Heterogeneous Agent Models in Continuous Time Part II

Benjamin Moll Princeton

Outline

Lecture 1

- Refresher: HJB equations
- 2. Textbook heterogeneous agent model
- 3. Numerical solution of HJB equations
- 4. Models with non-convexities (Skiba)

Lecture 2

- 1. Analysis and numerical solution of heterogeneous agent model
- 2. Transition dynamics/MIT shocks
- 3. Stopping time problems
- 4. Models with multiple assets (HANK)

"When Inequality Matters for Macro and Macro Matters for Inequality"

- Aggregate shocks via perturbation (Reiter)
- 2. Application to consumption dynamics

1

Analysis and Numerical Solution of Heterogeneous Agent Model

Recall Textbook Heterogeneous Agent Model

$$\rho v_j(a) = \max_{c} \ u(c) + v'_j(a)(y_j + ra - c) + \lambda_j(v_{-j}(a) - v_j(a))$$
 (HJB)

$$0 = -\frac{d}{da}[s_j(a)g_j(a)] - \lambda_j g_j(a) + \lambda_{-j}g_{-j}(a), \tag{KF}$$

 $s_j(a) = y_j + ra - c_j(a) =$ saving policy function from (HJB),

$$\int_{\underline{a}}^{\infty} (g_1(a) + g_2(a)) da = 1, \quad g_1, g_2 \ge 0$$

$$S(r) := \int_{\underline{a}}^{\infty} ag_1(a)da + \int_{\underline{a}}^{\infty} ag_2(a)da = B, \qquad B \ge 0$$
 (EQ)

 The two PDEs (HJB) and (KF) together with (EQ) fully characterize stationary equilibrium

Derivation of (HJB)
(KF)

Borrowing Constraints?

- Q: where is borrowing constraint $a \ge \underline{a}$ in (HJB)?
- A: "in" boundary condition
- Result: v_i must satisfy

$$v'_j(\underline{a}) \ge u'(y_j + r\underline{a}), \quad j = 1, 2$$
 (BC)

- Derivation:
 - the FOC still holds at the borrowing constraint

$$u'(c_j(\underline{a})) = v'_j(\underline{a})$$
 (FOC)

for borrowing constraint not to be violated, need

$$s_j(\underline{a}) = y_j + r\underline{a} - c_j(\underline{a}) \ge 0 \tag{*}$$

- (FOC) and (*) \Rightarrow (BC).
- See slides on viscosity solutions for more rigorous discussion http://www.princeton.edu/~moll/viscosity_slides.pdf

Plan

- New theoretical results:
 - 1. analytics: consumption, saving, MPCs of the poor
 - 2. closed-form for wealth distribution with 2 income types
 - 3. unique stationary equilibrium if IES ≥ 1 (sufficient condition)

Note: for 1. and 2. analyze partial equilibrium with $r < \rho$

- Computational algorithm:
 - problems with non-convexities
 - transition dynamics

Behavior near borrowing constraint depends on two factors

- 1. tightness of constraint
- 2. properties of u as $c \to 0$

Assumption 1:

As $a \to \underline{a}$, coefficient of absolute risk aversion R(c) = -u''(c)/u'(c) remains finite

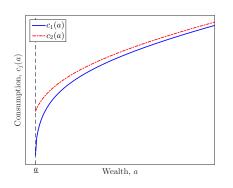
$$\underline{R} := -\lim_{a \to \underline{a}} \frac{u''(y_1 + ra)}{u'(y_1 + ra)} < \infty$$

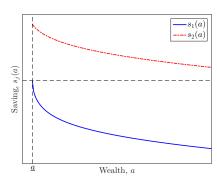
- sufficient condition for A1: borrowing constraint is tighter than "natural borrowing constraint" $\underline{a} > -y_1/r$
- e.g. with CRRA utility

$$u(c) = \frac{c^{1-\gamma}}{1-\gamma} \quad \Rightarrow \quad \underline{R} = \frac{\gamma}{y_1 + r\underline{a}}$$

• but weaker: e.g. A1 satisfied with $\underline{a} = -y_1/r$ and $u(c) = -e^{-\theta c}/\theta$

Rough version of Proposition: under A1 policy functions look like this





Proposition: Assume $r < \rho$, $y_1 < y_2$ and that A1 holds. The solution to (HJB) has following properties:

- 1. $s_1(\underline{a}) = 0$ but $s_1(a) < 0$ all $a > \underline{a}$: only households exactly at the borrowing constraint are constrained
- 2. Saving and consumption policy functions close to $a = \underline{a}$ satisfy

$$s_1(a) \sim -\sqrt{2\nu_1} \sqrt{a-\underline{a}}$$

$$c_1(a) \sim y_1 + ra + \sqrt{2\nu_1} \sqrt{a-\underline{a}}$$

$$c_1'(a) \sim r + \frac{1}{2} \sqrt{\frac{\nu_1}{2(a-\underline{a})}}$$

$$\nu_1 = \frac{(\rho - r)u'(\underline{c}_1) + \lambda_1(u'(\underline{c}_1) - u'(\underline{c}_2))}{-u''(c_1)}$$

Note: " $f(a) \sim g(a)$ " means $\lim_{a \to \underline{a}} f(a)/g(a) = 1$, "f behaves like g close to \underline{a} "

Corollary: The wealth of worker who keeps y_1 converges to borrowing constraint in finite time at speed governed by ν_1 :

$$a(t) - \underline{a} \sim \frac{\nu_1}{2} (T - t)^2$$
, $0 \le t \le T$, where
$$T := \sqrt{\frac{2(a_0 - \underline{a})}{\nu_1}} = \text{"hitting time"}$$

Proof: integrate $\dot{a}(t) = -\sqrt{2\nu_1}\sqrt{a(t)-\underline{a}}$

And have analytic solution for speed

$$\nu_1 = \frac{(\rho - r)u'(\underline{c}_1) + \lambda_1(u'(\underline{c}_1) - u'(\underline{c}_2))}{-u''(\underline{c}_1)}$$
$$\approx (\rho - r)\mathsf{IES}(\underline{c}_1)\underline{c}_1 + \lambda_1(\underline{c}_2 - \underline{c}_1)$$

Result 2: Stationary Wealth Distribution

Recall equation for stationary distribution

$$0 = -\frac{d}{da}[s_j(a)g_j(a)] - \lambda_j g_j(a) + \lambda_{-j}g_{-j}(a)$$
 (KF)

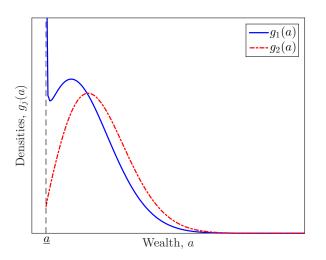
• Lemma: the solution to (KF) is

$$g_i(a) = \frac{\kappa_j}{s_j(a)} \exp\left(-\int_{\underline{a}}^a \left(\frac{\lambda_1}{s_1(x)} + \frac{\lambda_2}{s_2(x)} dx\right)\right)$$

with κ_1 , κ_2 pinned down by g_i 's integrating to one

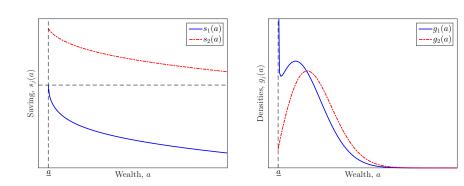
- Features of wealth distribution:
 - Dirac point mass of type y_1 individuals at constraint $G_1(\underline{a}) > 0$
 - thin right tail: $g(a) \sim \xi(a_{\text{max}} a)^{\lambda_2/\zeta_2 1}$, i.e. not Pareto
 - see paper for more
- Later in paper: extension with Pareto tail (Benhabib-Bisin-Zhu)

Result 2: Stationary Wealth Distribution

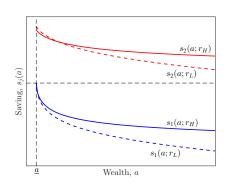


Note: in numerical solution, Dirac mass = finite spike in density

General Equilibrium: Existence and Uniqueness

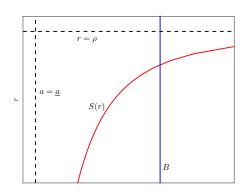


Increase in r from r_L to $r_H > r_L$





Stationary Equilibrium



Asset Supply
$$S(r) = \int_a^\infty ag_1(a;r)da + \int_a^\infty ag_2(a;r)da$$

- Proposition: a stationary equilibrium exists
- **Proposition:** if $IES(c) \ge 1$ for all c and no borrowing $a \ge 0$, stationary equilibrium is unique

14

Computations for Heterogeneous Agent Model

Computations for Heterogeneous Agent Model

- Hard part: HJB equation. But already know how to do that.
- Easy part: KF equation. Once you solved HJB equation, get KF equation "for free"
- System to be solved

$$\rho v_1(a) = \max_c \ u(c) + v_1'(a)(y_1 + ra - c) + \lambda_1(v_2(a) - v_1(a))$$

$$\rho v_2(a) = \max_c \ u(c) + v_2'(a)(y_2 + ra - c) + \lambda_2(v_1(a) - v_2(a))$$

$$0 = -\frac{d}{da}[s_1(a)g_1(a)] - \lambda_1g_1(a) + \lambda_2g_2(a)$$

$$0 = -\frac{d}{da}[s_2(a)g_2(a)] - \lambda_2g_2(a) + \lambda_1g_1(a)$$

$$1 = \int_{\underline{a}}^{\infty} g_1(a)da + \int_{\underline{a}}^{\infty} g_2(a)da$$

$$0 = \int_{\underline{a}}^{\infty} ag_1(a)da + \int_{\underline{a}}^{\infty} ag_2(a)da \equiv S(r)$$

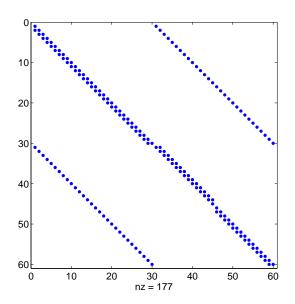
Computations for Heterogeneous Agent Model

As before, discretized HJB equation is

$$\rho \mathbf{v} = \mathbf{u}(\mathbf{v}) + \mathbf{A}(\mathbf{v})\mathbf{v}$$
(HJBd)

- **A** is $N \times N$ transition matrix
 - here $N = 2 \times I$, I=number of wealth grid points
 - A depends on v (nonlinear problem)
 - solve using implicit scheme

Visualization of **A** (output of spy(A) in Matlab)



Computing the FK Equation

Equations to be solved

$$0 = -\frac{d}{da}[s_1(a)g_1(a)] - \lambda_1 g_1(a) + \lambda_2 g_2(a)$$

$$0 = -\frac{d}{da}[s_2(a)g_2(a)] - \lambda_2 g_2(a) + \lambda_1 g_1(a)$$

with $1 = \int_{\underline{a}}^{\infty} g_1(a) da + \int_{\underline{a}}^{\infty} g_2(a) da$

Actually, super easy: discretized version is simply

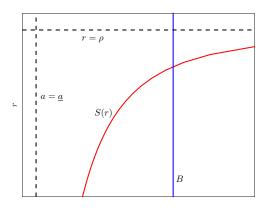
$$0 = \mathbf{A}(\mathbf{v})^{\mathsf{T}}\mathbf{g} \tag{KFd}$$

- eigenvalue problem
- get KF for free, one more reason for using implicit scheme
- Why transpose?
 - operator in (HJB) is "adjoint" of operator in (KF)
 - "adjoint" = infinite-dimensional analogue of matrix transpose
- In principle, can use similar strategy in discrete time

Finding the Equilibrium Interest Rate

Use bisection method

- increase r whenever S(r) < B
- decrease r whenever S(r) > B



A Model with a Continuum of Income Types

Assume idiosyncratic income follows diffusion process

$$dy_t = \mu(y_t)dt + \sigma(y_t)dW_t$$

• Reflecting barriers at y and \bar{y}

$$\rho v(a, y) = \max_{c} u(c) + \partial_{a} v(a, y)(y + ra - c) + \mu(y)\partial_{y} v(a, y) + \frac{\sigma^{2}(y)}{2}\partial_{yy} v(a, y)$$

$$0 = -\partial_{a}[s(a, y)g(a, y)] - \partial_{y}[\mu(y)g(a, y)] + \frac{1}{2}\partial_{yy}[\sigma^{2}(y)g(a, y)]$$

$$1 = \int_{0}^{\infty} \int_{\underline{a}}^{\infty} g(a, y)dady$$

$$0 = \int_0^\infty \int_{\underline{a}}^\infty ag(a, y) dady =: S(r)$$

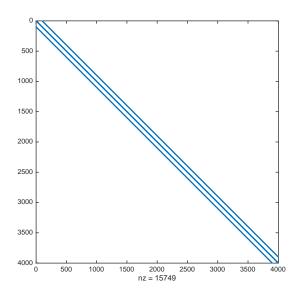
- Borrowing constraint: $\partial_a v(\underline{a}, y) \ge u'(y + r\underline{a})$, all y
- reflecting barriers (see e.g. Dixit "Art of Smooth Pasting")

$$0 = \partial_y v(a, \underline{y}) = \partial_y v(a, \overline{y})$$

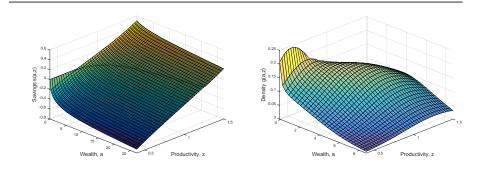
It doesn't matter whether you solve ODEs or PDEs ⇒ everything generalizes

http://www.princeton.edu/~moll/HACTproject/huggett_diffusion_partialeq.m

Visualization of A (output of spy(A) in Matlab)



Saving Policy Function and Stationary Distribution



Summary: Stationary Equilibrium

Can always write as

$$\begin{aligned} \rho \mathbf{v} &= \mathbf{u}(\mathbf{v}) + \mathbf{A}(\mathbf{v}, \mathbf{p}) \mathbf{v} \\ 0 &= \mathbf{A}(\mathbf{v}, \mathbf{p})^{\mathsf{T}} \mathbf{g} \\ 0 &= \mathbf{F}(\mathbf{p}, \mathbf{g}) \end{aligned}$$

where \mathbf{p} is a vector of prices.

Accuracy of Finite Difference Method

Accuracy of Finite Difference Method?

Two experiments:

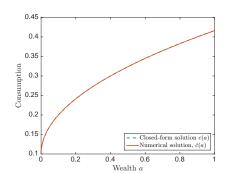
- 1. special case: comparison with closed-form solution
- 2. general case: comparison with numerical solution computed using very fine grid

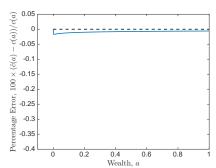
Accuracy of Finite Difference Method, Experiment 1

- See http://www.princeton.edu/~moll/HACTproject/HJB_accuracy1.m
- Achdou et al. (2017) get closed-form solution if
 - exponential utility $u'(c) = c^{-\theta c}$
 - no income risk and r = 0 so that $\dot{a} = y c$ (and $a \ge 0$)

$$\Rightarrow$$
 $s(a) = -\sqrt{2\nu a},$ $c(a) = y + \sqrt{2\nu a},$ $\nu := \frac{\rho}{\theta}$

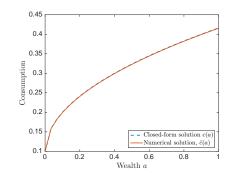
• Accuracy with I = 1000 grid points ($\hat{c}(a) =$ numerical solution)

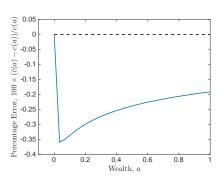




Accuracy of Finite Difference Method, Experiment 1

- See http://www.princeton.edu/~moll/HACTproject/HJB_accuracy1.m
- Achdou et al. (2017) get closed-form solution if
 - exponential utility $u'(c) = c^{-\theta c}$
 - no income risk and r = 0 so that $\dot{a} = y c$ (and $a \ge 0$) $\Rightarrow s(a) = -\sqrt{2\nu a}, \qquad c(a) = y + \sqrt{2\nu a}, \qquad \nu := \frac{\rho}{a}$
- Accuracy with I = 30 grid points ($\hat{c}(a) =$ numerical solution)





Accuracy of Finite Difference Method, Experiment 2

- See http://www.princeton.edu/~moll/HACTproject/HJB_accuracy2.m
- Consider HJB equation with continuum of income types $\rho v(a,y) = \max_{a} u(c) + \partial_a v(a,y)(y + ra c) + \mu(y)\partial_y v(a,y) + \frac{\sigma^2(y)}{2}\partial_{yy} v(a,y)$
- Compute twice:
 - 1. with very fine grid: I = 3000 wealth grid points
 - 2. with coarse grid: I = 300 wealth grid points

then examine speed-accuracy tradeoff (accuracy = error in agg C)

	Speed (in secs)	Aggregate C
<i>I</i> = 3000	0.916	1.1541
I = 300	0.076	1.1606
row 2/row 1	0.0876	1.005629

- i.e. going from I = 3000 to I = 300 yields $> 10 \times$ speed gain and 0.5% reduction in accuracy (but note: even I = 3000 very fast)
- Other comparisons? Feel free to play around with HJB_accuracy2.m

Transition Dynamics/MIT Shocks

Transition Dynamics

Do Aiyagari version of the model

$$r(t) = F_K(K(t), 1) - \delta, \qquad w(t) = F_L(K(t), 1)$$
 (P)

$$K(t) = \int ag_1(a, t)da + \int ag_2(a, t)da$$
 (K)

$$\rho v_{j}(a, t) = \max_{c} u(c) + \partial_{a} v_{j}(a, t)(w(t)z_{j} + r(t)a - c)
+ \lambda_{j}(v_{-j}(a, t) - v_{j}(a, t)) + \partial_{t} v_{j}(a, t),$$
(HJB)

$$\partial_t g_j(a,t) = -\partial_a [s_j(a,t)g_j(a,t)] - \lambda_j g_j(a,t) + \lambda_{-j} g_{-j}(a,t), \tag{KF}$$

$$s_j(a, t) = w(t)z_j + r(t)a - c_j(a, t), \quad c_j(a, t) = (u')^{-1}(\partial_a v_j(a, t))$$

• Given initial condition $g_{j,0}(a)$, the two PDEs (HJB) and (KF) together with (P) and (K) fully characterize equilibrium.

Transition Dynamics

Recall discretized equations for stationary equilibrium

$$\rho \mathbf{v} = \mathbf{u}(\mathbf{v}) + \mathbf{A}(\mathbf{v})\mathbf{v}$$
$$0 = \mathbf{A}(\mathbf{v})^{\mathsf{T}}\mathbf{g}$$

- Transition dynamics
 - denote $v_{i,j}^n = v_j(a_i, t^n)$ and stack into \mathbf{v}^n
 - denote $g_{i,j}^n = g_j(a_i, t^n)$ and stack into \mathbf{g}^n

$$\rho \mathbf{v}^n = \mathbf{u}(\mathbf{v}^{n+1}) + \mathbf{A}(\mathbf{v}^{n+1})\mathbf{v}^n + \frac{1}{\Delta t}(\mathbf{v}^{n+1} - \mathbf{v}^n)$$
$$\frac{\mathbf{g}^{n+1} - \mathbf{g}^n}{\Delta t} = \mathbf{A}(\mathbf{v}^n)^{\mathsf{T}}\mathbf{g}^{n+1}$$

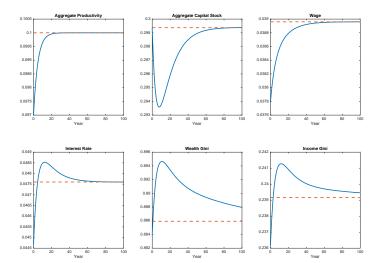
- Terminal condition for \mathbf{v} : $\mathbf{v}^N = \mathbf{v}_{\infty}$ (steady state)
- Initial condition for \mathbf{g} : $\mathbf{g}^1 = \mathbf{g}_0$.

Transition Dynamics

- (HJB) looks forward, runs backwards in time
- (KF) looks backward, runs forward in time
- Algorithm: Guess $K^0(t)$ and then for $\ell = 0, 1, 2, ...$
 - 1. find prices $r^{\ell}(t)$ and $w^{\ell}(t)$
 - 2. solve (HJB) backwards in time given terminal cond'n $v_{j,\infty}(a)$
 - 3. solve (KF) forward in time given given initial condition $g_{j,0}(a)$
 - 4. Compute $S^{\ell}(t) = \int ag_1^{\ell}(a,t)da + \int ag_2^{\ell}(a,t)da$
 - 5. Update $K^{\ell+1}(t) = (1-\xi)K^{\ell}(t) + \xi S^{\ell}(t)$ where $\xi \in (0,1]$ is a relaxation parameter

An MIT Shock

• Modification: $Y_t = F_t(K, L) = A_t K^{\alpha} L^{1-\alpha}$, $dA_t = \nu(\bar{A} - A_t) dt$ http://www.princeton.edu/~moll/HACTproject/aiyagari_poisson_MITshock.m



Stopping Time Problems

Stopping Time Problems

- In lots of problems in economics, agents have to choose an optimal stopping time
- Quite often these problems entail some form of non-convexity
- Examples:
 - how long should a low productivity firm wait before it exits an industry?
 - how long should a firm wait before it resets its prices?
 - when should you exercise an option?
 - etc... Stokey's book is all about these kind of problems
- These problems are very awkward in discrete time because you run into integer problems
- Big payoff from working in continuous time
- Next: flexible algorithm for solving such problems, also works if don't have simple threshold rules and with states > 1

Exercising an Option (Stokey, Ch. 6)

Plant has profits

$$\pi(x_t)$$

• x_t : state variable = stand in for demand, plant capacity etc

$$dx_t = \mu(x_t)dt + \sigma(x_t)dW_t$$

where $dW_t := \lim_{\Lambda_t \to 0} \varepsilon \sqrt{\Delta t}$, $\varepsilon \sim \mathcal{N}(0.1)$

- Can shut down plant at any time, get scrap value $S(x_t)$, but cannot reopen
- Problem: choose stopping time τ to solve

$$v(x_0) = \max_{\tau \ge 0} \left\{ \mathbb{E}_0 \int_0^\tau e^{-\rho t} \pi(x_t) dt + e^{-\rho \tau} S(x_\tau) \right\}$$

• Assumptions to make sure $\tau^* < \infty$:

$$\pi'(x) > 0$$
, $\mu(x) < 0$, $\lim_{x \to -\infty} \left(\frac{\pi(x)}{\rho} - S(x) \right) < 0$, $\lim_{x \to +\infty} \left(\frac{\pi(x)}{\rho} - S(x) \right) > 0$

• Analytic solution if $\mu(x) = \bar{\mu}$, $\sigma(x) = \bar{\sigma}$, $S(x) = \bar{S}$, but not in general 38

Exercising an Option: Standard Approach

- Assume scrap value is independent of x: $S(x) = \bar{S}$
- Optimal policy = threshold rule: exit if x_t falls below \underline{x}
- Standard approach (see e.g. Stokey, Ch.6):

$$\rho v(x) = \pi(x) + \mu(x)v'(x) + \frac{\sigma^2(x)}{2}v''(x), \qquad x > \underline{x}$$

with "value matching" and "smooth pasting" at \underline{x} :

$$v(\underline{x}) = \overline{S}, \qquad v'(\underline{x}) = 0$$

- but things more complicated if S depends on x or if dimension > 1
- ⇒ can't use threshold property
- want algorithm that works also in those cases

Exercising an Option: HJBVI Approach

• Denote *X* = set of *x* such that don't exit:

$$x \in X : v(x) \ge S(x), \quad \rho v(x) = \pi(x) + \mu(x)v'(x) + \frac{\sigma^2(x)}{2}v''(x)$$

 $x \notin X : v(x) = S(x), \quad \rho v(x) \ge \pi(x) + \mu(x)v'(x) + \frac{\sigma^2(x)}{2}v''(x)$

Can write compactly as:

$$\min \left\{ \rho v(x) - \pi(x) - \mu(x)v'(x) - \frac{\sigma^2(x)}{2}v''(x), v(x) - S(x) \right\} = 0 \quad (*)$$

- Note: have used that following two statements are equivalent
- 1. for all x, either $f(x) \ge 0$, g(x) = 0 or f(x) = 0, $g(x) \ge 0$
 - 2. $\min\{f(x), g(x)\} = 0 \text{ for all } x$
- (*) is called "HJB variational inequality" (HJBVI)
- Important: did not impose smooth pasting
 - instead, it's a result: if \bar{S} , can prove that (*) implies $v'(\underline{x}) = 0$
 - see e.g. Oksendal http://th.if.uj.edu.pl/-gudowska/dydaktyka/0ksendal.pdf (Who calls "smooth pasting" "high contact (or smooth fit) principle") 40

Finite Difference Scheme for solving HJBVI

Codes

http://www.princeton.edu/~moll/HACTproject/option_simple_LCP.m, http://www.mathworks.com/matlabcentral/fileexchange/20952

- Main insight: discretized HJBVI = Linear Complementarity Problem (LCP) https://en.wikipedia.org/wiki/Linear_complementarity_problem
- Prototypical LCP: given matrix B and vector q, find z such that

$$\mathbf{z}'(\mathbf{B}\mathbf{z}+q) = 0$$
$$\mathbf{z} \ge 0$$
$$\mathbf{B}\mathbf{z}+q \ge 0$$

- There are many good LCP solvers in Matlab and other languages
- Best one I've found if B large but sparse (Newton-based):
 http://www.mathworks.com/matlabcentral/fileexchange/20952

Finite Difference Scheme for solving HJBVI

Recall HJBVI

$$\min \left\{ \rho v(x) - \pi(x) - \mu(x)v'(x) - \frac{\sigma^2(x)}{2}v''(x), v(x) - S(x) \right\} = 0$$

· Without exit, discretize as

$$\rho v_i = \pi_i + \mu_i(v_i)' + \frac{\sigma_i^2}{2}(v_i)'' \qquad \Leftrightarrow \qquad \rho v = \pi + \mathbf{A}v$$

• With exit:

$$\min\{\rho v - \pi - \mathbf{A}v, v - S\} = 0$$

· Equivalently:

$$(v - S)'(\rho v - \pi - \mathbf{A}v) = 0$$
$$v \ge S$$
$$\rho v - \pi - \mathbf{A}v > 0$$

• But this is just an LCP with z = v - S, $\mathbf{B} = \rho \mathbf{I} - \mathbf{A}$, $q = -\pi + \mathbf{B}!!$

Generalization: Menu Cost Model

- Work in progress: menu cost model (Golosov-Lucas) via HJBVI
 - HANK + menu cost model + aggregate shocks

Multiple Assets

Solution Method in Deterministic Version

$$\max_{\{c_t, d_t\}_{t \ge 0}} \int_0^\infty e^{-\rho t} u(c_t) dt \quad \text{s.t.}$$

$$\dot{b}_t = y + r^b b_t - d_t - \chi(d_t, a_t) - c_t$$

$$\dot{a}_t = r^a a_t + d_t$$

$$a_t \ge \underline{a}, \quad b_t \ge \underline{b}$$

- at: illiquid assets
- bt: liquid assets
- ct: consumption
- y: individual income

- d_t: deposits into illiquid account
- χ : transaction cost function $\chi(d, a) = \chi_0 |d| + \frac{\chi_1}{2} \left(\frac{d}{a}\right)^2 a$

No uncertainty, but easily extended to y=Markov process

How to "upwind" with two endogenous states

HJB equation

$$\rho v(a,b) = \max_{c} u(c) + \partial_b v(a,b)(y + r^b b - d - \chi(d,a) - c) + \partial_a v(a,b)(d + r^a a)$$

• FOC for d: $(1 + \chi_d(d, a))\partial_b v = \partial_a v$

$$\Rightarrow d = \left(\frac{\partial_a v}{\partial_b v} - 1 + \chi_0\right)^{-} \frac{a}{\chi_1} + \left(\frac{\partial_a v}{\partial_b v} - 1 - \chi_0\right)^{+} \frac{a}{\chi_1}$$

· Applying standard upwind scheme

$$\rho v_{i,j} = u(c_i) + \frac{v_{i+1,j} - v_{i,j}}{\Delta b} (s_{i,j}^b)^+ + \frac{v_{i,j} - v_{i-1,j}}{\Delta b} (s_{i,j}^b)^+ + \frac{v_{i,j+1} - v_{i,j}}{\Delta a} (s_{i,j}^a)^+ + \frac{v_{i,j} - v_{i,j-1}}{\Delta a} (s_{i,j}^a)^-$$

where e.g. $s_{i,j}^b = y + r^b b_i - d_{i,j} - \chi(d_{i,j}, a_j) - c_{i,j}$

• Hard: $d_{i,j}$ depends on forward/backward choice for $\partial_b v_{i,j}$, $\partial_a v_{i,j}$

How to "upwind" with two endogenous states

Convenient trick: "splitting the drift"

$$\rho v(a, b) = \max_{c} u(c) + \partial_{b}v(a, b)(y + r^{b}b - c)$$
$$+ \partial_{b}v(a, b)(-d - \chi(d, a))$$
$$+ \partial_{a}v(a, b)d$$
$$+ \partial_{a}v(a, b)r^{a}a$$

and upwind each term separately

- Can check this satisfies Barles-Souganidis monotonicity condition
- For an application, see

```
http://www.princeton.edu/~moll/HACTproject/two_asset_kinked.pdf
http://www.princeton.edu/~moll/HACTproject/two_asset_kinked.m
Subroutines
```

http://www.princeton.edu/~moll/HACTproject/two_asset_kinked_cost.m http://www.princeton.edu/~moll/HACTproject/two_asset_kinked_FOC.m