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Outline

1. Diffusion processes

2. Hamilton-Jacobi-Bellman equations in stochastic settings
(without derivation)

3. Ito’s Lemma

4. Kolmogorov Forward Equations



Diffusion Processes

¢ A diffusion is simply a continuous-time Markov process (with
continuous sample paths, i.e. no jumps)

 for jumps, use Poisson process: very intuitive, briefly later

¢ Simplest possible diffusion: standard Brownian motion (sometimes
also called “Wiener process”)

¢ Definition: a standard Brownian motion is a stochastic process W
which satisfies

W(t+ At) —W(t) =eVAL, e+ ~N(0,1), W(0)=0
¢ Not hard to see
W(t) ~N(0,t)
e Continuous time analogue of a discrete time random walk:
Wt+1 :Wt“‘gt: €tNN(O,1)



Standard Brownian Motion

* Note: mean zero, E(W(t)) =0...
e ... but blows up Var(W(t)) =t



Brownian Motion

e Can be generalized
x(t) = x(0) + ut + oW(t)

Since E(W(t)) = 0and Var(W(t)) =t
E[x(t) — x(0)] = wt, Var[x(t) — x(0)] = o°t

This is called a Brownian motion with drift 4 and variance o2

Often useful to write this in differential form
o recall AW(t) := W(t + At) — W(t) = esVAt, g ~ N(0,1)
* use notation dW (t) := g,/ dt, with g, ~ A(0, 1) and write
dx(t) = udt + odW(t)
This is called a stochastic differential equation

Analogue of stochastic difference equation:
Xt41 = U+ Xt + O€y, €tNN(O,1)
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Further Generalizations: Diffusion Processes

Can be generalized further (suppressing dependence of x, W on t)
dx = u(x)dt + o(x)dW

where u and o are any non-linear etc etc functions.
This is called a “diffusion process”
wu(+) is called the drift and o(+) the diffusion.

all results can be extended to the case where they depend on t,
w(x, t), o(x, t) but abstract from this for now.

The amazing thing about diffusion processes: by choosing
functions u and o, you can get pretty much any stochastic process
you want (except jumps)



Example 1: Ornstein-Uhlenbeck Process

¢ Brownian motion dx = udt 4+ odW is not stationary (random
walk). But the following process is

dx =6(x — x)dt + odW

Analogue of AR(1) process, autocorrelation e ® ~ 1 — 6

Xt4+1 = Ox + (1 — G)Xt + o0&t

That is, we just choose
p(x) =0(x — x)

and we get a nice stationary process!

This is called an “Ornstein-Uhlenbeck process”



Ornstein-Uhlenbeck Process

Ornstein - Uhlenbeck

BN dX; = 0(u — X)dt+odW,

e Can show: stationary distribution is A/ <)‘< g%)



Example 2: “Moll Process”

¢ Design a process that stays in the interval [0, 1] and mean-reverts
around 1/2

w(x)=0(1/2—-x), o(x)=o0x(1-x)

e Thatis
dx =0(1/2 —x)dt+ ox(1 — x)dW

* Note: diffusion goes to zero at boundaries ¢(0) = o(1) =0 &
mean-reverts = always stay in [0, 1]



Other Examples

* Geometric Brownian motion:
dx = uxdt + oxdW
x € [0, o), no stationary distribution:
log x(t) ~ N((u — 02/2)t, 0°t).

¢ Feller square root process (finance: “Cox-Ingersoll-Ross”)
dx = 6(x — x)dt + o/xdW
x € [0, c0), stationary distribution is Gamma(vy, 1/8), i.e.
Goo(X) x e PXY7L B =20%/0% 7 =20x/0°

e Other processes in Wong (1964), “The Construction of a Class of
Stationary Markoff Processes”



Stochastic HJB Equations



Stochastic Optimal Control

¢ Generic problem:

V() =  max Eo/ e=tr (x(), 1)) dt
T Sy

subject to the law of motion for the state
dx(t) = f (x(t), a(t)) dt + o(x(t))dW(t)

and a (t) € A, fort > 0, x(0) = xp given
* ¢ could depend on a as well — easy extension
¢ Deterministic problem: special case o(x) =0

* Ingeneral x € RN, a € RM. For now do scalar case.



Stochastic HJB Equation: Scalar Case

e Claim: the HJB equation is
1
pv(x) = max r(x, a) + V' (x)f(x, a) + =v"(x)a?(x)
a€cA 2
* Here: on purpose no derivation (“cookbook”)

¢ |n case you care, see any textbook, e.g. chapter 2 in Stokey (2008)



Just for Completeness: Multivariate Case

e letxeRN acRM
* For fixed x, define the N x N covariance matrix
o?(x) = o(x)o(x)
(this is a function o2 : RN — RN x RN)
* The HJB equation is
N

v(x 2v(x
pv(x) = max r(x, a)+ Z 68; ) fi(x, a) + % Z Z aax,éxj) o5(x)

acA

i=1 i
* In vector notation
1
pov(x) = max r(x, a) + Vev(x) - f(x, a) + Str (Axv(x)o?(x))
ac

* Vv(x): gradient of v (dimension N x 1)
e A v(x): Hessian of v (dimension N x N)



HJB Equation: Endogenous and Exogenous State

* Lots of problems have the form x = (x1, x2)
e x1: endogenous state
* Xo: exogenous state
dx; = f(xl,XQ, a)dt
dxo = i(xx)dt +  G(x)dW
e Special case with

e = [0 ot= [0

¢ Claim: the HJB equation is

pv(x1, x2) :meaA( r(xy, xo, ) + vl(xl,XQ)f(xl,xQ, a)
a

- 1 ~
+vo(x1, x2)fi(x2) + §V22(X1, X2)02(X2)



Example: Real Business Cycle Model

v (ko 20) = max IEO/ e~Ptu(c(t))dt
{c(t)} =0 0

subject to
dk = (zF (k) — 0k — c)dt
dz = j(z)dt +&(z)dW
fort >0, k(0) = ko, z(0) = z given
Here:
*xy=kxx=z,a=c

* r(x,a) = u(a)

o f(x,a) = X2F(X1[)L(X2(;X1 B a} ,0(x) = [5(0 }



Example: Real Business Cycle Model

e HJB equation is

ov(k,z) = max u(c) + vk(k, z)[zF (k) — 0k — ]

+ v (k, 2)u(z) + %vzz(k, 2)0?(2)



Example: Real Business Cycle Model

* Special Case 1: z is a geometric Brownian motion

dz = uzdt + ozdW
ov(k, z) = max u(c) + vi(k, 2)[zF (k) — 6k — c]
+ v (k, 2)pz + %vzz(k, z)o?Z?
See Merton (1975) for an analysis of this case

e Special Case 2: z is a Feller square root process
dz=0(z — z)dt +ovzdW
pv(k,z) =max u(c) + vk(k, z)[zF (k) — ok — ]
C

1
+ vo(k,2)0(z — z) + §vzz(k, z)o’z



Aside: Poisson Uncertainty

e Simplest way of modeling uncertainty in continuos time:
two-state Poisson process

* z; € {z1, z} Poisson with intensities A1, A»
* Result: HJB equation is

pvi(k) = max u(c) + vi(k)(ziF (k) = 6k = c) + Ai(v; (k) — vi(K))

fori=1,2j#i



Special Case: Stochastic AK Model with log Utility

* Preferences: u(c) =logc

Technology: zF (k) = zk (so maybe “zk model”?)

Productivity z follows any diffusion

pv(k,z) =max log ¢ + vx(k,z)(zk — 0k — ¢)
C

+ vo(k, 2)u(z) + %vzz(k, 2)o?(2)

Claim: Optimal consumption is ¢ = pk and hence capital follows
dk =(z—p—0)kdt

dz = p(z)dt + o(z)dW

Solution properties? Simply simulate two SDEs forward in time



Special Case: Stochastic AK Model with log Utility

¢ Proof: Guess and verify
v(k,z) =v(z) + klog k
e FOC:
()= vk 7) & 1=Fa K
= v (k, - = =

e Substitute into HJB equation

plv(z) + klog k] =log k — log k + % [zk — 6k — k/K]

1
+ U (Du(z) + 51/”(2)02(2)

¢ Collect terms involving logk = kK = 1/p = ¢ = pk O

* Remark: log-utility = offsetting income and substitution effects of
future z = constant savings rate p



General Case: Numerical Solution with FD Method

¢ \Want to solve:

ov(k,z) = max u(c) + vi(k, z)[zF (k) — 0k — ]

+ vk, 2)(2) + ez (K 2)3(2)



General Case: Numerical Solution with FD Method

It doesn’t matter whether you solve ODEs or PDEs
= everything generalizes

http://www.princeton.edu/~moll/HACTproject/HJB_diffusion_implicit_RBC.m


http://www.princeton.edu/~moll/HACTproject/HJB_diffusion_implicit_RBC.m

General Case: Numerical Solution with FD Method

* Solve on bounded grids k;, i =1,...,land z;,j =1, ..., J

* Use short-hand notation v; ; = v(k;, z;). Approximate

Vi1, — Vi Vij — Vi-1,
vi(ki, zj) =~ Ak or Ak
Vij+1 — Vij Vij — Vij—1

Vij+1 = 2Vij + Vij-1

Vo2 (ki, zj) = (A2)

¢ Discretized HJB
pvij =u(cij) + vi(ki, 2))(zF (ki) = 0ki — ¢ij)
1
+ Vz(ki, Z_])IJ’(ZJ) + Esz(kIr 21)02(21)
cij =(u)Mv(ki, z))]



Numerical Solution: Boundary Conditions?

¢ Upwind method in k-dimension = no boundary conditions needed

¢ Do need boundary conditions in z-dimension

vo(k,z1) =0 allk = vig=vj1
Vz(k, Z_/) =0 alk = Vi J+1 = Vi J

* These correspond to “reflecting barriers” at lower and upper
bounds for productivity, z; and z; (Dixit, 1993)



General Case: Numerical Solution with FD Method

* Stack value function v; j into vector v of length / x J
¢ | usually stack it as “endogenous state variable first”
v= (V11 Vo1, VI VI, Vi V13, V)
¢ here: doesn’t really matter
* End up with system of / x J non-linear equations
pv = u(v) + A(v)v
e Solve exactly as before

e upwind scheme

* implicit method preferred to explicit method



Visualization of A (output of spy (A) in Matlab)
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lto’s Lemma



lto’s Lemma

e | et x be a scalar diffusion
dx = u(x)dt + o(x)dW

* We are interested in the evolution of y(t) = f(x(t)) where f is any
twice differentiable function

e Lemma: y(t) = f(x(t)) follows
1
df (x) = <p,(x)f’(x) + 2or2(x)7"’”(x)> dt + o(x)f'(x)dW
e Extremely powerful because it says that any (twice differentiable)
function of a diffusion is also a diffusion
¢ Can also be extended to vectors

* FYI: this is also where the v/(x)u(x) 4+ 2v"(x)a?(x) term in the

. oo Eld
HJB equation comes from (it's ZL2v)



Application: Brownian vs. Geometric Brownian Motion

Let x be a geometric Brownian maotion
dx = uxdt + oxdW

 Claim: y = log x is a Brownian motion with drift u — 02/2 and
variance o?

Derivation: f(x) = logx, f/(x) = 1/x, f"(x) = —1/x°.
By Ito’s Lemma

dy = df (x < (1/x) + a X (—1/x2)) dt + ox(1/x)dW
= (u—0?/2) dt + odW

* Note: naive derivation would have used dy = dx/x and hence

dy = udt + odW wrong unless o = 0!



Just for Completeness: Multivariate Case

Let x € RN, For fixed x, define the N x N covariance matrix

0%(x) = a(x)o (x)

e [t0’s Lemma:
N N N
B L\0f(x) 1 5, (0%f(x)
df (x) = (wa) B t32.2.950) el
i=1 =1 j=1
N af (x)
+ ; oi(x) Bx; dw;

¢ |n vector notation
1

df (x) = <fo(x) cu(x) + Str (Axf(x)az(x))> dt + Vif(x)-o(x)dW

V«f(x): gradient of f (dimension m x 1)

A f(x): Hessian of f (dimension m x m)



Kolmogorov Forward Equations



Kolmogorov Forward Equations

Let x be a scalar diffusion

dx = u(x)dt +o(x)dW, x(0) = xo
* Suppose we're interested in the evolution of the distribution of x,
g(x, t), and in particular in the stationary distribution g(x)

¢ Natural thing to care about especially in heterogenous agent
models
e Example 1: x = wealth

* u(x) determined by savings behavior and return to
investments

* o(x) by return risk
* microfound later

e Example 2: x = city size, will cover later



Kolmogorov Forward Equations

Fact: Given an initial distribution g(x, 0) = go(x), g(x, t) satisfies
the PDE

« 2
2900 _ 0 gt ] + £ 21000, )

This PDE is called the “Kolmogorov Forward Equation”

* Note: in math this often called “Fokker-Planck Equation”

Corollary: if a stationary distribution g(x) exists, it satisfies the ODE

o:-—mum(n+f [ﬁumun

Remark: as usual, stationary dlstrlbutlon defined as “if you start
there, you stay there”

e g(x) st ifg(x, t) = g(x), then g(x,7) = g(x) forall T > t



Just for Completeness: Multivariate Case

e Lletx e RN
¢ As before, define the N x N covariance matrix
2 _ /
o°(x) = o(x)o(x)
¢ The Kolmogorov Forward Equation is

N N N 2
6 ;66 [ui(x)g(x, t)]—i—%zz%[a,‘zj(x)g(xv t)]

i=1 j=1




Application: Stationary Distribution of RBC Model

¢ Recall RBC Model
pv(k,z) =max u(c) + vk(k, z)[zF (k) — 0k — ]
C

+ v (k, 2)u(z) + %vzz(k, 2)0?(2)

¢ Denote the optimal policy function by
s(k,z) = zF(k) — 0k — c(k, z)

* Then the distribution g(k, z, t) solves
Og(k,z, t)

0
S = = sels(k 2)a(k. 2,6

2
— )9k 2,01+ 5 2 10%(2) (k. 2. )

e Numerical solution with FD method: later



