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Analysis and Numerical Solution

of Heterogeneous Agent Model



Recall Textbook Heterogeneous Agent Model

pvi(a) = max u(c) +vj(a)(y; + ra—c) + Nj(v-j(a) —v(a))  (HJIB)

0= _%[%‘(a)gj(a)] = XNgj(a) + x_jg-;(a), (KF)

sj(a) = yj + ra — ¢j(a) = saving policy function from (HJB),

/Oo<gl(a> f (@) da=1, g2 0

S(r) = /OO agi(a)da+ /oo ags(a)da = B, B>0 (EQ)

¢ The two PDEs (HJB) and (KF) together with (EQ) fully characterize
stationary equilibrium



Borrowing Constraints?

* Q: where is borrowing constraint a > a in (HJB)?
* A: “in” boundary condition

Result: v; must satisfy
vi(@ > (y+ra), j=12 (BC)

Derivation:

* the FOC still holds at the borrowing constraint

u'(¢i(a)) = v/(a) (FOO)
* for borrowing constraint not to be violated, need
si(a)=yj+ra—c¢(a) =20 (+)

* (FOC) and (x) = (BC).

See slides on viscosity solutions for more rigorous discussion

http://www.princeton.edu/~moll/viscosity_slides.pdf


http://www.princeton.edu/~moll/viscosity_slides.pdf

Plan

* New theoretical results:

1. analytics: consumption, saving, MPCs of the poor
2. closed-form for wealth distribution with 2 income types

3. unique stationary equilibrium if IES > 1 (sufficient condition)
Note: for 1. and 2. analyze partial equilibrium with r < p
e Computational algorithm:

¢ problems with non-convexities

e transition dynamics



Result 1: Consumption, Saving Behavior of the Poor

Behavior near borrowing constraint depends on two factors
1. tightness of constraint
2. propertiesof uasc — 0

Assumption 1:
As a — a, coefficient of absolute risk aversion R(c) = —u"(c)/u'(¢c)
remains finite .
R :=— lim w
a—a u'(y; + ra)
¢ sufficient condition for A1: borrowing constraint is tighter than
“natural borrowing constraint” a > —y; /r
¢ e.g. with CRRA utility
1—
c ~ R= ¥
1—7v yi+ra

* but weaker: e.g. A1 satisfied with a = —y;/r and u(c) = —e=%¢/8

u(c) =



Result 1: Consumption, Saving Behavior of the Poor

Rough version of Proposition: under A1 policy functions look like this
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Saving, s;(a)

|
I
I
I
|
|
I
I
I
I
|
a Wealth, a @ Wealth, a



Result 1: Consumption, Saving Behavior of the Poor

Proposition: Assume r < p, y1 < y» and that A1 holds. The solution to
(HJB) has following properties:

1. s1(a) =0but s;(a) < 0all a> a: only households exactly at the
borrowing constraint are constrained

2. Saving and consumption policy functions close to a = a satisfy

si(a) ~ —\/2v1\/a—a
c(a) ~y1+ra+y/2vi\/a—a

ci(a) ~r+ %, / 2(aui 2

(o= (c) + (v () — v ()
- —u”(g)

Note: “f(a) ~ g(a)” means lim,-, f(a)/g(a) = 1, “f behaves like g close to 2"

V1




Result 1: Consumption, Saving Behavior of the Poor

Corollary: The wealth of worker who keeps y; converges to borrowing
constraint in finite time at speed governed by vy:

a(f)—,aN%(T—t)z, 0<t<T, where

2(ap — a)
V1

Proof: integrate a(t) = —v/2v1+/a(t) — a

And have analytic solution for speed
(p—ru'(a) + (' (a) - v (e))

—U”(Ql)
~ (p— r)ES(ci)ct + Ai(c — c1)

T = = “hitting time”

vV, =



Result 2: Stationary Wealth Distribution

¢ Recall equation for stationary distribution

0=-— %[Sj(a)gj(a)l = Ajgj(a) + A-jg-(a) (KF)

¢ Lemma: the solution to (KF) is

Kj a )\1 >\2
9(a) = [ o0 (—/a (st * <>d>>

with k1, k> pinned down by g;’s integrating to one

* Features of wealth distribution:
« Dirac point mass of type y; individuals at constraint G;(a) > 0
« thin right tail: g(a) ~ &(amax — a)**/¢>71, i.e. not Pareto
e see paper for more

¢ | ater in paper: extension with Pareto tail (Benhabib-Bisin-Zhu)



Result 2: Stationary Wealth Distribution

Densities, gj(a)
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Note: in numerical solution, Dirac mass = finite spike in density



General Equilibrium: Existence and Uniqueness
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Stationary Equilibrium

Asset Supply S(r):/ agl(a;r)daJr/ ago(a; r)da
a a

* Proposition: a stationary equilibrium exists

* Proposition: if IES(c) > 1 for all ¢ and no borrowing a > 0,
stationary equilibrium is unique



Computations for
Heterogeneous Agent Model



Computations for Heterogeneous Agent Model

¢ Hard part: HJB equation. But already know how to do that.

e Fasy part: KF equation. Once you solved HJB equation, get KF
equation “for free”

e System to be solved
pvi(a) = max u(c) + vi(a)(y1 + ra — ¢) + M(va(a) — vi(a))
pva(a) = max u(c) + v4(a)(v2 + ra — €) + o(1(a) - va(2))

d
0= _E[Sl(a)gl(a)] —X101(a) + Mago(a)

0= _%[52(3)92(5))] —Xgo(a) + A1gi(a)
1= /oO g1(a)da+ /OO g2(a)da

0:/OO agl(a)dfﬂ—/OO ag:(a)da = S(r)



Computations for Heterogeneous Agent Model

¢ As before, discretized HJB equation is
ov =u(v) + A(v)v (HJUBA)

e Ais N x N transition matrix
* here N =2 x [, I=number of wealth grid points
¢ A depends on v (nonlinear problem)

¢ solve using implicit scheme



Visualization of A (output of spy (4) in Matlab)
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spy(A)

Computing the FK Equation

¢ Equations to be solved
d
0= —5[51(3)91(9)] —A191(a) + A292(a)

0=~ [52(2)9x(a)] ~ Xaga(a) + M6 (2)
with 1 = [* gi(a)da+ [.° go(a)da
e Actually, super easy: discretized version is simply
0=A(\)"g (KFd)
* eigenvalue problem
¢ get KF for free, one more reason for using implicit scheme
¢ Why transpose?
» operator in (HJB) is “adjoint” of operator in (KF)
e “adjoint” = infinite-dimensional analogue of matrix transpose
* |n principle, can use similar strategy in discrete time



Finding the Equilibrium Interest Rate

Use bisection method
* increase r whenever S(r) < B
* decrease r whenever S(r) > B

E S(r)
1
1




A Model with a Continuum of Income Types

* Assume idiosyncratic income follows diffusion process

dyr = u(ye)dt + o(yr)dWy
* Reflecting barriers at y and y

pu(a.y) = max u(e) + O(a. )y + ra— ) + (A, v(a. ) + T2, v(a,y)

= —0a[s(a,y)9(a.y)] = 8y [u(y)g(a, )] + ayy[CfQ(y)g(a 2

1=/0 /a g(a y)dady

0= /00O /:O ag(a, y)dady =: S(r)

* Borrowing constraint: d,v(a, y) > uv'(y + ra), all y
¢ reflecting barriers (see e.g. Dixit “Art of Smooth Pasting”)

0=0yv(a,y) =0,v(a y)



It doesn’t matter whether you solve ODEs or PDEs

= everything generalizes

http://www.princeton.edu/~moll/HACTproject/huggett_diffusion_partialeq.m


http://www.princeton.edu/~moll/HACTproject/huggett_diffusion_partialeq.m

Visualization of A (output of spy (A) in Matlab)
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Saving Policy Function and Stationary Distribution
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Summary: Stationary Equilibrium

e Can always write as

pov =u(v) + A(v, p)v
0=A(v.p)'g
0=F(p.g)

where p is a vector of prices.



Accuracy of Finite Difference Method



Accuracy of Finite Difference Method?

Two experiments:
1. special case: comparison with closed-form solution

2. general case: comparison with numerical solution computed using
very fine grid



Accuracy of Finite Difference Method, Experiment 1

® S€ee€ http://www.princeton.edu/~moll/HACTproject/HJB_accuracyl.m
¢ Achdou et al. (2017) get closed-form solution if

« exponential utility v’(c) = c ¢

e noincomeriskand r=0sothata=y — c(and a > 0)

0
= s(a) = —V2va, c(a) =y +V2va, V=g
e Accuracy with / = 1000 grid points (c(a) = numerical solution)
0.45 ~ 005
04 % I
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g % -0.1
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© E 025
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015 ~ = Closed-form solution c(a)| | § 0.35
—— Numerical solution, ¢(a) =
0.1 & 04 . . . . .
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http://www.princeton.edu/~moll/HACTproject/HJB_accuracy1.m

Accuracy of Finite Difference Method, Experiment 1

Consumption

® S€ee€ http://www.princeton.edu/~moll/HACTproject/HJB_accuracyl.m

¢ Achdou et al. (2017) get closed-form solution if

* exponential utility v'(c) = ¢~

6c

e noincomeriskand r=0sothata=y — c(and a > 0)

=

s(a) = —V2va,

c(a) =y +V2va, Vo=

D

e Accuracy with / = 30 grid points (c(a) = numerical solution)
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http://www.princeton.edu/~moll/HACTproject/HJB_accuracy1.m

Accuracy of Finite Difference Method, Experiment 2

® S€ee€ http://www.princeton.edu/~moll/HACTproject/HJB_accuracy2.m
¢ Consider HJB equation with continuum of income types

pv(a,y) = max u(c)+0,v(a,y)(y+ra—c)+u(y)d,v(a, )+ 729, v(a, y)

e Compute twice:
1. with very fine grid: / = 3000 wealth grid points
2. with coarse grid: | = 300 wealth grid points
then examine speed-accuracy tradeoff (accuracy = error in agg C)

Speed (in secs) | Aggregate C
| = 3000 0.916 1.1541
I =300 0.076 1.1606
row 2/row 1 0.0876 1.005629

* j.e. going from / = 3000 to / = 300 yields > 10x speed gain and
0.5% reduction in accuracy (but note: even | = 3000 very fast)

e Other comparisons? Feel free to play around with HIB_accuracy2.m


http://www.princeton.edu/~moll/HACTproject/HJB_accuracy2.m
HJB_accuracy2.m

Transition Dynamics/MIT Shocks



Transition Dynamics

Do Aiyagari version of the model

r(t) =Fx(K(t).1) =6, w(t) = FL(K(t),1) (P)
K(t) :/agl(a, t)da+/agg(a, t)da K)
pvi(a, t) =max u(c) + 0,vi(a, t)(w(t)zj+ r(t)a—c)
¢ (HJB)
+Aj(v-j(a t) —vi(a 1)) + drvi(a, 1),
degi(a, t) = = Balsj(a, t)gi(a. 1)] — Njgj(a. t) + A_jg-(a. t), (KF)

s(at) =w(t)z + r()a—gla 1), glat) = () (@ay(at)

* Given initial condition g; o(a), the two PDEs (HJB) and (KF)
together with (P) and (K) fully characterize equilibrium.



Transition Dynamics

* Recall discretized equations for stationary equilibrium
ov =u(v) + A(v)v
0=A(v)'g
¢ Transition dynamics
e denote v/; = vj(a;, t") and stack into v"
* denote g/, = g;j(a;, t") and stack into g”
ov" = u(v") £ AV + L(V”Jr1 —v")

At

n

gn-i—l —g
At

e Terminal condition for v: v

— A(vn)TgnJrl
N = v, (steady state)

* Initial condition for g: g* = go.



Transition Dynamics

¢ (HJB) looks forward, runs backwards in time
¢ (KF) looks backward, runs forward in time
* Algorithm: Guess K°(t) and thenfor£=10,1,2, ...

1. find prices ré(t) and w(t)
solve (HJB) backwards in time given terminal cond’n v; »(a)
solve (KF) forward in time given given initial condition g; o(a)
Compute S¥(t) = [ agi(a, t)da+ [ ags(a, t)da

Update KEH1(t) = (1 — &)KE(t) + £S4(t) where € € (0, 1] isa
relaxation parameter

ok~ DN



An MIT Shock

* Modification: Y; = Fi(K, L) = AtK*L1=% dA; = v(A — Ap)dt

http://www.princeton.edu/~moll/HACTproject/aiyagari_poisson_MITshock.m
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http://www.princeton.edu/~moll/HACTproject/aiyagari_poisson_MITshock.m

Stopping Time Problems



Stopping Time Problems

In lots of problems in economics, agents have to choose an
optimal stopping time

Quite often these problems entail some form of non-convexity
Examples:

¢ how long should a low productivity firm wait before it exits an
industry?

¢ how long should a firm wait before it resets its prices?
¢ when should you exercise an option?
 etc... Stokey’s book is all about these kind of problems

These problems are very awkward in discrete time because you
run into integer problems

Big payoff from working in continuous time

Next: flexible algorithm for solving such problems, also works if
don’t have simple threshold rules and with states > 1



Exercising an Option (Stokey, Ch. ©)

Plant has profits
m(xt)
Xt State variable = stand in for demand, plant capacity etc
dxy = w(xe)dt + o(x¢)dWs
where dW; := lima¢0 VAL, € ~ N(0,1)

Can shut down plant at any time, get scrap value S(x;), but
cannot reopen

Problem: choose stopping time T to solve

,
v(xp) = max {Eo/ e Pim(xp)dt + epTS(xT)}
720 0
Assumptions to make sure 7 < oo:

() > 0, p(x) <0, lim (W ~ S(x )) <o, Jim_ (% - S(X)) >

Analytic solution if u(x) = i, o(x) = &, S(x) = S, but not in general



Exercising an Option: Standard Approach

* Assume scrap value is independent of x: S(x) =

Optimal policy = threshold rule: exit if x; falls below x

Standard approach (see e.g. Stokey, Ch.6):
( )

pv(x) = m(x) + p(x)v'(x) + 221 (x), X > X
with “value matching” and “smooth pas‘ung at x:

vix)=S5,  V(x)=0

but things more complicated if S depends on x or if dimension > 1

e = can’t use threshold property

want algorithm that works also in those cases



Exercising an Option: HJBVI Approach

¢ Denote X = set of x such that don’t exit:
xeX: v(x)=5(x), pv(x)=m(x)+ ux)V(x)
xg X v(x)=5(x), pv(x)=m(x) + p(x)v'(x)

e Can write compactly as:
min v = 700 ~ v/ () = T 00, v = 560} =0 9

* Note: have used that following two statements are equivalent
1. for all x, either f(x) > 0,g(x) =0o0r f(x) =0,9(x) >0
2. min{f(x), g(x)} = 0 for all x

* () is called “HJB variational inequality” (HJBVI)

¢ |mportant: did not impose smooth pasting
« instead, it’s a result: if S, can prove that () implies v/(x) = 0
* See e.g. Oksendal http://th.if.uj.edu.pl/~gudowska/dydaktyka/Oksendal . pdf (WhO
calls “smooth pasting” “high contact (or smooth fit) principle”)


http://th.if.uj.edu.pl/~gudowska/dydaktyka/Oksendal.pdf

Finite Difference Scheme for solving HJBVI

¢ Codes
http://www.princeton.edu/~moll/HACTproject/option_simple_LCP.m,
http://www.mathworks.com/matlabcentral/fileexchange/20952

* Main insight: discretized HJBVI = Linear Complementarity Problem
(LCP) https://en.wikipedia.org/wiki/Linear_complementarity_problem

¢ Prototypical LCP: given matrix B and vector g, find z such that
Z/(Bz+4q)=0
z>0
Bz+qg>0
* There are many good LCP solvers in Matlab and other languages

¢ Best one I've found if B large but sparse (Newton-based):
http://www.mathworks.com/matlabcentral/fileexchange/20952


http://www.princeton.edu/~moll/HACTproject/option_simple_LCP.m
http://www.mathworks.com/matlabcentral/fileexchange/20952
https://en.wikipedia.org/wiki/Linear_complementarity_problem
http://www.mathworks.com/matlabcentral/fileexchange/20952

Finite Difference Scheme for solving HJBVI

¢ Recall HIBVI

min {pv<x> (%) — pOOV() —

Without exit, discretize as

T 1), v(x) - S(x>}=

2

g°
PV/ZW/+M/(VI)/+?I(V/')” & pv=T+Av

With exit:
min{pv —m—Av,v—5} =0

Equivalently:
(v—S)(pv—7m—Av)=0

v>S
ov—m—Av >0

But thisis justan LCP withz=v -5, B=pl — A, g = —7 + B!l



Generalization: Menu Cost Model

e Work in progress: menu cost model (Golosov-Lucas) via HIBVI

 HANK + menu cost model + aggregate shocks



Multiple Assets



Solution Method in Deterministic Version

o
max / e Ptu(c)dt st
{ctdi}ez0 Jo

thY+rbbt_dt_X(dtvat)_Ct
at:raat+dt
ar>a, br>b

az: illiquid assets * d;: deposits into illiquid
account

b liquid assets
¢ x: transaction cost function

® ¢;: consumption (d. 3) = xold| + % (%)2 ;

y: individual income

No uncertainty, but easily extended to y=Markov process



How to “upwind” with two endogenous states

¢ HJB equation
pv(a, b) = max u(c) + dpv(a, b)(y + r’b—d —x(d,a) — ¢)
+ d,v(a, b)(d + r?a)
e FOC for d: (1 + xq(d, a))0pv = 0,v

- +
= d:(a‘”’v—1+x@> a+<a"”v 1—X0> -
OpV X1 Opv X1

¢ Applying standard upwind scheme

Vigl) — Vij Vij— Vi1,
vy = (e + MY gty g Y Yk g+
Vij+1 Vi Vij—1 _

e G

Aa Aa
where e.g. SI-{)J- =y—+r b,‘ —dij— X(d,"j, aj) —Gij
* Hard: d; ; depends on forward/backward choice for 8pv; j, O,v;



How to “upwind” with two endogenous states

* Convenient trick: “splitting the drift”

pv(a, b) = max u(c) + pv(a, b)(y + r’b —c)

+ 0pv(a b)(—d —x(d, a))
+0yv(a, b)d
+0,v(a, b)ria

and upwind each term separately

¢ Can check this satisfies Barles-Souganidis monotonicity condition

* For an application, see

http://wuw
http://wuw
Subroutines
http://www
http://www

.princeton.

.princeton.

.princeton.

.princeton.

edu/~moll/HACTproject/two_asset_kinked.pdf
edu/~moll/HACTproject/two_asset_kinked.m

edu/~moll/HACTproject/two_asset_kinked_cost.m
edu/~moll/HACTproject/two_asset_kinked_FOC.m


http://www.princeton.edu/~moll/HACTproject/two_asset_kinked.pdf
http://www.princeton.edu/~moll/HACTproject/two_asset_kinked.m
http://www.princeton.edu/~moll/HACTproject/two_asset_kinked_cost.m
http://www.princeton.edu/~moll/HACTproject/two_asset_kinked_FOC.m

