
Lecture 3:
Hamilton-Jacobi-Bellman Equations

ECO 521: Advanced Macroeconomics I

Benjamin Moll

Princeton University, Fall 2016

September 22, 2016
1



Outline

1. Hamilton-Jacobi-Bellman equations in deterministic settings (with
derivation)

2. Numerical solution: finite difference method

2



Hamilton-Jacobi-Bellman Equation: Some “History”

(a) William Hamilton (b) Carl Jacobi (c) Richard Bellman
• Aside: why called “dynamic programming”?
• Bellman: “Try thinking of some combination that will possibly give it

a pejorative meaning. It’s impossible. Thus, I thought dynamic
programming was a good name. It was something not even a
Congressman could object to. So I used it as an umbrella for my
activities.” http://en.wikipedia.org/wiki/Dynamic_programming#History 3

http://en.wikipedia.org/wiki/Dynamic_programming#History


Hamilton-Jacobi-Bellman Equations

• Recall the generic deterministic optimal control problem from
Lecture 1:

v (x0) = max
{α(t)}t≥0

∫ ∞
0

e−ρtr (x (t) , α (t)) dt

subject to the law of motion for the state

ẋ (t) = f (x (t) , α (t)) and α (t) ∈ A

for t ≥ 0, x(0) = x0 given.
• ρ ≥ 0: discount rate
• x ∈ X ⊆ RN : state vector
• α ∈ A ⊆ RM : control vector
• r : X × A→ R: instantaneous return function

4



Example: Neoclassical Growth Model

v (k0) = max
{c(t)}t≥0

∫ ∞
0

e−ρtu(c(t))dt

subject to
k̇ (t) = F (k(t))− δk(t)− c(t)

for t ≥ 0, k(0) = k0 given.

• Here the state is x = k and the control α = c

• r(x, α) = u(α)

• f (x, α) = F (x)− δx − α

5



Generic HJB Equation

• How to analyze these optimal control problems? Here: “cookbook
approach”

• Result: the value function of the generic optimal control problem
satisfies the Hamilton-Jacobi-Bellman equation

ρv(x) = max
α∈A

r(x, α) + v ′(x) · f (x, α)

• In the case with more than one state variable N > 1, v ′(x) ∈ RN is
the gradient of the value function.

6



Example: Neoclassical Growth Model

• “cookbook” implies:

ρv(k) = max
c
u(c) + v ′(k)(F (k)− δk − c)

• Proceed by taking first-order conditions etc

u′(c) = v ′(k)

7



Derivation from Discrete-time Bellman

• Here: derivation for neoclassical growth model

• Extra class notes: generic derivation

• Time periods of length ∆

• discount factor
β(∆) = e−ρ∆

• Note that lim∆→0 β(∆) = 1 and lim∆→∞ β(∆) = 0

• Discrete-time Bellman equation:

v(kt) = max
ct
∆u(ct) + e

−ρ∆v(kt+∆) s.t.

kt+∆ = ∆(F (kt)− δkt − ct) + kt

8



Derivation from Discrete-time Bellman

• For small ∆ (will take ∆→ 0), e−ρ∆ = 1− ρ∆
v(kt) = max

ct
∆u(ct) + (1− ρ∆)v(kt+∆)

• Subtract (1− ρ∆)v(kt) from both sides
ρ∆v(kt) = max

ct
∆u(ct) + (1− ∆ρ)(v(kt+∆)− v(kt))

• Divide by ∆ and manipulate last term

ρv(kt) = max
ct
u(ct) + (1− ∆ρ)

v(kt+∆)− v(kt)
kt+∆ − kt

kt+∆ − kt
∆

• Take ∆→ 0
ρv(kt) = max

ct
u(ct) + v

′(kt)k̇t

9



Connection Between HJB Equation and Hamiltonian

• Hamiltonian
H(x, α, λ) = r(x, α) + λf (x, α)

• HJB equation
ρv(x) = max

α∈A
r(x, α) + v ′(x)f (x, α)

• Connection: λ(t) = v ′(x(t)), i.e. co-state = shadow value

• Bellman can be written as ρv(x) = maxα∈A H(x, α, v ′(x)) ...
• ... hence the “Hamilton” in Hamilton-Jacobi-Bellman
• Can show: playing around with FOC and envelope condition gives

conditions for optimum from Lecture 1
• Mathematicians’ notation: in terms of maximized Hamiltonian H

ρv(x) = H(x, v ′(x))

H(x, p) := max
α∈A

r(x, α) + pf (x, α)

10



Some general, somewhat philosophical thoughts

• MAT 101 way (“first-order ODE needs one boundary condition”) is
not the right way to think about HJB equations

• these equations have very special structure which one should
exploit when analyzing and solving them

• Particularly true for computations

• Important: all results/algorithms apply to problems with more than
one state variable, i.e. it doesn’t matter whether you solve ODEs or
PDEs

11



Existence and Uniqueness of Solutions to (HJB)
Recall Hamilton-Jacobi-Bellman equation:

ρv(x) = max
α∈A

{
r(x, α) + v ′(x) · f (x, α)

}
(HJB)

Two key results, analogous to discrete time:
• Theorem 1 (HJB) has a unique “nice” solution
• Theorem 2 “nice” solution equals value function, i.e. solution to

“sequence problem”
• Here: “nice” solution = “viscosity solution”
• See supplement “Viscosity Solutions for Dummies”

http://www.princeton.edu/~moll/viscosity_slides.pdf

• Theorems 1 and 2 hold for both ODE and PDE cases, i.e. also with
multiple state variables...

• ... also hold if value function has kinks (e.g. from non-convexities)
• Remark re Thm 1: in typical application, only very weak boundary

conditions needed for uniqueness (≤’s, boundedness assumption) 12

http://www.princeton.edu/~moll/viscosity_slides.pdf


Numerical Solution of HJB Equations

13



Finite Difference Methods

• See http://www.princeton.edu/~moll/HACTproject.htm

• Explain using neoclassical growth model, easily generalized to
other applications

ρv(k) = max
c
u(c) + v ′(k)(F (k)− δk − c)

• Functional forms

u(c) =
c1−σ

1− σ , F (k) = k
α

• Use finite difference method
• Two MATLAB codes

http://www.princeton.edu/~moll/HACTproject/HJB_NGM.m

http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m

14

http://www.princeton.edu/~moll/HACTproject.htm
http://www.princeton.edu/~moll/HACTproject/HJB_NGM.m
http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m


Barles-Souganidis

• There is a well-developed theory for numerical solution of HJB
equation using finite difference methods

• Key paper: Barles and Souganidis (1991), “Convergence of
approximation schemes for fully nonlinear second order equations
https://www.dropbox.com/s/vhw5qqrczw3dvw3/barles-souganidis.pdf?dl=0

• Result: finite difference scheme “converges” to unique viscosity
solution under three conditions

1. monotonicity
2. consistency
3. stability

• Good reference: Tourin (2013), “An Introduction to Finite Difference
Methods for PDEs in Finance.”

15

https://www.dropbox.com/s/vhw5qqrczw3dvw3/barles-souganidis.pdf?dl=0


Finite Difference Approximations to v ′(ki)

• Approximate v(k) at I discrete points in the state space,
ki , i = 1, ..., I. Denote distance between grid points by ∆k .

• Shorthand notation
vi = v(ki)

• Need to approximate v ′(ki).
• Three different possibilities:

v ′(ki) ≈
vi − vi−1
∆k

= v ′i ,B backward difference

v ′(ki) ≈
vi+1 − vi
∆k

= v ′i ,F forward difference

v ′(ki) ≈
vi+1 − vi−1
2∆k

= v ′i ,C central difference

16



Finite Difference Approximations to v ′(ki)

!

"# $ # #%$

!# !#%$

!# $

Central

Backward

Forward

17



Finite Difference Approximation

FD approximation to HJB is

ρvi = u(ci) + v
′
i [F (ki)− δki − ci ] (∗)

where ci = (u′)−1(v ′i ), and v ′i is one of backward, forward, central FD
approximations.
Two complications:

1. which FD approximation to use? “Upwind scheme”
2. (∗) is extremely non-linear, need to solve iteratively:

“explicit” vs. “implicit method”

My strategy for next few slides:
• what works
• at end of lecture: why it works (Barles-Souganidis)

18



Which FD Approximation?
• Which of these you use is extremely important
• Best solution: use so-called “upwind scheme.” Rough idea:

• forward difference whenever drift of state variable positive
• backward difference whenever drift of state variable negative

• In our example: define
si ,F = F (ki)− δki − (u′)−1(v ′i ,F ), si ,B = F (ki)− δki − (u′)−1(v ′i ,B)

• Approximate derivative as follows
v ′i = v

′
i ,F1{si ,F>0} + v

′
i ,B1{si ,B<0} + v̄

′
i 1{si ,F<0<si ,B}

where 1{·} is indicator function, and v̄ ′i = u′(F (ki)− δki).
• Where does v̄ ′i term come from? Answer:

• since v is concave, v ′i ,F < v ′i ,B (see figure)⇒ si ,F < si ,B
• if s ′i ,F < 0 < s ′i ,B, set si = 0⇒ v ′(ki) = u′(F (ki)− δki), i.e.

we’re at a steady state.
19



Sparsity

• Discretized HJB equation is

ρvi = u(ci) +
vi+1 − vi
∆k

s+i ,F +
vi − vi−1
∆k

s−i ,B

• Notation: for any x , x+ = max{x, 0} and x− = min{x, 0}

• Can write this in matrix notation

ρv = u+ Av

where A is I × I (I= no of grid points) and looks like...

20



Visualization of A (output of spy(A) in Matlab)

nz = 136
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

21

spy(A)


The matrix A

• FD method approximates process for k with discrete Poisson
process, A summarizes Poisson intensities

• entries in row i :

 −s−i ,B∆k︸ ︷︷ ︸
inflowi−1≥0

s−i ,B
∆k
−
s+i ,F
∆k︸ ︷︷ ︸

outflowi≤0

s+i ,F
∆k︸︷︷︸

inflowi+1≥0



vi−1

vi

vi+1


• negative diagonals, positive off-diagonals, rows sum to zero:
• tridiagonal matrix, very sparse

• A (and u) depend on v (nonlinear problem)
ρv = u(v) + A(v)v

• Next: iterative method...
22



Iterative Method

• Idea: Solve FOC for given vn, update vn+1 according to
vn+1i − vni
∆

+ ρvni = u(c
n
i ) + (v

n)′(ki)(F (ki)− δki − cni ) (∗)

• Algorithm: Guess v0i , i = 1, ..., I and for n = 0, 1, 2, ... follow
1. Compute (vn)′(ki) using FD approx. on previous slide.
2. Compute cn from cni = (u′)−1[(vn)′(ki)]
3. Find vn+1 from (∗).
4. If vn+1 is close enough to vn: stop. Otherwise, go to step 1.

• See http://www.princeton.edu/~moll/HACTproject/HJB_NGM.m

• Important parameter: ∆ = step size, cannot be too large (“CFL
condition”).

• Pretty inefficient: I need 5,990 iterations (though quite fast)
23

http://www.princeton.edu/~moll/HACTproject/HJB_NGM.m


Efficiency: Implicit Method

• Efficiency can be improved by using an “implicit method”
vn+1i − vni
∆

+ ρvn+1i = u(cni ) + (v
n+1
i )′(ki)[F (ki)− δki − cni ]

• Each step n involves solving a linear system of the form
1

∆
(vn+1 − vn) + ρvn+1 = u+ Anvn+1(
(ρ+ 1

∆)I− An
)
vn+1 = u+ 1

∆v
n

• but An is super sparse⇒ super fast
• See http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m

• In general: implicit method preferable over explicit method
1. stable regardless of step size ∆
2. need much fewer iterations
3. can handle many more grid points 24

http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m


Implicit Method: Practical Consideration

• In Matlab, need to explicitly construct A as sparse to take
advantage of speed gains

• Code has part that looks as follows
X = -min(mub,0)/dk;
Y = -max(muf,0)/dk + min(mub,0)/dk;
Z = max(muf,0)/dk;

• Constructing full matrix – slow
for i=2:I-1

A(i,i-1) = X(i);
A(i,i) = Y(i);
A(i,i+1) = Z(i);

end
A(1,1)=Y(1); A(1,2) = Z(1);
A(I,I)=Y(I); A(I,I-1) = X(I);

• Constructing sparse matrix – fast
A =spdiags(Y,0,I,I)+spdiags(X(2:I),-1,I,I)+spdiags([0;Z(1:I-1)],1,I,I);

25



Non-Convexities

26



Non-Convexities
• Consider growth model

ρv(k) = max
c
u(c) + v ′(k)(F (k)− δk − c).

• But drop assumption that F is strictly concave. Instead: “butterfly”
F (k) = max{FL(k), FH(k)},
FL(k) = ALk

α,

FH(k) = AH((k − κ)+)α, κ > 0, AH > AL

k
0 1 2 3 4 5 6

f
(k
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure: Convex-Concave Production

27



Standard Methods

• Discrete time: first-order conditions
u′(F (k)− δk − k ′) = βv ′(k ′)

no longer sufficient, typically multiple solutions
• some applications: sidestep with lotteries (Prescott-Townsend)

• Continuous time: Skiba (1978)

28



Instead: Using Finite-Difference Scheme

Nothing changes, use same exact algorithm as for growth model with
concave production function
http://www.princeton.edu/~moll/HACTproject/HJB_NGM_skiba.m

k

1 2 3 4 5

s
(k
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(a) Saving Policy Function

k

1 2 3 4 5

v
(k
)

-90

-80

-70

-60

-50

-40

-30

(b) Value Function

29

http://www.princeton.edu/~moll/HACTproject/HJB_NGM_skiba.m


Visualization of A (output of spy(A) in Matlab)

nz = 154
0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

30

spy(A)


Appendix

31



Why this works? Barles-Souganidis

• Here: version with one state variable, but generalizes

• Can write any HJB equation with one state variable as
0 = G(k, v(k), v ′(k), v ′′(k)) (G)

• Corresponding FD scheme
0 = S (∆k, ki , vi ; vi−1, vi+1) (S)

• Growth model

G(k, v(k), v ′(k), v ′′(k)) = ρv(k)−max
c
u(c) + v ′(k)(F (k)− δk − c)

S (∆k, ki , vi ; vi−1, vi+1) = ρvi − u(ci)−
vi+1 − vi
∆k

(F (ki)− δki − ci)+

−
vi − vi−1
∆k

(F (ki)− δki − ci)−

32



Why this works? Barles-Souganidis

1. Monotonicity: the numerical scheme is monotone, that is S is
non-increasing in both vi−1 and vi+1

2. Consistency: the numerical scheme is consistent, that is for every
smooth function v with bounded derivatives

S (∆k, ki , v(ki); v(ki−1), v(ki+1))→ G(v(k), v ′(k), v ′′(k))

as ∆k → 0 and ki → k .

3. Stability: the numerical scheme is stable, that is for every ∆k > 0, it
has a solution vi , i = 1, .., I which is uniformly bounded
independently of ∆k .

33



Why this works? Barles-Souganidis

Theorem (Barles-Souganidis)
If the scheme satisfies the monotonicity, consistency and stability
conditions 1 to 3, then as ∆k → 0 its solution vi , i = 1, ..., I converges
locally uniformly to the unique viscosity solution of (G)

• Note: “convergence” here has nothing to do with iterative
algorithm converging to fixed point

• Instead: convergence of vi as ∆k → 0. More momentarily.

34



Intuition for Monotonicity

• Write (S) as
ρvi = S̃(∆k, ki , vi ; vi−1, vi+1)

• For example, in growth model

S̃(∆k, ki , vi ; vi−1, vi+1) = u(ci) +
vi+1 − vi
∆k

(F (ki)− δki − ci)+

+
vi − vi−1
∆k

(F (ki)− δki − ci)−

• Monotonicity: S̃ ↑ in vi−1, vi+1 (⇔ S ↓ in vi−1, vi+1)

• Intuition: if my continuation value at i − 1 or i + 1 is larger, I must
be at least as well off (i.e. vi on LHS must be at least as high)

35



Checking the Monotonicity Condition in Growth Model

• Recall upwind scheme:

S (∆k, ki , vi ; vi−1, vi+1) = ρvi − u(ci)−
vi+1 − vi
∆k

(F (ki)− δki − ci)+

−
vi − vi−1
∆k

(F (ki)− δki − ci)−

• Can check: satisfies monotonicity: S is indeed non-increasing in
both vi−1 and vi+1

• ci depends on vi ’s but doesn’t affect monotonicity due to envelope
condition

36



Meaning of “Convergence”

Convergence is about ∆k → 0. What, then, is content of theorem?
• have a system of I non-linear equations S (∆k, k, vi ; vi−1, vi+1) = 0
• need to solve it somehow
• Theorem guarantees that solution (for given ∆k ) converges to

solution of the HJB equation (G) as ∆k .
Why does iterative scheme work? Two interpretations:

1. Newton method for solving system of non-linear equations (S)
2. Iterative scheme⇔ solve (HJB) backward in time

vn+1i − vni
∆

+ ρvni = u(c
n
i ) + (v

n)′(ki)(F (ki)− δki − cni )

in effect sets v(k, T ) = initial guess and solves
ρv(k, t) = max

c
u(c) + ∂kv(k, t)(F (k)− δk − c) + ∂tv(k, t)

backwards in time. v(k) = limt→−∞ v(k, t).
37



Relation to Kushner-Dupuis “Markov-Chain Approx”

• There’s another common method for solving HJB equation:
“Markov Chain Approximation Method”

• Kushner and Dupuis (2001) “Numerical Methods for
Stochastic Control Problems in Continuous Time”

• effectively: convert to discrete time, use value fn iteration
• FD method not so different: also converts things to “Markov Chain”

ρv = u + Av

• Connection between FD and MCAC
• see Bonnans and Zidani (2003), “Consistency of Generalized

Finite Difference Schemes for the Stochastic HJB Equation”
• also shows how to exploit insights from MCAC to find FD

scheme satisfying Barles-Souganidis conditions
• Another source of useful notes/codes: Frédéric Bonnans’ website

http://www.cmap.polytechnique.fr/~bonnans/notes/edpfin/edpfin.html
38

http://www.cmap.polytechnique.fr/~bonnans/notes/edpfin/edpfin.html

