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Plan for rest of my part of course
• Only 5 lectures left

• Chris will take over on Wednesday 10/26 (before break)

• Lecture 8 (10/10): Textbook heterogeneous agent model without
aggregate shocks

• Lecture 9 (10/12): Het agent models with aggregate shocks
• “No more excuses!” (Reiter perturbation method)

• Lecture 10 (10/17): Dirk Krueger guest lecture
• “Macroeconomics and Household Heterogeneity”

• Lecture 11 (10/19): Het agent models with nominal rigidities
• HANK & friends

• Lecture 12 (10/24): Estimation of heterogeneous agent models
• Parra-Alvarez, Posch and Wang (2015) 2



Outline

1. Textbook heterogeneous agent model (no aggregate shocks)

• the Aiyagari-Bewley-Huggett model

2. Some theoretical results

3. Computations
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What this lecture is about
• Many interesting questions require thinking about distributions

• Why are income and wealth so unequally distributed?
• Is there a trade-off between inequality and economic growth?
• What are the forces that lead to the concentration of

economic activity in a few very large firms?

• Modeling distributions is hard

• closed-form solutions are rare
• computations are challenging

• Main idea: solving heterogeneous agent model = solving PDEs

• main difference to existing continuos-time literature:
handle models for which closed-form solutions do not exist
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Solving het. agent model = solving PDEs

• More precisely: a system of two PDEs
1. Hamilton-Jacobi-Bellman equation for individual choices
2. Kolmogorov Forward equation for evolution of distribution

• Many well-developed methods for analyzing and solving these
• codes: http://www.princeton.edu/~moll/HACTproject.htm

• Apparatus is very general: applies to any heterogeneous agent
model with continuum of atomistic agents

1. heterogeneous households (Aiyagari, Bewley, Huggett,...)

2. heterogeneous producers (Hopenhayn,...)

• can be extended to handle aggregate shocks (Krusell-Smith,...)
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Computational Advantages relative to Discrete Time

1. Borrowing constraints only show up in boundary conditions
• FOCs always hold with “=”

2. “Tomorrow is today”
• FOCs are “static”, compute by hand: c−γ = va(a, y)

3. Sparsity
• solving Bellman, distribution = inverting matrix
• but matrices very sparse (“tridiagonal”)
• reason: continuous time⇒ one step left or one step right

4. Two birds with one stone
• tight link between solving (HJB) and (KF) for distribution
• matrix in discrete (KF) is transpose of matrix in discrete (HJB)
• reason: diff. operator in (KF) is adjoint of operator in (HJB) 6



Real Payoff: extends to more general setups

• non-convexities

• stopping time problems

• multiple assets

• aggregate shocks
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What you’ll be able to do at end of this lecture

• Joint distribution of income and wealth in Aiyagari model
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What you’ll be able to do at end of this lecture

• Experiment: effect of one-time redistribution of wealth

0
5

10

0.5

1

1.5
0

0.1

0.2

0.3

0.4

0.5

Wealth, a
Income, z

D
en

si
ty

 g
(a

,z
,t)

9



What you’ll be able to do at end of this lecture

Video of convergence back to steady state
https://www.dropbox.com/s/op5u2nlifmmer2o/distribution_tax.mp4?dl=0
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Textbook Heterogeneous Agent Model:
Aiyagari-Bewley-Huggett
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Households

are heterogeneous in their wealth a and income y , solve

max
{ct}t≥0

E0
∫ ∞
0

e−ρtu(ct)dt s.t.

dat = (yt + rtat − ct)dt
yt ∈ {y1, y2} Poisson with intensities λ1, λ2
at ≥ a

• ct : consumption
• u: utility function, u′ > 0, u′′ < 0.
• ρ: discount rate
• rt : interest rate
• a > −∞: borrowing limit e.g. if a = 0, can only save

later: carries over to yt = general diffusion process.
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Stationary Equilibrium

Bonds in zero net supply (Huggett)

0 =S(r) :=

∫ ∞
a

ag1(a)da +

∫ ∞
a

ag2(a)da (EQ)

ρvi(a) =max
c
u(c) + v ′i (a)(yi + ra − c) + λi(vj(a)− vi(a)) (HJB)

0 =−
d

da
[si(a)gi(a)]− λigi(a) + λjgj(a), (KF)

si(a) =yi + ra − ci(a), ci(a) = (u′)−1(v ′i (a)),∫ ∞
a

(g1(a) + g2(a))da = 1, g1, g2 ≥ 0

• The two PDEs (HJB) and (KF) together with (EQ) fully characterize
stationary equilibrium Derivation of (HJB) (KF)
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Transition Dynamics

0 =S(r, t) :=

∫ ∞
a

ag1(a, t)da +

∫ ∞
a

ag2(a, t)da (EQ)

ρvi(a, t) =max
c
u(c) + ∂avi(a, t)(yi + r(t)a − c)

+ λi(vj(a, t)− vi(a, t)) + ∂tvi(a, t),
(HJB)

∂tgi(a, t) =− ∂a[si(a, t)gi(a, t)]− λigi(a, t) + λjgj(a, t), (KF)

si(a, t) =yi + r(t)a − ci(a, t), ci(a, t) = (u′)−1(∂avi(a, t)),∫ ∞
a

(g1(a, t) + g2(a, t))da = 1, g1, g2 ≥ 0

• Given initial condition gi ,0(a), the two PDEs (HJB) and (KF)
together with (EQ) fully characterize equilibrium.

• Notation: for any function f , ∂x f means ∂f∂x
14



Borrowing Constraints?

• Q: where is borrowing constraint a ≥ a in (HJB)?
• A: “in” boundary condition

• Result: vi must satisfy
v ′i (a) ≥ u′(yi + ra), i = 1, 2 (BC)

• Derivation:
• the FOC still holds at the borrowing constraint

u′(ci(a)) = v
′
i (a) (FOC)

• for borrowing constraint not to be violated, need
si(a) = yi + ra − ci(a) ≥ 0 (∗)

• (FOC) and (∗)⇒ (BC).

• See slides on viscosity solutions for more rigorous discussion
http://www.princeton.edu/~moll/viscosity_slides.pdf 15
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Plan

1. Consumption, saving and inequality in partial equilibrium

2. General equilibrium

3. Computations
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MPCs and Speed of Hitting Borrowing Constraint

Behavior near borrowing constraint depends on two factors
1. tightness of constraint
2. properties of u as c → 0

Assumption 1:
The coefficient of absolute risk aversion R(c) = −u′′(c)/u′(c) when
wealth a approaches the borrowing limit a is finite, that is

R = − lim
a→a

u′′(y1 + ra)

u′(y1 + ra)
<∞

• sufficient condition for A1: borrowing constraint is tighter than
“natural borrowing constraint” a > −y1/r

• e.g. with CRRA utility

u(c) =
c1−γ

1− γ ⇒ R =
γ

y1 + ra

• but weaker: e.g. A1 satisfied by a = −y1/r, u(c) = −γe−γc 17



MPCs and Speed of Hitting Borrowing Constraint
Proposition
Assume r < ρ, y1 < y2 and that A1 holds. The solution to (HJB) has
following properties:

1. s1(a) = 0 but s1(a) < 0 all a > a: only households exactly at the
borrowing constraint are constrained.

2. Saving and consumption policy functions close to a = a satisfy

s1(a) ≈ −ν
√
a − a

c1(a) ≈ y1 + ra + ν
√
a − a

c ′1(a) ≈ r +
1

2

ν√
a − a

ν =

√
2
(ρ−r)u′(c1)+λ1[u′(c1)−u′(c2)]

−u′′(c1) > 0 18



Consumption, Savings at Borrowing Constraint
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Consumption, Savings at Borrowing Constraint
Proposition
Assume r < ρ, y1 < y2 and that A1 holds. The solution to (HJB) has
following properties:

1. s1(a) = 0 but s1(a) < 0 all a > a: only households exactly at the
borrowing constraint are constrained.

2. Saving and consumption policy functions close to a = a satisfy

s1(a) ≈ −ν
√
a − a

c1(a) ≈ y1 + ra + ν
√
a − a

c ′1(a) ≈ r +
1

2

ν√
a − a

ν =

√
2
(ρ−r)u′(c1)+λ1[u′(c1)−u′(c2)]

−u′′(c1) > 0

√
2c1
γ

(
ρ− r + λ1

[
1− (c2/c1)−γ

])
> 020



Saving Behavior at Borrowing Constraint

Corollary
The wealth of worker who keeps y1 converges to borrowing constraint
in finite time at speed governed by ν:

a(t)− a ≈
[(√

a0 − a −
ν

2
t
)+]2

Derivation: integrate ȧ(t) = −ν
√
a(t)− a

Note: similarity to stopping time problems
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Stationary Wealth Distribution

• Recall equation for stationary distribution

0 = −
d

da
[si(a)gi(a)]− λigi(a) + λjgj(a) (KF)

• Lemma: the solution to (KF) is

gi(a) =
κi
si(a)

exp

(
−
∫ a
a

(
λ1
s1(x)

+
λ2
s2(x)

dx

))

with κ1, κ2 pinned down by gi ’s integrating to one

• Corollary: Dirac point mass of type y1 individuals at constraint
lima→a g1(a) =∞
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Stationary Wealth Distribution
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General Equilibrium
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Increase in r from rL to rH > rL
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Stationary Equilibrium
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∫ ∞
a

ag1(a; r)da +
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• Proposition: a stationary equilibrium exists
• Big open question: uniqueness. Any ideas? Need to find

conditions s.t. S′(r) ≥ 0. 26



Computations for
Heterogeneous Agent Model
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Computations for Heterogeneous Agent Model

• Hard part: HJB equation. But already know how to do that

• Easy part: KF equation. Once you solved HJB equation, get KF
equation “for free”

• System to be solved
ρv1(a) = max

c
u(c) + v ′1(a)(y1 + ra − c) + λ1(v2(a)− v1(a))

ρv2(a) = max
c
u(c) + v ′2(a)(y2 + ra − c) + λ2(v1(a)− v2(a))

0 = −
d

da
[s1(a)g1(a)]− λ1g1(a) + λ2g2(a)

0 = −
d

da
[s2(a)g2(a)]− λ2g2(a) + λ1g1(a)

1 =

∫ ∞
a

g1(a)da +

∫ ∞
a

g2(a)da

0 =

∫ ∞
a

ag1(a)da +

∫ ∞
a

ag2(a)da := S(r)

28



Computations for Heterogeneous Agent Model

• As before, discretized HJB equation is

ρv = u(v) + A(v)v (HJBd)

• A is N × N transition matrix

• here N = 2× I, I=number of wealth grid points
• A depends on v (nonlinear problem)
• solve using implicit scheme

29



Visualization of A (output of spy(A) in Matlab)
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Computing the FK Equation

• Equations to be solved

0 = −
d

da
[s1(a)g1(a)]− λ1g1(a) + λ2g2(a)

0 = −
d

da
[s2(a)g2(a)]− λ2g2(a) + λ1g1(a)

with 1 =
∫∞
a g1(a)da +

∫∞
a g2(a)da

• Actually, super easy: discretized version is simply
0 = A(v)Tg (KFd)

• eigenvalue problem
• get KF for free, one more reason for using implicit scheme

• Why transpose? See lectures 6 and 7
• operator in (HJB) is “adjoint” of operator in (KF)
• “adjoint” = infinite-dimensional analogue of matrix transpose

• In principle, can use similar strategy in discrete time
31



Finding the Equilibrium Interest Rate

Use bisection method
• increase r whenever S(r) < 0
• decrease r whenever S(r) > 0
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A Model with a Continuum of Income Types

• Assume idiosyncratic income follows diffusion process
dyt = µ(yt)dt + σ(yt)dWt

• Reflecting barriers at y and ȳ
ρv(a, y) = max

c
u(c) + ∂av(a, y)(y + ra − c) + µ(y)∂yv(a, y) +

σ2(y)

2
∂yyv(a, y)

0 = −∂a[s(a, y)g(a, y)]− ∂y [µ(y)g(a, y)] +
1

2
∂yy [σ

2(y)g(a, y)]

1 =

∫ ∞
0

∫ ∞
a

g(a, y)dady

0 =

∫ ∞
0

∫ ∞
a

ag(a, y)dady := S(r)

• Borrowing constraint: ∂av(a, y) ≥ u′(y + ra), all y
• reflecting barriers (see e.g. Dixit “Art of Smooth Pasting”)

0 = ∂yv(a, y) = ∂yv(a, ȳ)
33



It doesn’t matter whether you solve ODEs or PDEs
⇒ everything generalizes

http://www.princeton.edu/~moll/HACTproject/huggett_diffusion_partialeq.m
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Visualization of A (output of spy(A) in Matlab)
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Saving Policy Function and Stationary Distribution
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Transition Dynamics/MIT Shocks
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Transition Dynamics

Do Aiyagari version of the model

r(t) =FK(K(t), 1)− δ, w(t) = FL(K(t), 1) (P)

K(t) =

∫
ag1(a, t)da +

∫
ag2(a, t)da (K)

ρvi(a, t) =max
c
u(c) + ∂avi(a, t)(w(t)zi + r(t)a − c)

+ λi(vj(a, t)− vi(a, t)) + ∂tvi(a, t),
(HJB)

∂tgi(a, t) =− ∂a[si(a, t)gi(a, t)]− λigi(a, t) + λjgj(a, t), (KF)

si(a, t) =w(t)zi + r(t)a − ci(a, t), ci(a, t) = (u′)−1(∂avi(a, t))

• Given initial condition gi ,0(a), the two PDEs (HJB) and (KF)
together with (P) and (K) fully characterize equilibrium.
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Transition Dynamics

• Recall discretized equations for stationary equilibrium
ρv = u(v) + A(v)v

0 = A(v)Tg

• Transition dynamics
• denote vni,j = vi(aj , tn) and stack into vn
• denote gni,j = gi(aj , tn) and stack into gn

ρvn = u(vn+1) + A(vn+1)vn +
1

∆t
(vn+1 − vn)

gn+1 − gn

∆t
= A(vn)Tgn+1

• Terminal condition for v: vN = v∞ (steady state)
• Initial condition for g: g1 = g0.
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Transition Dynamics

• (HJB) looks forward, runs backwards in time

• (KF) looks backward, runs forward in time

• Algorithm: Guess K0(t) and then for ℓ = 0, 1, 2, ...

1. find prices r ℓ(t) and w ℓ(t)
2. solve (HJB) backwards in time given terminal cond’n vi ,∞(a)
3. solve (KF) forward in time given given initial condition gi ,0(a)
4. Compute Sℓ(t) =

∫
agℓ1(a, t)da +

∫
agℓ2(a, t)da

5. Update Kℓ+1(t) = (1− ξ)Kℓ(t) + ξSℓ(t) where ξ ∈ (0, 1] is a
relaxation parameter
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An MIT Shock

Modification: Yt = Ft(K,L) = AtKαL1−α, dAt = ν(Ā− At)dt
http://www.princeton.edu/~moll/HACTproject/aiyagari_poisson_MITshock.m
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Open Questions
• Title of course/lecture “Income and Wealth Distribution in Macro”
• Aiyagari-Bewley-Huggett model = rich theory of wealth distribution

• caveat: ability to match data? See problem set
• either way, important building block for richer models

• ... but no deep theory of income distribution
• labor income = w × z , z = exogenous process
• capital income = r × a, i.e. proportional to wealth

• Can we do better?
• idea: marry with assignment model⇒ income = w(z), w ′′ ̸= 0

• References:
• Sattinger (1979), “Differential Rents and the Distribution of Earnings”
• these Acemoglu lecture notes http://economics.mit.edu/files/10480

• Gabaix and Landier (2008), “Why has CEO Pay Increased so Much?”
• Acemoglu and Autor (2011), “Skills, Tasks and Technologies” 42
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Open Question: Less Restrictive Assignment Models?
• Sattinger setup, notation in http://economics.mit.edu/files/10480

• Workers with skill s, CDF H(s)
• Firms with productivity x , CDF G(x)
• One-to-one matching, output f (x, s)
• Result: if fxs(x, s) > 0 all (x, s) (f is supermodular), then “positive

assortative matching” (PAM), assignment equation is
x = ϕ(s) with ϕ′ > 0

• Wage function w(s) found from w ′(s) = fs(ϕ(s), s)⇒ w ′′(s) > 0
• Open question:

• supermodularity = strong, sufficient condition for obtaining
assignment equation x = ϕ(s)

• possible to obtain assignment equation under weaker
assumptions than supermodularity, still able to say something?

43
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Appendix
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Derivation of Poisson KF Equation Back

• Work with CDF (in wealth dimension)
Gi(a, t) := Pr(ãt ≤ a, ỹt = yi)

• Income switches from yi to yj with probability ∆λi
• Over period of length ∆, wealth evolves as ãt+∆ = ãt + ∆si(ãt)
• Similarly, answer to question “where did ãt+∆ come from?” is

ãt = ãt+∆ − ∆si(ãt+∆)
• Momentarily ignoring income switches and assuming si(a) < 0
Pr(ãt+∆ ≤ a) = Pr(ãt ≤ a)︸ ︷︷ ︸

already below a

+Pr(a ≤ ãt ≤ a − ∆si(a))︸ ︷︷ ︸
cross threshold a

= Pr(ãt ≤ a − ∆si(a))

• Fraction of people with wealth below a evolves as
Pr(ãt+∆ ≤ a, ỹt+∆ = yi) = (1− ∆λi) Pr(ãt ≤ a − ∆si(a), ỹt = yi)

+∆λj Pr(ãt ≤ a − ∆sj(a), ỹt = yj)
• Intuition: if have wealth < a − ∆si(a) at t, have wealth < a at t +∆45



Derivation of Poisson KF Equation
• Subtracting Gi(a, t) from both sides and dividing by ∆
Gi(a, t + ∆)− Gi(a, t)

∆
=
Gi(a − ∆si(a), t)− Gi(a, t)

∆

− λiGi(a − ∆si(a), t) + λjGj(a − ∆sj(a), t)
• Taking the limit as ∆→ 0

∂tGi(a, t) = −si(a)∂aGi(a, t)− λiGi(a, t) + λjGj(a, t)
where we have used that

lim
∆→0

Gi(a − ∆si(a), t)− G(a, t)
∆

= lim
x→0

G(a − x, t)− G(a, t)
x

si(a)

= −si(a)∂aGi(a, t)
• Intuition: if si(a) < 0,Pr(ãt ≤ a, ỹt = yi) increases at rate gi(a, t)
• Differentiate w.r.t. a and use gi(a, t) = ∂aGi(a, t)⇒

∂tgi(a, t) = −∂a[si(a, t)gi(a, t)]− λigi(a, t) + λjgj(a, t)
46


