Lecture 3:

Hamilton-Jacobi-Bellman Equations

ECO 521: Advanced Macroeconomics |

Benjamin Moll

Princeton University, Fall 2016

Outline

1. Hamilton-Jacobi-Bellman equations in deterministic settings (with
derivation)

2. Numerical solution: finite difference method

Hamilton-Jacobi-Bellman Equation: Some “History’

(a) William Hamilton (b) Carl Jacobi (c) Richard Bellman

* Aside: why called “dynamic programming”?

e Bellman: “Try thinking of some combination that will possibly give it
a pejorative meaning. It's impossible. Thus, | thought dynamic
programming was a good name. It was something not even a
Congressman could object to. So | used it as an umbrella for my

Py ”
aCt/V’t/eS http://en.wikipedia.org/wiki/Dynamic_programming#History

w

http://en.wikipedia.org/wiki/Dynamic_programming#History

Hamilton-Jacobi-Bellman Equations

Recall the generic deterministic optimal control problem from
Lecture 1:

V() = max / e~tr (x (1), a (b)) dt
{a(t)}t>0 Jo

subject to the law of motion for the state
x(t)=fFf(x(t),a(t)) and a(t)c A

fort > 0, x(0) = xp given.

o > 0: discount rate

x € X C RN: state vector

a € A C RM: control vector

r: X x A— R: instantaneous return function

Example: Neoclassical Growth Model

v (ko) = max / e~Ptu(c(t))dt
{c(D)}=0 Jo

subject to
k(t) = F(k(t)) — 0k(t) — c(t)

fort >0, k(0) = ko given.
¢ Here the state is x = k and the control a = ¢
* r(x,a) = u(a)

* f(x,a) = F(x) —0x —

Generic HJB Equation

* How to analyze these optimal control problems? Here: “cooklbook
approach”

* Result: the value function of the generic optimal control problem
satisfies the Hamilton-Jacobi-Bellman equation

pv(x) = max r(x,a) +Vv/'(x) - f(x, o)

* In the case with more than one state variable N > 1, v/(x) € RV is
the gradient of the value function.

Example: Neoclassical Growth Model

e “cookbook” implies:
pv(k) = max u(c) + V' (k)(F(k) — 8k — ¢c)
* Proceed by taking first-order conditions etc

u'(c) = v'(k)

Derivation from Discrete-time Bellman

* Here: derivation for neoclassical growth model

Extra class notes: generic derivation

* Time periods of length A

discount factor
B(A) =e P

Note that lima_,0 B(A) = 1 and lima 0. B(A) =0

Discrete-time Bellman equation:

V(kt) = MaX AU(Ct) + e_pAV(ktJrA) s.t.
Ct

kivn = A(F(ke) — 0ke — ct) + ke

Derivation from Discrete-time Bellman

For small A (will take A — 0), e™P2 =1 — pA
v(ke) = max Au(ct) + (1 = pA)v(ken)

Subtract (1 — pA)v(k:) from both sides
pAv(ke) = max Au(ce) + (1 — Ap)(v(kesa) — vike))

Divide by A and manipulate last term
V(kera) — v(ke) kevra — ke

pv(ke) = max u(ce) + (1= Ap) Kein — ki A

Take A — 0
ov(k) = max u(er) + v/ (ke)ke
t

Connection Between HJB Equation and Hamiltonian

e Hamiltonian
H(x, o, \) = r(x, a) + M(x, o)
¢ HJB equation

pv(x) = max r(x, a) + v (x)f(x, a)
acA
e Connection: A(t) = v/(x(t)), i.e. co-state = shadow value

e Bellman can be written as pv(x) = maxqea H(x, a, v/(x)) ...
e ... hence the “Hamilton” in Hamilton-Jacobi-Bellman

¢ Can show: playing around with FOC and envelope condition gives
conditions for optimum from Lecture 1

¢ Mathematicians’ notation: in terms of maximized Hamiltonian H

pv(x) = H(x, V'(x))
H(x, p) := max r(x, o) + pf(x, o)

Some general, somewhat philosophical thoughts

e MAT 101 way (“first-order ODE needs one boundary condition”) is
not the right way to think about HJB equations

¢ these equations have very special structure which one should
exploit when analyzing and solving them

e Particularly true for computations

¢ Important: all results/algorithms apply to problems with more than
one state variable, i.e. it doesn’t matter whether you solve ODEs or
PDEs

Existence and Uniqueness of Solutions to (HJB)

Recall Hamilton-Jacobi-Bellman equation:

pv(x) = max {r(x,a) +V'(x) - f(x,a)} (HJB)

Two key results, analogous to discrete time:

Theorem 1 (HJB) has a unique “nice” solution

Theorem 2 “nice” solution equals value function, i.e. solution to
“sequence problem”

Here: “nice” solution = “viscosity solution”

See supplement “Viscosity Solutions for Dummies”
http://www.princeton.edu/~moll/viscosity_slides.pdf

Theorems 1 and 2 hold for both ODE and PDE cases, i.e. also with
multiple state variables...

... also hold if value function has kinks (e.g. from non-convexities)

Remark re Thm 1: in typical application, only very weak boundary
conditions needed for uniqueness (<’s, boundedness assumption)

http://www.princeton.edu/~moll/viscosity_slides.pdf

Numerical Solution of HJB Equations

Finite Difference Methods

See http://www.princeton.edu/~moll/HACTproject.htm

Explain using neoclassical growth model, easily generalized to
other applications

pv(k) = max u(c) + v'(k)(F(k) — 6k — ¢)

Functional forms
1—0
u(c) =
Use finite difference method

* Two MATLAB codes

http://www.princeton.edu/~moll/HACTproject/HIJB_NGM.m

_ o
o Fk =k

http://www.princeton.edu/~moll/HACTproject/HIJB_NGM_implicit.m

http://www.princeton.edu/~moll/HACTproject.htm
http://www.princeton.edu/~moll/HACTproject/HJB_NGM.m
http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m

Barles-Souganidis

¢ There is a well-developed theory for numerical solution of HJB
equation using finite difference methods

e Key paper: Barles and Souganidis (1991), “Convergence of
approximation schemes for fully nonlinear second order equations
https://www.dropbox.com/s/vhwbqqrczw3dvw3/barles-souganidis.pdf?d1=0

* Result: finite difference scheme “converges” to unique viscosity
solution under three conditions

1. monotonicity
2. consistency
3. stability

¢ Good reference: Tourin (2013), “An Introduction to Finite Difference
Methods for PDEs in Finance.”

https://www.dropbox.com/s/vhw5qqrczw3dvw3/barles-souganidis.pdf?dl=0

Finite Difference Approximations to v/(k;)

* Approximate v(k) at / discrete points in the state space,
ki, =1, ..., 1. Denote distance between grid points by Ak.

Shorthand notation

vi = v(ki)
* Need to approximate v/(k;).
¢ Three different possibilities:
/ Vi — Vi—1 / .
Vi(ki) & “ax " ViB backward difference
v (ki) ~ % =V forward difference

Vitl1 — Vi-1 .
v (ki) ~ ’Jrsz’ =v/c central difference

Finite Difference Approximations to v/(k;)

Forward

Backward

Finite Difference Approximation

FD approximation to HJB is
pvi = u(ci) + V/[F (ki) — 0k — ci] ()
where ¢; = (¢/)"1(v/), and v/ is one of backward, forward, central FD
approximations.
Two complications:
1. which FD approximation to use? “Upwind scheme”
2. (x) is extremely non-linear, need to solve iteratively:
“explicit” vs. “implicit method”
My strategy for next few slides:
¢ what works
e at end of lecture: why it works (Barles-Souganidis)

Which FD Approximation?

* Which of these you use is extremely important

Best solution: use so-called “upwind scheme.” Rough idea:
 forward difference whenever drift of state variable positive
¢ backward difference whenever drift of state variable negative

* |In our example: define
siF=F(k)=0ki— () (v g), sig=F(k)—0ki—(u")"'(v/p)
e Approximate derivative as follows
Vi = Vi lig 501 T Vi glis s<0y + Vil{s r<0<s; 5}
where 1y, is indicator function, and v = u'(F(k;) — dk:).

Where does v/ term come from? Answer:
* since v is concave, v/ < v/ 5 (see figure) = s F < s B
s ifslp <0<s/g sets;=0= (k)= (F(k)— k) ie.
we’re at a steady state.

Sparsity

¢ Discretized HJB equation is

Vit1 — Vi st 4 Vi — Vi1 o
Ak I F Ak I,B

pvi = u(c;) +
 Notation: for any x, x™ = max{x, 0} and x~ = min{x, 0}
¢ Can write this in matrix notation
ov=u-+ Av

where A is | x | (/= no of grid points) and looks like...

Visualization of A (output of spy (A) in Matlab)

o

10 + 3

20 3,

30+

40
50 2

r %

S

!

60 |

70k

L L L L L L
0 10 20 30 40 50 60
nz =136

spy(A)

The matrix A

* D method approximates process for k with discrete Poisson
process, A summarizes Poisson intensities

e entries in row /:

N N Vi—1
_%B %iB _ SiF Si,F
Ak Ak Ak Ak %
N—— —— ~—~—
inflow;_1>0 outflow,; <0 inflow;41 >0,
Vit

* negative diagonals, positive off-diagonals, rows sum to zero:
* tridiagonal matrix, very sparse
¢ A (and u) depend on v (nonlinear problem)
pv =u(v) + A(v)v
* Next: iterative method...

lterative Method

Idea: Solve FOC for given v”, update v"*1 according to

VfH—l _yn

S = u(el) + (Y (R)(F () ~ Bk —)

Algorithm: Guess v?,i=1,...,/ and for n =0, 1,2, ... follow

1. Compute (v")'(k;) using FD approx. on previous slide.

2. Compute ¢" from ¢ = (¢/)[(v")'(k;)]

3. Find v™*! from (x).

4. If vt is close enough to v": stop. Otherwise, go to step 1.

e See http://www.princeton.edu/~moll/HACTproject/HIJB_NGM.m

Important parameter: A = step size, cannot be too large (“CFL
condition”).

Pretty inefficient: | need 5,990 iterations (though quite fast)

http://www.princeton.edu/~moll/HACTproject/HJB_NGM.m

Efficiency: Implicit Method

Efficiency can be improved by using an “implicit method”

vl _yn
'T' + vt = u(!) + (v (K)IF (ki) — 0k — ¢
e Each step n involves solving a linear system of the form

1
Z(vn+1 o vn) + pvn+1 —u+ Anvn+1

+ ANV =u+ Ly
((p+ 3 A
but A, is super sparse = super fast

* See http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m

In general: implicit method preferable over explicit method
1. stable regardless of step size A
2. need much fewer iterations
3. can handle many more grid points

http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m

Implicit Method: Practical Consideration

In Matlab, need to explicitly construct A as sparse to take
advantage of speed gains

Code has part that looks as follows

X = -min(mub,0)/dk;
Y = -max(muf,0)/dk + min(mub,0)/dk;
Z = max(muf,0)/dk;

Constructing full matrix — slow
for i=2:I-1
ACi,i-1) = X(1);
AGi,1) = Y(i);
ACi,i+1) = Z(i);
end
A(1,1)=Y(1); A(1,2) = Z(1);
ACI,I)=Y(I); A(I,I-1) = X(I);

e Constructing sparse matrix — fast
A =spdiags(Y,0,I,I)+spdiags(X(2:I),-1,I,I)+spdiags([0;Z2(1:I-1)]1,1,I,1I);

Non-Convexities

Non-Convexities

e Consider growth model
pv(k) = max u(c) + V'(k)(F(k) — 6k — c).
C
e But drop assumption that F is strictly concave. Instead: “butterfly”

F(k) = max{F.(k), Fn(k)},
Fr(k) = ALk®,

FH(k) = AH((/(— K,)Jr)a, k>0, Ay > AL

09
08
07
06
05 ’,f",
- .
> ,
- '
'
'

Standard Methods

* Discrete time: first-order conditions
U (F(k) — 6k — K') =pBV'(K")
no longer sufficient, typically multiple solutions
e some applications: sidestep with lotteries (Prescott-Townsend)
e Continuous time: Skiba (1978)

p=0

Instead: Using Finite-Difference Scheme

Nothing changes, use same exact algorithm as for growth model with
concave production function
http://www.princeton.edu/~moll/HACTproject/HIJB_NGM_skiba.m

-30

-40
50

=60

s(k)

-70

-80

-90

(a) Saving Policy Function (b) Value Function

http://www.princeton.edu/~moll/HACTproject/HJB_NGM_skiba.m

Visualization of A (output of spy (A) in Matlab)

ThN

o

30
40
50
60 | 4
80 k. N N N N N N N

nz =154

spy(A)

Appendix

Why this works? Barles-Souganidis

* Here: version with one state variable, but generalizes

Can write any HJB equation with one state variable as

0= G(k,v(k),V'(k),V'(k)) (©)
e Corresponding FD scheme
0= S (Ak, ki, vi; vi—1, Vit1) S)

Growth model
G(k,v(k),V'(k),V"(k)) = pv(k) — max u(c) + v'(k)(F(k) — 6k — ¢)

Vi —V
S (Ak, ki, vi; vie1, Vigr) = pvi — u(ci) — %(F(/ﬂ') — ki — i)t
V/ 1

- (F(ki) = oki — ¢;)~

Why this works? Barles-Souganidis

1. Monotonicity: the numerical scheme is monotone, that is S is
non-increasing in both v;_; and vj11

2. Consistency: the numerical scheme is consistent, that is for every
smooth function v with bounded derivatives

S (Ak, ki, v(ki); v(ki-1), v(kiy1)) = G(v(k), V/(k), v"(k))
as Ak — 0and k; — k.

3. Stability: the numerical scheme is stable, that is for every Ak > 0, it
has a solution v;, i = 1, .., | which is uniformly bounded
independently of Ak.

Why this works? Barles-Souganidis

Theorem (Barles-Souganidis)

If the scheme satisfies the monotonicity, consistency and stability
conditions 1 to 3, then as Ak — 0 its solution v;,i =1, ..., | converges
locally uniformly to the unique viscosity solution of (G)

¢ Note: “convergence” here has nothing to do with iterative
algorithm converging to fixed point

* Instead: convergence of v; as Ak — 0. More momentarily.

Intuition for Monotonicity

¢ Write (S) as ~
pvi = S(Ak, ki, vj; Vi—1, Vit1)

¢ For example, in growth model

S(8k, ki, Vi Vi1, Via) = u(6) + o (F(k) = 0k —)"

Vi— Vi _
Sy v =(F (ki) — 0ki — ;)

 Monotonicity: S 1in vj_1, Vis1 (& S Lin vi_1, vig1)

Intuition: if my continuation value at / — 1 or j + 1 is larger, | must
be at least as well off (i.e. v; on LHS must be at least as high)

Checking the Monotonicity Condition in Growth Model

¢ Recall upwind scheme:

Vi — Vi
S (Ak, ki, vi; vie1, vig1) = pvi — u(G) — %(F(/ﬂ') — 0k —¢)"
Vi — Vi— _
- Tl(’:(ki) —bki — ¢ci)
¢ Can check: satisfies monotonicity: S is indeed non-increasing in

both v;_1 and vy

* ¢; depends on v;’s but doesn’t affect monotonicity due to envelope
condition

Meaning of “Convergence”

Convergence is about Ak — 0. What, then, is content of theorem?
* have a system of / non-linear equations S (Ak, k, vj; vi_1,Vvit1) =0
* need to solve it somehow
¢ Theorem guarantees that solution (for given Ak) converges to
solution of the HJB equation (G) as Ak.
Why does iterative scheme work? Two interpretations:
1. Newton method for solving system of non-linear equations (S)

2. lterative scheme < solve (HJB) backward in time

n+1

_n
Vi Vi

S 4 oy = u(e]) + (VY (k) (F (k) — 6k —)
in effect sets v(k, T) = initial guess and solves
ov(k, t) = max u(c) + okv(k, t)(F(k) — 0k — c) + O:v(k, t)

backwards in time. v(k) = lim;_~ v(k, t).

Relation to Kushner-Dupuis “Markov-Chain Approx”

There’s another common method for solving HJB equation:
“Markov Chain Approximation Method”

¢ Kushner and Dupuis (2001) “Numerical Methods for
Stochastic Control Problems in Continuous Time”

« effectively: convert to discrete time, use value fn iteration

FD method not so different: also converts things to “Markov Chain”
pov =u-+ Av

Connection between FD and MCAC
¢ see Bonnans and Zidani (2003), “Consistency of Generalized
Finite Difference Schemes for the Stochastic HJB Equation”
« also shows how to exploit insights from MCAC to find FD
scheme satisfying Barles-Souganidis conditions

Another source of useful notes/codes: Frédéric Bonnans’ website
http://wuw.cmap.polytechnique.fr/~bonnans/notes/edpfin/edpfin.html

http://www.cmap.polytechnique.fr/~bonnans/notes/edpfin/edpfin.html

