dynamics
 - w_t grows at rate μ, gets reset to $w_0 = 1$ at rate δ
 - at $t = 0$, $\mu \uparrow$. Know from $\zeta = \delta/\mu$: in long-run, top inequality \uparrow
Instructive Special Case: $\sigma = 0$ (“Steindl Model”)

- In special case $\sigma = 0$, can solve full transition dynamics
 - w_t grows at rate μ, gets reset to $w_0 = 1$ at rate δ
 - at $t = 0$, $\mu \uparrow$. Know from $\zeta = \delta / \mu$: in long-run, top inequality \uparrow

- What can we say about the speed at which this happens?
- Which parts of the distribution move first?
Transition in Steindl Model

• Denote

 • old steady state distribution: \(p_0(x) = \alpha e^{-\alpha x} \)

 • new steady state distribution: \(p_\infty(x) = \zeta e^{-\zeta x} \)

• Can show: for \(t, x > 0 \) density satisfies

\[
\frac{\partial p(x, t)}{\partial t} = -\mu \frac{\partial p(x, t)}{\partial x} - p(x, t), \quad p(x, 0) = \alpha e^{-\alpha x}
\]

• Result: the solution to (*) is

\[
p(x, t) = \zeta e^{-\zeta x} 1_{\{x \leq \mu t\}} + \alpha e^{-\alpha x + (\alpha - \zeta) t} 1_{\{x > \mu t\}}
\]

where \(1_{\{\}} \) = indicator function
Transition in Steindl Model
Transition in Steindl Model
Transition in Steindl Model

- transition is slower in upper tail: it takes time $\tau(x) = x/\mu$ for the local PL exponent to converge to its steady state value ζ
- related to slow transition: crazy (age,income) distribution (Luttmer)
General Case
General Case

• Recall Kolmogorov Forward equation for \(p(x, t) \)

\[
p_t = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p + \delta \psi
\]

• Question: at what speed does \(p(x, t) \) converge to \(p_\infty(x) \)?

• need a “distance measure”

• Use \(L^1 \) norm:

\[
\| \| p(x, t) - p_\infty(x) \| := \int_{-\infty}^{\infty} |p(x, t) - p_\infty(x)| \, dx
\]

• measures average distance between \(p \) and \(p_\infty \)

• Later: more general distance measures
General Case: Average Speed of Convergence

- **Proposition:** \(p(x, t) \) converges to stationary distrib. \(p_\infty(x) \)
 - rate of convergence
 \[
 \lambda := - \lim_{t \to \infty} \frac{1}{t} \log \| p(x, t) - p_\infty(x) \|
 \]
 - without reflecting barrier
 \[
 \lambda = \delta
 \]
 - with reflecting barrier
 \[
 \lambda = \frac{1}{2} \frac{\mu^2}{\sigma^2} 1_{\{\mu < 0\}} + \delta
 \]
- Interpretation of (*): exponential convergence at rate \(\lambda \)
 \[
 \| p(x, t) - p_\infty(x) \| \sim ke^{-\lambda t} \quad \text{as } t \to \infty
 \]
- Half life is \(t_{1/2} = \ln(2)/\lambda \Rightarrow \) precise quantitative predictions
Before proving this, let’s take a step back...

• ... and take a somewhat different perspective on the Kolmogorov Forward equation

 • exploit heavily analogy to finite-state processes

• This will also be extremely useful for computations

• Let’s focus on case with reflecting barrier at $x = 0$ and $\delta = 0$

• Kolmogorov Forward equation is

$$p_t = -\mu p_x + \frac{\sigma^2}{2} p_{xx}$$

with boundary condition

$$0 = -\mu p(0, t) + \frac{\sigma^2}{2} p_x(0, t)$$
Key: operator in KFE = transpose of transition matrix

• Just for a moment, suppose $x_{it} = \text{finite-state Poisson process}$
• $x_{it} \in \{x_1, \ldots, x_N\} \Rightarrow \text{distribution} = \text{vector } p(t) \in \mathbb{R}^N$
• Dynamics of distribution

$$\frac{\text{d}}{\text{d}t} p(t) = A^T p(t),$$

where $A = N \times N$ transition matrix

• Key idea: KFE is exact analogue with continuous state
• Can write in terms of differential operator A^*

$$p_t = A^* p, \quad A^* p = -\mu p_x + \frac{\sigma^2}{2} p_{xx}$$

with boundary condition $0 = -\mu p(0) + \frac{\sigma^2}{2} p_x(0)$

• A^* analogue of transpose of transition matrix A^T
This can be made more precise...

- **Definition:** the inner product of two functions v and p is $<v, p> = \int_{0}^{\infty} v(x)p(x) \, dx$ (analogue of $v \cdot p = \sum_{i=1}^{N} v_i p_i$)

- **Definition:** the adjoint of an operator \mathcal{A} is the operator \mathcal{A}^* satisfying $<\mathcal{A}v, p> = <v, \mathcal{A}^*p>$

 Note: adjoint = analogue of matrix transpose $\mathcal{A}v \cdot p = v \cdot \mathcal{A}^T p$

- **Definition:** An operator \mathcal{B} is self-adjoint if $\mathcal{B}^* = \mathcal{B}$

- **Definition:** the infinitesimal generator of a Brownian motion is the operator \mathcal{A} defined by $\mathcal{A}v = \mu v_x + \frac{\sigma^2}{2} v_{xx}$ with boundary condition $v_x(0) = 0$

 - same operator shows up in HJB equations, e.g. $\rho v = u + \mu v_x + \frac{\sigma^2}{2} v_{xx}$, $u = \text{period return}$

 - will call it “HJB operator”, plays role of transition matrix
\(\mathcal{A}^* \) is adjoint of \(\mathcal{A} \) (& vice versa)

- **Result:** \(\mathcal{A}^* \) in the Kolmogorov Forward equation is the adjoint of \(\mathcal{A} \)
- **Proof:**

\[
\langle v, \mathcal{A}^* p \rangle = \int_0^\infty v \left(-\mu p_x + \frac{\sigma^2}{2} p_{xx} \right) \, dx
\]

\[
= \left[\left. -v\mu p + \frac{\sigma^2}{2} v p_x \right] \right|_0^\infty - \int_0^\infty \left(-\mu v_x p + \frac{\sigma^2}{2} v_x p_x \right) \, dx
\]

\[
= \left[\left. -v\mu p + \frac{\sigma^2}{2} v p_x - \frac{\sigma^2}{2} v_x p \right] \right|_0^\infty + \int_0^\infty \left(\mu v_x p + \frac{\sigma^2}{2} v_{xx} p \right) \, dx
\]

\[
= v(0) \left(\mu p(0) - \frac{\sigma^2}{2} p_x(0) \right) + \frac{\sigma^2}{2} v_x(0) p(0) + \langle A v, p \rangle
\]

\[
= \langle A v, p \rangle .
\]

- key step is to use integration by parts and boundary conditions
Carries over to any diffusion process

- ... with x-dependent μ and σ

- “HJB operator” (infinitesimal generator)
 \[
 \mathcal{A}v = \mu(x) \frac{\partial v}{\partial x} + \frac{\sigma^2(x)}{2} \frac{\partial^2 v}{\partial x^2}
 \]
 with appropriate boundary conditions

- “Kolmogorov Forward operator”

 \[
 \mathcal{A}^* p = -\frac{\partial}{\partial x}(\mu(x)p) + \frac{1}{2} \frac{\partial^2}{\partial x^2} (\sigma^2(x)p)
 \]
 with appropriate boundary conditions

- Result: \mathcal{A}^* is adjoint of \mathcal{A}

- Proof: integration by parts just like previous slide
Computation of Kolmogorov Forward Equations

- That operator in KFE = transpose of transition matrix is very useful for computations
- Use finite difference method $p^n_i = p(x_i, t^n)$
- Key: already know how to discretize A
- recall from Lectures 3 and 4 that discretize HJB equation as

$$\rho v = u + \mu v_x + \frac{\sigma^2}{2} v_{xx} \quad \text{as} \quad \rho v = u + Av$$
Computation of Kolmogorov Forward Equations

- By same logic: correct discretization of \mathcal{A}^* is A^T
- Discretize

\[p_t = -\mu p_x + \frac{\sigma^2}{2} p_{xx} \quad \text{or} \quad p_t = A^* p \]

(KFE)

as (explicit scheme)

\[\frac{p^{n+1} - p^n}{\Delta t} = A^T p^n \]

or slightly better (implicit scheme)

\[\frac{p^{n+1} - p^n}{\Delta t} = A^T p^{n+1} \quad \Rightarrow \quad p^{n+1} = (I - \Delta t A^T)^{-1} p^n \]

- can also obtain these finite-difference schemes directly from (KFE), i.e. without using “operator in KFE = transpose of transition matrix”
- Section 2 in https://benjaminmoll.com/HACT_Numerical_Appendix/
- but if have already computed A for HJB equation, no need to do discretization again – get (KFE) for free!
Back to the proof of average-speed proposition

- To gain intuition, suppose again finite-state process \(p(t) \in \mathbb{R}^N \) with
 \[
 \dot{p}(t) = A^T p(t)
 \]
 - assume \(A \) is diagonalizable
 - denote eigenvalues by \(0 = |\lambda_1| < |\lambda_2| < \ldots < |\lambda_N| \)
 - corresponding eigenvectors by \((v_1, \ldots, v_N) \)
- **Theorem:** \(p(t) \) converges to \(p_\infty \) at rate \(|\lambda_2| \) (“spectral gap”)
- Proof sketch: decomposition
 \[
 p(0) = \sum_{i=1}^{N} c_i v_i \quad \Rightarrow \quad p(t) = \sum_{i=1}^{N} c_i e^{\lambda_i t} v_i
 \]
- Example: symmetric two-state Poisson process with intensity \(\phi \)
 \[
 A = \begin{bmatrix}
 -\phi & \phi \\
 \phi & -\phi
 \end{bmatrix}, \quad \Rightarrow \quad \lambda_1 = 0, \quad |\lambda_2| = 2\phi
 \]
 Intuitively, speed \(|\lambda_2| \) ↗ in switching intensity \(\phi \)
Proof of proposition (reflecting barrier, $\delta = 0$)

- Generalize this idea to continuous-state process
- Analyze Kolmogorov Forward equation

\[p_t = \mathcal{A}^* p, \quad \mathcal{A}^* p = -\mu p_x + \frac{\sigma^2}{2} p_{xx} \]

in same exact way as $\dot{p}(t) = \mathbf{A}^T \mathbf{p}(t)$

- **Proof** has two steps:
 1. realization that speed = second eigenvalue (spectral gap) of operator \mathcal{A}^*
 2. analytic computation: spectral gap given by

\[|\lambda_2| = \frac{1}{2} \frac{\mu^2}{\sigma^2} \]
Analytic Computation of Spectral Gap

- Discrete eigenvalue problem

\[\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \]

- Continuous eigenvalue problem

\[\mathcal{A}\varphi = \lambda \varphi \]

or

\[\mu \varphi'(x) + \frac{\sigma^2}{2} \varphi''(x) = \lambda \varphi(x) \]

with boundary condition \(\varphi'(0) = 0 \).

- In principle, could analyze that one directly, but...
Analytic Computation of Spectral Gap

- **Definition:** an operator \(\mathcal{B} \) is self-adjoint if \(\mathcal{B}^* = \mathcal{B} \)
- **Result:** all eigenvalues of a self-adjoint operator are real
- want to analyze eigenvalues of \(\mathcal{A} \)
 - but problem: \(\mathcal{A} \) is not self-adjoint
 - eigenvalues could have imaginary parts
- **Solution:** construct self-adjoint transformation \(\mathcal{B} \) of \(\mathcal{A} \) as follows
 1. Consider stationary distribution \(p_\infty \) satisfying
 \[
 0 = \mathcal{A}^* p \quad \Rightarrow \quad p_\infty = e^{(2\mu/\sigma^2) x}
 \]
 2. Consider \(u = \nu p_\infty^{1/2} = \nu e^{(\mu/\sigma^2) x} \). Can show \(u \) satisfies
 \[
 u_t = \mathcal{B}u, \quad \mathcal{B}u := \frac{\sigma^2}{2} u_{xx} - \frac{1}{2} \frac{\mu^2}{\sigma^2} u
 \]
 with boundary condition \(u_x(0) = \frac{\mu}{\sigma^2} u(0) \).
- To see that \(\mathcal{B} \) is self-adjoint: \(< \mathcal{B}u, p > = < u, \mathcal{B}p > \) using same steps as before (integration by parts)
The first eigenvalue of B is $\lambda_1 = 0$ and the second eigenvalue is $\lambda_2 = -\frac{1}{2} \frac{\mu^2}{\sigma^2}$. All remaining eigenvalues satisfy $|\lambda| > |\lambda_2|$.

Figure: Spectrum of B in complex plane
Proof of Lemma

• Consider eigenvalue problem

\[B\varphi = \lambda \varphi \]

\[\frac{\sigma^2}{2} \varphi'''(x) - \frac{1}{2} \frac{\mu^2}{\sigma^2} \varphi(x) = \lambda \varphi(x) \]

(E)

with boundary condition \(\varphi'(0) = \frac{\mu}{\sigma^2} \varphi(0) \)

• Can show: for \(\lambda \in \left(-\frac{1}{2} \frac{\mu^2}{\sigma^2}, 0 \right) \) all solutions to (E) satisfying boundary condition explode as \(|x| \to \infty \). See appendix of paper.

• Intuition why rate of convergence of \(B \) is \(\frac{1}{2} \frac{\mu^2}{\sigma^2} \)

 • recall \(B u := \frac{\sigma^2}{2} u_{xx} - \frac{1}{2} \frac{\mu^2}{\sigma^2} u \)

 • consider case \(\sigma \approx 0 \): \(\frac{1}{2} \frac{\mu^2}{\sigma^2} \) term large relative to \(\frac{\sigma^2}{2} \)

\[u_t = Bu \approx -\frac{1}{2} \frac{\mu^2}{\sigma^2} u \quad \Rightarrow \quad u(x, t) \approx u_0(x)e^{-\frac{1}{2} \frac{\mu^2}{\sigma^2} t} \]

i.e. operator \(B \) features exponential decay at rate \(\frac{1}{2} \frac{\mu^2}{\sigma^2} \)
Transition in Upper Tail

- Distribution $p(x, t)$ satisfies a Kolomogorov Forward Equation

$$p_t = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p + \delta \psi \quad (\ast)$$

- Can solve this, but not particularly instructive

- Instead, use so-called Laplace transform of p

$$\hat{p}(\xi, t) := \int_{-\infty}^{\infty} e^{-\xi x} p(x, t) \, dx = \mathbb{E} \left[e^{-\xi x} \right]$$

- \hat{p} has natural interpretation: $-\xi$th moment of income/wealth $w_{it} = e^{x_{it}}$

 - e.g. $\hat{p}(-2, t) = \mathbb{E}[w_{it}^2]$

- only works in case without reflecting barrier/lower bound
Transition in Upper Tail

• Proposition: The Laplace transform of p, \hat{p} satisfies

$$\hat{p}(\xi, t) = \hat{p}_\infty(\xi) + (\hat{p}_0(\xi) - \hat{p}_\infty(\xi)) e^{-\lambda(\xi)t}$$

with moment-specific speed of convergence

$$\lambda(\xi) = \mu \xi - \frac{\sigma^2}{2} \xi^2 + \delta$$

• Hence, for $\xi < 0$, the higher the moment $-\xi$, the slower the convergence (for high enough $|\xi| < \zeta$)

• Key step: Laplace transform transforms PDE (*) into ODE

$$\frac{\partial \hat{p}(\xi, t)}{\partial t} = -\xi \mu \hat{p}(\xi, t) + \xi^2 \frac{\sigma^2}{2} \hat{p}(\xi, t) - \delta \hat{p}(\xi, t) + \delta \hat{\psi}(\xi)$$
Can the model explain the fast rise in inequality?

- Recall process for log wages

\[d \log w_{it} = \mu dt + \sigma dZ_{it} + \text{death at rate } \delta \]

- \(\sigma^2 = \text{Var(permanent earnings)} \)

- **Literature:** \(\sigma \) has increased over last forty years
 - Kopczuk, Saez and Song (2010), DeBacker et al. (2013), Heathcote, Perri and Violante (2010) using PSID
 - but Guvenen, Ozkan and Song (2014): \(\sigma \) flat/decreasing in SSA data

- **Can increase in \(\sigma \) explain increase in top income inequality?**
 - experiment: \(\sigma^2 \uparrow \) from 0.01 in 1973 to 0.025 in 2014 (Heathcote-Perri-Violante)
• Recall formula \(\lambda(\xi) = \mu \xi - \frac{\sigma^2}{2} \xi^2 + \delta \)

• Compute half-life \(t_{1/2}(\xi) = \log 2 / \lambda(\xi) \)
Transition following Increase in σ^2 from 0.01 to 0.025

![Graph showing the transition following an increase in σ^2 from 0.01 to 0.025. The graph tracks the top 1% labor income share over years from 1950 to 2050, with data from Piketty and Saez. The model transition is marked with a blue line, the model steady state with a red dashed line, and the data with a green line. The graph indicates a significant increase in the top 1% labor income share after the transition.]
OK, so what drives top inequality then?

Two candidates:

1. “type dependence”: heterogeneity in mean growth rates
2. “scale dependence”: “superstar shocks” to skill prices

Both are violations of Gibrat’s law
Type Dependence

- Casual evidence: very rapid income growth rates since 1980s (Bill Gates, Mark Zuckerberg)
- Two regimes: H and L with $\mu_H > \mu_L$

 \[
 dx_{it} = \mu_H dt + \sigma_H dZ_{it} \\
 dx_{it} = \mu_L dt + \sigma_L dZ_{it}
 \]

- Assumptions
 - drop from H to L at rate ψ
 - retire at rate δ

- See Luttmer (2011) for similar model of firm dynamics

- Proposition: Speed of transition determined by

 \[
 \lambda_H(\xi) := \xi \mu_H - \xi^2 \frac{\sigma_H^2}{2} + \psi + \delta \gg \lambda_L(\xi)
 \]
Scale Dependence

• Second candidate for fast transitions: $x_{it} = \log w_{it}$ satisfies

$$x_{it} = \chi_t y_{it}$$

$$d y_{it} = \mu d t + \sigma d Z_{it}$$

i.e. $w_{it} = (e^{y_{it}})^{\chi_t}$ and $\chi_t = \text{stochastic process } \neq 1$

• Note: implies deviations from Gibrat’s law

$$d x_{it} = \mu d t + x_{it} d S_t + \sigma d Z_{it}, \quad S_t := \log \chi_t \neq 0$$

• Call χ_t (equiv. S_t) “superstar shocks”

• **Proposition:** The process (*) has an infinitely fast speed of adjustment: $\lambda = \infty$. Indeed

$$\zeta_t^\chi = \zeta^y / \chi_t \quad \text{or} \quad \eta_t^\chi = \chi_t \eta^y$$

where ζ_t^χ, ζ^y are the PL exponents of incomes x_{it} and y_{it}.

• **Intuition:** if power χ_t jumps up, top inequality jumps up
A Microfoundation for “Superstar Shocks”

• χ_t term can be microfounded with changing skill prices in assignment models (Sattinger, 1979; Rosen, 1981)

• Here adopt Gabaix and Landier (2008)
 • continuum of firms of different size $S \sim$ Pareto($1/\alpha_t$).
 • continuum of managers with different talent T, distribution
 $$T(n) = T_{\text{max}} - \frac{B}{B_t} n^{B_t}$$
 where $n :=$ rank/quantile of manager talent
 • Match generates firm value: constant $\times TS^{\gamma_t}$
 • Can show: $w(n) = e^{\alpha_t t} n^{-\chi_t}$ ($= e^{\alpha_t + \chi_t y_{it}}, y_{it} = -\log n_{it}$)
 $$\chi_t = \alpha_t \gamma_t - \beta_t$$

• Increase in χ_t due to
 • β_t, γ_t: (perceived) importance of talent in production, e.g. due to ICT (Garicano & Rossi-Hansberg, 2006)
 • Other assignment models (e.g. with rent-seeking, inefficiencies)
Revisiting the Rise in Income Inequality

- Jones and Kim (2015): in IRS/SSA data, $\mu_H \uparrow$ since 1970s
- Experiment: in 1973 $\mu_H \uparrow$ by 8%

![Graph showing Top 1% Labor Income Share over years from 1950 to 2050. The graph includes data from Piketty and Saez, a model with high growth regime, and a model in steady state. The top 1% share increases over time, with a significant rise after 1973.]
Conclusion

• Transition dynamics of standard random growth models too slow relative to those observed in the data

• Two parsimonious deviations that generate fast transitions
 1. heterogeneity in mean growth rates
 2. “superstar shocks” to skill prices

• Rise in top income inequality due to
 • simple tax stories, stories about Var(permanent earnings)
 • rise in superstar growth (and churn) in two-regime world
 • “superstar shocks” to skill prices

• See paper for wealth inequality results
 https://benjaminmoll.com/dynamics_wealth/
Tools Summary

- Differential operators as transition matrices

- At fundamental level, everything same whether discrete/continuous time/space
 - nothing special about continuous t
 - nothing special about continuous x
 - all results from discrete time/space carry over to infinite-dimensional (i.e. continuous) case
 - but computational advantages (e.g. sparsity) – next lecture

- Analogies
 - function $p \leftrightarrow$ vector \mathbf{p}
 - (linear) operator $\mathcal{A} \leftrightarrow$ matrix \mathbf{A}
 - adjoint $\mathcal{A}^* \leftrightarrow$ transpose \mathbf{A}^T
Open Questions

• “What fraction” of top inequality is *efficient* in the sense of people getting paid marginal product? What fraction due to rent-seeking?

• What are the **underlying economic forces** that drove the increase in top inequality?
 • technical change?
 • globalization?
 • superstars?
 • rent-seeking?
 • particular sectors/occupations?

• Evidence for scale- and type-dependence?
 • what about income?
• Using Norwegian administrative data (Norway has wealth tax), document massive heterogeneity in returns to wealth
 • range of over 500 basis points between 10th and 90th pctile
 • returns positively correlated with wealth

• Interesting open question: can a process for returns to wealth like the one documented by FGMP quantitatively generate fast dynamics in top wealth inequality?