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Outline

(1) Hamilton-Jacobi-Bellman equations in stochastic settings

(without derivation)
(2) Ito's Lemma
(3) Kolmogorov Forward Equations

(4) Application: Power laws (Gabaix, 2009)



Stochastic Optimal Control

e Generic problem:

V (x) = max EO/OOO e~Pth(x (t), u (b)) dt

u(t)Z,
subject to the law of motion for the state
dx(t) = g (x(t),u(t))dt + o(x(t))dW(t) and u(t) € U

for t > 0, x(0) = xp given.
e Deterministic problem: special case o(x) = 0.

e In general x € R™ u € R". For now do scalar case.



Stochastic HJB Equation: Scalar Case

Claim: the HJB equation is
1
pV(x) = max h(x, u) + V/(x)g(x,u) + 5 V" (x)0(x)
ue

Here: on purpose no derivation (“cookbook™)

In case you care, see any textbook, e.g. chapter 2 in Stokey
(2008)

Sidenote: can again write this in terms of the Hamiltonian

pV(x) = max H(x,u, V'(x)) + %V”(x)az(x)

ue



Just for Completeness: Multivariate Case

Let x e R™ u e R".

For fixed x, define the m x m covariance matrix
o?(x) = a(x)o(x)’
(this is a function 02 : R™ — R™ x R™)

The HJB equation is

T OV(x 1 < o= 92V (x
pV(x) = max h(x, “)+Z 8>(<- )gi(x, u)+§ Z Z 8x-8(x-) U,'zj
i=1 ! ' B

uelU
In vector notation
1
pV(x) = max h(x, u)+VV(x)-g(x, u)+§tr (A, V(x)o?(x))
uc

V«V(x): gradient of V (dimension m x 1)

A, V(x): Hessian of V (dimension m x m).



HJB Equation: Endogenous and Exogenous State

e Lots of problems have the form x = (x1, x2)
e x;: endogenous state
* Xxp: exogenous state

dx; = g(x1,x0, u)dt
dxp = ﬂ(Xg)dt + 5‘(X2)dW
e Special case with
&0, X2, u) |0
8lx) = [ fi(x2) ]’ ) [5(X2)]

e Claim: the HJB equation is

pV(Xl)XQ) — TGa()J( h(X17X27 U) + Vl(X17X2)§(X1)X2) U)

. 1 .
+Va(x1, x2)fi(x2) + 5 Vaa(xi, %2)52(x2)



Example: Real Business Cycle Model

V (ko, Ag) = max Eo / e P U(c(t))dt
0

c(t)iZ,

subject to
dk = [AF (k) — 6k — c]dt
dA = u(A)dt + o(A)dW
for t > 0, k(0) = ko, A(0) = Ag given.
e Here: s = k,xo = A,u=c
e h(x,u) = U(u)
o g(x,u)=F(x)—dx—u



Example: Real Business Cycle Model

e HJB equation is

pV(k,A) =max U(c) + Vi(k, A)[AF (k) — 5k — ]

F Valk, AJu(A) + 5 Vaalk, A)o(A)



Example: Real Business Cycle Model
e Special Case 1: A is a geometric Brownian motion
dA = pAdt + cAdW
pV(k,A) = max U(c) + Vi(k, A)[AF (k) — ok — ¢]
+ Va(k, A)pA + %VAA(k, A)o? A

See Merton (1975) for an analysis of this case.

e Special Case 2: A is a Feller square root process
dA = (A — A)dt + oV AdW
pV(k,A) =max U(c) + Vi(k,A)[AF (k) — ok — ]
C

_ 1
+ Valk, A)O(A = A) + 5 Vaa(k, A2 A



Special Case: Stochastic AK Model with log Utility

e Preferences: U(c) = logc

Technology: AF(k) = Ak

A follows any diffusion
pV(k,A) =max log c + Vi(k, A)[Ak — dk — ]
Cc

FValk, AYu(A) + 5 Vaa(k, A)o?(A)

Claim: Optimal consumption is ¢ = pk and hence capital

follows
dk = [A — p — d]kdt
dA = u(A)dt + o(A)dt

Solution prop’'s? Simply simulate two SDEs forward in time.



Special Case: Stochastic AK Model with log Utility

e Proof: Guess and verify
V(k,A) = v(A) + klog k

FOC:

V() = Vi(k, A) < %:

Substitute into HJB equation
p[v(A) + k log k] =log k — log K + % [Ak — 6k — k /K]

1 " 2
SV (A)r(A)

Collect terms involving logk =k =1/p = ¢ = pk.O

+ V/(A)u(A) +

Comment: log-utility = offsetting income and substitution

effects of future A = constant savings rate p.



General Case: Numerical Solution with FD Method

e See HJB_stochastic_reflecting.m
e Solve on bounded grids k;,i =1,....,/ and A;,j =1,...,J
e Use short-hand notation V;; = V/(k;, A;). Approximate
Vigrj — Vici,

2Ak
Vij+1— Viji

2AA
Vij+1 —2Vij+ Vij

(AA)?

Vk(k,', AJ) ~

Va(ki, Aj) =

VAA(k,', AJ) ~
e Discretized HJB
pVij =U(cij) + Vi(ki, Aj))[A;F (ki) — 0ki — cij]
1
+ Va(ki, Aj)(A;) + 5 Vaa(ki, A))o?(A))

cij = (U) [ Vi(ki, A))]


HJB_stochastic_reflecting.m

General Case: Numerical Solution with FD Method

e As boundary conditions, use

VA(k,Al) =0 allk = Vi,o = \/,',2
Va(k,A;)=0 allk = Vi;u1=Vis

e These correspond to “reflecting barriers” at lower and upper

bounds for productivity, A; and A, (Dixit, 1993).

e In theory also need boundary condition for k (possibility:

reflecting barrier at k;)

e Instead, use “dirty fix": backward and forward rather than

central differences at boundaries

Vo, — Vi Vij— Vi_1,

Vi(ki, A) = Ak



General Case: Numerical Solution with FD Method

Iterate using same explicit method as in deterministic case.

Guess, V0, update using:

vl _yn
! — A A } -
1 S —|—pV,-':l- —U(C,-'Zj) + V[?(kia J)[ \j (ki) Oki Ci’:j]

n 1 n
+ VA(ki, Aj)(A)) + 5 Viaa(ki, Aj)o? (A7)

See HJB_stochastic_reflecting.m

Extremely inefficient: need 112,140 iterations.

Implicit Method?


HJB_stochastic_reflecting.m

Ito’s Lemma
Let x be a scalar diffusion
dx = p(x)dt + o(x)dW

We are interested in the evolution of y(t) = f(x(t)) where f
is any twice differentiable function.

Lemma: y(t) = f(x(t)) follows
df (x) = (u(x)f/(x) + %az(x)f”(x)> dt + o(x)F (x)dW

Extremely powerful because it says that any (twice
differentiable) function of a diffusion is also a diffusion.
Can also be extended to vectors.

FYI: this is also where the V/(x)u(x) + 3 V" (x)o?(x) term in

BV ()

the HJB equation comes from (it's .



Application: Brownian vs. Geometric Brownian Motion
e Let x be a geometric Brownian motion
dx = uxdt + oxdW

e Claim: y = log x is a Brownian motion with drift  — 02 /2

and variance ¢2.

e Derivation: f(x) = logx, f'(x) = 1/x, f"(x) = —1/x?

By lto's Lemma
dy = df(x) = <ux(1/x) + %azxz(—l/x2)> dt + ox(1/x)dW
= (u—0?/2) dt + odW
e Note: naive derivation would have used dy = dx/x and hence

dy = pdt + odW wrong unless o0 = 0!



Just for Completeness: Multivariate Case

Let x € R™. For fixed x, define the m x m covariance matrix

o?(x) = o(x)o(x)

Ito’s Lemma:

9 (ZM(X) x)-< %ZZ 88x:)) )
i=1 i=1 j=1 1

1

m

of (x
+ Za,-(x) 8( )
i=1
In vector notation
df(x) = <fo(x) p(x) + %tr (Axf(x)oz(x))> dt+V f(x)-o(x)dW

V«f(x): gradient of f (dimension m x 1)

A, f(x): Hessian of f (dimension m x m).



Kolmogorov Forward Equations

Let x be a scalar diffusion
dx = p(x)dt + o(x)dW, x(0) = xo

Suppose we're interested in the evolution of the distribution
of x, f(x, t), and in particular in the limit lim;_,~ f(x, t).
Natural thing to care about especially in heterogenous agent
models

Example 1: x = wealth

o 1(x) determined by savings behavior and return to investments
e o(x) by return risk.

e microfound later

Example 2: x = city size, will cover momentarily



Kolmogorov Forward Equations

Fact: Given an initial distribution f(x,0) = fo(x), f(x,t)
satisfies the PDE

Of (x, t)
ot

- ——[,u(x)f(x o]+ = > 2[0 () f (x, 1)]

This PDE is called the “Kolmogorov Forward Equation”
Note: in math this often called “Fokker-Planck Equation”
Can be extended to case where x is a vector as well.
Corollary: if a stationary distribution, lim;_, f(x,t) = f(x)
exists, it satisfies the ODE

2
0= UG (] + 5 5o () ()]



Just for Completeness: Multivariate Case

e Let x € R™.

e As before, define the m X m covariance matrix

o?(x) = o(x)o(x)

e The Kolmogorov Forward Equation is

Za OIS 3) praswISHAY)

i=1 j=1

8




Application: Stationary Distribution of RBC Model
e Recall RBC Model
pV(k,A) = max U(c) + Vi(k, A)[AF (k) — ok — c]
+ Valk, AY(A) + 5 Vaak, A)o(A)
e Denote the optimal policy function by
k(k,A) = AF (k) — 0k — c(k, A)
e Then f(k,A,t) solves

of(k,At) 0
ST - k(K AYF (K, A, )
0
— DA A ]+ 2L (kA1)
e Can discretize using FD method, run forward, see if it

converges to stationary distribution.



Application: Power Laws

See Gabaix (2009), “Power Laws in Economics and Finance,”
very nice, very accessible!

Pareto (1896!!!): upper-tail distribution of number of people
with an income or wealth S greater than a large x is

proportional to 1/x¢ for some ¢ > 0
Pr(S > x) = kx™¢

Definition: We say that a variable, x, follows a power law
(PL) if there exist k > 0 and ¢ > 0 such that

Pr(S > x) = kx™¢, all x

x follows a PL < x has a Pareto distribution

Holds for surprisingly many variables.



History Interlude

Vilfredo Pareto Kiyoshi Ito Andrei Kolmogorov



City Size

e Order cities in US by size (NY as first, LA as second, etc)
e Graph In Rank (InRankyy = In1,InRank;a = In2) vs. In Size

e Basically plot log quantiles In Pr(S > x) against In x

Log of therank

1 1 1
550 650 7.50 850 9.50
Log of the population



City Size
Surprise 1: straight line, i.e. city size follows a PL
Pr(S > x) = kx™¢
Surprise 2: slope of line &= —1, regression:
In Rank = 10.53 — 1.005 In Size
i.e. city size follows a PL with exponent ( ~ 1
Pr(S > x) = kx L.

A power law with exponent { = 1 is called “Zipf's law”
Two natural questions:

(1) Why does city size follow a power law?
(2) Why on earth is ¢ & 1 rather than any other number?



Where Do Power Laws Come from?

Gabaix's answer: random growth
Economy with continuum of cities.

Si: size of city i at time t

5£+1 = 7£+15£7 7£+1 ~ f(W) (RG)

Si follows random growth process < log S! follows random

walk.

Gabaix shows: (RG) + friction (e.g. minimum size) = power

law. Use “Champernowne’s equation”

Easier: continuous time approach.



Random Growth Process in Continuous Time

Consider random growth process over time intervals of length

At
51{+At = ’Yt{-s-AtS{
Assume in addition that ’y£+At takes the particular form
Viiar =1+ gAt+ velvV/At, el ~ N(0,1)
Substituting in
Siiae — Si=(gAt+ velVAt)S]

Oras At —0
dSi = gSidt + vSidW|

i.e. a geometric Brownian motion!



Stationary Distribution
Assumption: city size follows random growth process
dS! = gSldt + vSidW,
Does this have a stationary distribution? No! In fact
log Si ~ N((g — v?/2)t,v?t)

= distribution explodes.

Gabaix insight: random growth process + friction does have a

stationary distribution and that's a PL

Simplest possible friction: minimum size Sp,. If process goes

below Smin it is brought back to Smin (“reflecting barrier”)



Stationary Distribution

e Use Kolmogorov Forward Equation.

e Recall: stationary distribution satisfies

1 d°
0= ~Lp0f (0] + 3-S5 r?()F (4]
e Here geometric Brownian motion: p(x) = gx, 0?(x) = v2x?
d 142 ,,
0= —Liexf (] + 21V (x)]



Stationary Distribution

Claim: solution is a Pareto distribution, f(x) = Srf“n -1
Proof: Guess f(x) = Cx~¢~1 and verify

— 1 —(C—1
0———[ngx< ]+2d2[vxCx< ]

V2
= G e ¢~ 1]
This is a quadratic equation with two roots ¢ = 0 and

(=1-2%

V2
For mean to exist, need ( > 1 = impose g < 0.

Remains to pin down C. We need

1:/ f(x)dx:/ Gl = Cc=58 O
Smin min



Zipf's Law

e Why would Zipf's Law (¢ = 1) hold? We have that

S= /SOO xf(x)dx = LSmin

min C_]'
1 _
= (=———>1 as Snn/S—0.
1—Smin/S

e Zip's law obtains as friction becomes small.



Alternative Friction: Death

No minimum size.
Instead: die at Poisson rate §, get reborn at S,.
Can show: correct way of extending KFE (for x # S,) is

N 2
OO _ 5t t) = L ()P, ] 3 g [02()F 1)

Stationary f(x) satisfies (recall u(x) = gx,0%(x) = v?x?)

2

0=—6f(x) — %[gxf(x, t)] + %% [szzf(x)] (KFE")



Alternative Friction: Death
To solve (KFE'), guess f(x) = Cx~¢~1
- V2
0=*0+Cg+75(f—1)
Two roots: (4 > 0 and (_ < 0. General solution to (KFE'):
= f(xX)=Cx 14 Cx 1 forx#£8S,
Need solution to be integrable
00 S« 00
/ f(x)dx = f(Ss) +/ f(x)dx+/ f(x)dx < o0
0 0 S.

Hence C_ =0 for x > S,, otherwise f(x) explodes as x — oo.

And C; =0 for x < S, otherwise f(x) explodes as x — 0.



Alternative Friction: Death
e Solution is a Double Pareto distribution:

C(x/S.)~¢~1 for x < S,

C(x/S.)~¢~1 for x> S,




Alternative Friction: Death

e Again, Zipf's Law (¢ = 1) obtains as friction gets small.
Here: 6 — 0.

e Other cases in Gabaix's paper:
(1) Extension to jump processes
(2) Approximate power laws with generalized growth process

dS;

— = g(S¢)dt + v(S;)dt
St



