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Plan

Firm heterogeneity, distribution and dynamics
1. motivating facts
2. workhorse model of firm dynamics: Hopenhayn (1992)
3. stopping time problems

4. Luttmer (2007)



Motivating Facts

¢ So far: income and wealth distribution in macroeconomics
¢ Firm size distribution shares many similarities with income, wealth
distributions
e extremely skewed
* |ots of heterogeneity conditional on other observables

¢ e.g. Chad Syverson: within typical 4-digit SIC industries 90th
percentile firm is twice as productive as 10th percentile firm

 other key references: work by John Haltiwanger, Steve Davis
and co-authors
* Tools for theoretically modeling heterogeneous firms are exactly the
same as those for modeling heterogeneous individuals
* state variable = cross-sectional distribution
* key ideas: stationary distribution & distributional dynamics



Firm Size Distribution: Very Skewed and Fat Right Tail
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Workhorse Model: Hopenhayn (1992)

¢ Will present my own version
® NOtes: http://www.princeton.edu/~moll/HACTproject/hopenhayn.pdf
® code: nttp://www.princeton.edu/~moll/HACTproject/hopenhayn.m

* For some good, concise lecture notes on original see
https://web.stanford.edu/~jdlevin/Econ?20257/Industry%20Dynamics . pdf
Also good discussion of Jovanovic 82, Olley-Pakes 96

Before | forget, potentially confusing notation in Hopenhayn 92
* p.1130: “the total mass My = u(S)”
e p.1132:“Let M; denote the mass of entrants in period t”
e latter is one that’s used throughout

Only dynamic decisions in Hopenhayn model: entry and exit

Will walk you through two versions
1. mechanical entry (= assumption in Luttmer: “return process”)
2. optimal entry (= assumption in Hopenhayn)


http://www.princeton.edu/~moll/HACTproject/hopenhayn.pdf
http://www.princeton.edu/~moll/HACTproject/hopenhayn.m
https://web.stanford.edu/~jdlevin/Econ%20257/Industry%20Dynamics.pdf

Hopenhayn Model with Mechanical Entry

* Continuum of firms, heterogeneous in productivity z € [0, 1], solve

.
v(z) = max Eq [/ e P (pf(z¢, ne) — wne — cr)dt + e PTv*
0

{nt}e>o0.m

dzy = u(zp)dt + o(z)dWy, z9=z.

e n: employment, w: wage rate
e f(z, n): production, p: price of final goods
e cr: per-period operating cost, v*: scrap value

* Assumption: for each exiting firm, new entrant with zy ~ ¢(z2)
e = mass of active firms constant, normalize to 1
e assume lowest z in support of Y s.t. don’t immediately exit

¢ Equilibrium: exogenous product demand, labor supply to industry

1 1
p=D(Q), w=W(N), Q== /0 a(2)9(z)dz, N := /0 n(2)g(2)dz



Write this more compactly

¢ Continuum of firms, heterogeneous in productivity z € [0, 1], solve
T
v(z) = max Eg [/ e Pin(z)dt + e PTv*
T 0

dzy = pu(ze)dt + o(z)dWe, 2z = 2z,
m(z) = max {pf(z,n) — wn} — ¢
n

* Assumption: for each exiting firm, new entrant with zy ~ ¥(z)
* = mass of active firms constant, normalize to 1

e assume lowest z in support of ¥ s.t. don’t immediately exit

¢ Equilibrium: exogenous product demand, labor supply to industry

1 1
p=D@Q), w=W(N), Q= /O a(2)9(2)dz, N = /O n(2)g(2)dz



Hopenhayn Model with Optimal Entry

* Continuum of firms, heterogeneous in productivity z € [0, 1], solve
T
v(z) = max Eq [/ e Pir(z)dt + e PTv*
T 0

dzy = pu(ze)dt + o(z)dWe, 2z = 2z,

m(z) = max {pf(z,n) — wn} — ¢
n
* Previous slide: flow of entrants determined mechanically
* Now: flow of entrants satisfies free entry condition
1
/ v(z)Y(z)dz = ce
0

* = total mass of firms endogenous, cannot normalize it to one



3-Slide Discussion of Hopenhayn (1992)




Stopping Time Problems



Stopping Time Problems

In lots of problems in economics, agents have to choose an
optimal stopping time

Quite often these problems entail some form of non-convexity
Examples:

¢ how long should a low productivity firm wait before it exits an
industry?

¢ how long should a firm wait before it resets its prices?
¢ when should you exercise an option?
 etc... Stokey’s book is all about these kind of problems

These problems are very awkward in discrete time because you
run into integer problems

Big payoff from working in continuous time

Next: flexible algorithm for solving such problems, also works if
don’t have simple threshold rules and with states > 1



Exercising an Option: Deterministic Warmup

¢ Problem from chapter 6 of Stokey’s “Economics of Inaction”

¢ Plant has profits
m(z(t))

e z(t): state variable = stand in for demand, plant capacity etc
z(t)=zp+ut <& z(t)=u

e Can shut down plant at any time, get scrap value S, but cannot
reopen

* Problem: choose stopping time T to solve

v(z9) = max [/ e "r(z(t))dt +e 7S
’T'ZO 0

¢ Assumptions to make sure 7" < oo:

/ . .
m(z) >0, w<O, Zﬂrlwoow(z) <rS< ZJ)TOO’/T(Z)



Exercising an Option: Deterministic Warmup

* FOC
e P [m(z(T*)) — rS] <0, with equality if 7* > 0
¢ Can write this in terms of cutoff b* = z(7*)
m(b*)=rS
¢ Optimal stopping time is

. 0, if z < b*,
T =
(b* —2)/u, if z> b*



Exercising an Option: Stochastic Problem

* Problem: choose stopping time T to solve

.
v(z) = max Eq [/ e Ptm(z)dt + e PTS(z)
T7>0 0

dzy = u(ze)dt + o(ze)dWy, 20 =1z

* Same assumptions as before to ensure 7* < oo

Analytic solution if u(z) = @, 0(z) = &, S(z) = S, but not in
general

* Two approaches for tackling this problem

1. standard approach: “smooth pasting”

2. more powerful approach: HJB “Variational Inequality”

Discuss these in turn



Exercising an Option: Standard Approach

» Assume scrap value is independent of z: S(z) = S
e Optimal policy = threshold rule: exit if z; falls below b

e Standard approach (see e.g. Stokey, Ch.6):

2
ov(z) =m(z) + u(z)V'(z) + g éz) v'(2), z>b
with “value matching” and “smooth pasting” at b:

v(b) =S, V/(b) =0

¢ Derivation? See
¢ But things more complicated if
e S dependson z...
e ... orif dimension > 1
* = can't use threshold property
e want algorithm that works also in those cases



Exercising an Option: HJBVI Approach

e Denote Z = set of z such that don’t exit:
z€Z: v(2)>5(2), pv(z) =1(2) + u(2)V(2) + TV (2)
zgZ: v(z)=5(2), pv(z)>7(2) +u(2)V(2) + #v (2)

e Can write compactly as:

min {pv(z) —m(z) — u(2)vV'(z) — (2),v(z) — S(z)} =0 (¥

* Note: have used that following two statements are equivalent
1. for all z, either f(z) > 0,9(z) =0o0rf(z)=0,9(z) >0
2. min{f(z),g9(z)} =0forall z

* () is called “HJB variational inequality” (HJBVI)

(Z) i

¢ |mportant: did not impose smooth pasting
* instead, it’s a result: can prove that (x) implies v/(b) = S’(b)
* See e.g. Oksendal http://th.if.uj.edu.pl/~gudowska/dydaktyka/Oksendal . pdf (WhO
calls “smooth pasting” “high contact (or smooth fit) principle”)


http://th.if.uj.edu.pl/~gudowska/dydaktyka/Oksendal.pdf

Finite Difference Scheme for solving HJBVI

e Codes
http://www.princeton.edu/~moll/HACTproject/option_simple_LCP.m,
http://www.mathworks.com/matlabcentral/fileexchange/20952

* Main insight: discretized HJBVI = Linear Complementarity Problem
(LCP) https://en.wikipedia.org/wiki/Linear_complementarity_problem

¢ Prototypical LCP: given matrix B and vector q, find x such that
x'(Bx+q)=0
x>0
Bx+q>0
* There are many good LCP solvers in Matlab and other languages

¢ Best one I've found if B large but sparse (Newton-based):
http://www.mathworks.com/matlabcentral/fileexchange/20952


http://www.princeton.edu/~moll/HACTproject/option_simple_LCP.m
http://www.mathworks.com/matlabcentral/fileexchange/20952
https://en.wikipedia.org/wiki/Linear_complementarity_problem
http://www.mathworks.com/matlabcentral/fileexchange/20952

Finite Difference Scheme for solving HJBVI

¢ Recall HIBVI

2
min {pv(z) —m(z) — u(2)vV'(z) — Uz(z)v”(z), v(z) — S(Z)} =0

Without exit, discretize as

2
(o
PV/=7T/+MI'(V/)’+7'(V/)” < pv =T + Av

With exit:
min{pv —m — Av,v —S} =0

Equivalently:
(v—S)T(ov —m — Av) =0

v>S
ov—m—Av>0

But thisis justan LCP withx=v—-S, B =pl — A, q = —7 + B!l



The solution satisfies smooth pasting even though we
didn’t impose it!
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An Impulse Control Problem: Buying & Selling a Car

Flow utility u(c;) + kds, dr € {0, 1} (car or no car)
e Buy car at pg, sell at p; with p; < pg

When not buying/selling, wealth accumulates in standard fashion

at:y+rat—ct

Notation: v4(a) = value of wealth a, car ownership state d € {0, 1}

Problem of individual without car: choose ¢; and stopping time 7

-
w(a) = max /e‘ptu(ct)dt+e_p7v§(aT)
0

{ct}t>0.T
ar=Yy+rar—C, ar=>a, ap=a.
where v (a) = value of buying car
. vi(@a—po), ffa—po=>a
vg(a) = ;
—00, ifa—py<a

e Symmetric problem for individual with car, value v1(a)



A Problem with an Indivisible Durable (a.k.a. a Car)

¢ System of HIBVI's

0 = min{pvo(a) — max {u(e) + vi(a)(y + ra— )}, w(a) — v(a)},
0 = min{pv;(a) — max {u(c)+k+v(a)(y+ra—c)} vi(a) — vi(a)

¢ Discretize as

0 =min{pvo — u(vo) — A(vo)vo, vo — v (1)},
0=min{ovi — u(v1) + k — A(v1)vi, vi — v{(v0)}

* Solve using LCP solver

e Code: http://www.princeton.edu/~moll/HACTproject/car.m


http://www.princeton.edu/~moll/HACTproject/car.m

A Problem with an Indivisible Durable (a.k.a. a Car)

(c) Saving Palicy Function
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Numerical Solution of Hopenhayn Model

http://www.princeton.edu/~moll/HACTproject/hopenhayn.pdf
http://www.princeton.edu/~moll/HACTproject/hopenhayn.m


http://www.princeton.edu/~moll/HACTproject/hopenhayn.pdf
http://www.princeton.edu/~moll/HACTproject/hopenhayn.m

Hopenhayn Model with Mechanical Entry

¢ Write more compactly

.
v(z) = maxEg {/ e Pin(z)dt + e_pTv*}
0

I<
dzy = u(z)dt + o(z)dWe, z9 = 2z,

m(z) = max {pf(z,n) —wn} —cf

e Assumption: for each exiting firm, new entrant with zy ~ ¥(z)

¢ = mass of active firms constant, normalize to 1

e assume lowest z in support of ¥ s.t. don’t immediately exit



Equations for Stationary Equilibrium, Mechanical Entry

* Denote Z = inaction region, i.e. set of z’s such that don’t exit...

.. and m = entry rate (by assumption also = exit rate)

0 = min {pv(z) - v’(z),u(z) ”(Z)UZ(Z) —7(z),v(z)—v } , alze(0,1)

0= —(u(2)9(2)) + 5 <02<z>g<z))” +my(z), alzeZz,

p=D(Q), w=W(N), Q= / g9(z)dz, N:/Zn(z)g(z)dz

* Remains to determine m, find it from [, g(z, t)dz = 1 for all t
0:g = A*g + m(t)w(z) and / 0:9(z. t)dz = 0
Z

= m:—/Z(A*g)(z)dz

* If threshold rule (stay when z > b), then m = —38, (0?(b)g(b))



Equations for Stationary Equilibrium with Optimal Entry

Now: Mass of entrants m pinned down by free entry condition

0 = min {pv(z) —V'(2)u(z) - %v”(z)cﬁ(z) —7(z),v(z) — v*} , alze(0,1)

0= (W29 + 5 (0%(2)9(2)" + my(2), allz ez,
1
Ce = /0 v(z)Y(z)dz

p=D@), w=W(N), Q= /Z 4(2)9(2)dz, N = /Z n(2)g(2)dz



Equations for Stationary Equilibrium with Optimal Entry

Free-entry condition not particularly well behaved numerically = replace

0 = min {pv(z) —V(2)u(z) - 1 "(2)02(2) 7(z), v(z) — v*} , alze(0,1)
0=—(u(2)9(2)) + 5 (a%z)g(z))” +my(z), alzez,

m— mexp (n (/ V(2)yW(2)dz - )) om0

p=D(@). w=WN), Q= [ a@e@dz N= [ nz)a(z)dz

fo z)dz = c. is special case n — co

* to see this, write as '09(’”/’”) = [Lv(2)¥(z)dz — ce

¢ that is, Hopenhayn model has infinitely elastic supply of entrants



Discretization of KF equation

¢ Discretized KF equation is

/
0= Ajig+my, alicl
j=1
gi=0, aligT
* Write this in matrix notation as
0=ATg+ my
* where Z,-J- = A;; for all columns in inaction region j € T ...

e ... columns in exit region j ¢ T are replaced by a column of
zeros everywhere except for 1 on the diagonal

e hence 0 = ATg + my implies that g = 0 forall i ¢

* = non-singular AT = can simply solve (no eigenvalue problem)
g=—(A")"'my



Solution Algorithm

http://www.princeton.edu/~moll/HACTproject/hopenhayn.m

() Guess w?

(i) 1. Guess p°

2. Given (p/, wk) solve the HJBVI equation. This yields v and
exit region Z

3. Given v, compute m from supply of entrants. To approximate
perfectly elastic supply of entrants, set n = 1, 000

4. Given exit region Z, and entry rate m, solve KF equation to
get g. Note that g will, in general, not integrate to one

5. Given g, compute Q & update p: P/t = (1 —X,)p/ + X,Q ¢

6. If p+1 and Q¢ are close enough, go to iii, otherwise back to 2
(i) Given g, compute N & update w: wkt1 = (1 — X\, )wkTt + X, N®
(iv) If w1 and N® are close enough, exit, otherwise back to i


http://www.princeton.edu/~moll/HACTproject/hopenhayn.m

Results: Value Function and Size Distribution

00|

(e) Value function v(z) (f) Size distribution of active firms g(z)



Luttmer (2007) — Short Version



Luttmer (2007): Overview

¢ Firms are monopolistic competitors

* Permanent shocks to preferences and technologies associated
with firms

¢ |ow productivity firms exit, new firms imitate and attempt to enter
« selection produces Pareto right tail rather than log-normal
e population productivity grows faster than mean of incumbents

* thickness of right tail depends on the difference

 Zipf tail when entry costs are high or imitation is difficult



Luttmer (2007): Key Mechanism for Pareto Distribution

* Exactly same logic as in Gabaix, Gabaix-Lasry-Lions-Moll

* | ogarithm of size s; follows “return process”/“exit with reinjection”
dSt = ,LLdt + O'th

e assume u < 0

* if s; ever reaches b, exit and get reinjected at x > b
* = exponential tail for log size s, Pareto tail for size e®
* More precisely, a double-Pareto distribution

* Remaining model ingredients only make economics nicer, model
less mechanical



Stationary Size Distribution, s = log size

S

FiGure 11
Size Density Conditional on Initial Size



3-Slide Discussion of Luttmer




Appendix:
Smooth Pasting and All That



Deterministic Problem: HJB Approach

Claim (Stokey, Proposition 6.2): The value function, V, and optimal
threshold, b*, have the following properties:
(i) v satisfies the HJB equation
rV(z) =7(z) + V' (2)u, z>b*
V(z) =S, z < b*
(i) V is continuous at b* (value matching)

lerp* V(z)=S

(i) V" is continuous at b* (smooth pasting)

lim V' =0
ZI,LrE* (Z)



Intuitive Derivation

Periods of length At,

Value of a firm with zyg = z:

V(z) = max{V(z), S}

S: value of exiting

V(z2): value of staying in industry satisfying

V(z) = m(2)At + (1 — rAt)V(z + pAt)



Derivation: Value Matching lim,;,V(z) = S

¢ Consider some (not necessarily optimal) threshold b

* By definition of b:

V(z), z>b
V(z) = {
S, z<b

(Note: could write z > b and z < b, would need to slightly change
argument below; just definition of b in any case.)

e Subtract (1 — rAt)V(z) from both sides and divide by At

V(z 4 uht) — V(2)

rV(z) = m(z) + (1 — rAt) At




Derivation: Value Matching lim,;,V(z) = S

 Evaluate V at z = b — pAt, i.e. at an x just above the threshold
(recall u < 0).
S —V(b— uAt)
At

rV(b— uAt) = w(b — uAt) + (1 — rAt)
Want to take At — 0. Note:
lim V(b— uAt) = limV
AimgV (0 wAt) = I V(@)

Proof by contradiction. Suppose lim,,, V(z) < S.

S—V(b—uAt)
T At

* then — 0o and hence rV (b — uAt) — co.

* but lim;, V(z) = oo contradicts lim,;, V(z) < S.

Symmetric argument for lim,,, V(z) > S
Since V(z) = V(z) for z > b, also lim,, V(z) = S

Note: this has to hold for any threshold b, also suboptimal ones.
Continuous problems have continuous value functions.



Derivation: Smooth Pasting lim_ ;- V/(z) =0

¢ Now consider the optimal threshold choice.

* The value of staying, V, satisfies the Bellman equation
V(z) = m(z)At + (1 — rAat) max {V(z + pAt), S}
¢ Consider the optimal threshold b*. If it is indeed optimal, then
1. V(b*) =S
2. V(b* + ult) = S (recall that . < 0 and so b* + uAt < b*)
and therefore
V(b*) =m(b*)At + (1 —rAt)S =S

which implies
m(b*)=rS (%)
e Observation 1: if we are indifferent between stopping or not, flow
payoff from stopping must be same as flow payoff from continuing



Derivation: Smooth Pasting lim_ ;- V/(z) =0

* Next, evaluating at b* — uAt
V(b* — pAt) = w(b* — pAt)At + (1 — rAt)S
From value matching V/(b*) = S,
V(b* — uAt) — V(b*) = m(b* — uAt)At — rAtS
and hence

V(b* — uAt) — V(b*)
At

=7(b* — uAt) —rS

e Taking At — 0 and using (x) = smooth pasting V/(b*) = 0

¢ Observation 2: If we are close to stopping we cannot be much
better off than stopping now, given Observation 1



Deterministic Problem: Extensions

e Suppose the scrap value is S(z) rather than S.
* And further that drift is u(z) rather than

¢ Can use the same approach as above to show that

¢ Value Matching:

lerp V(z) = S(b%)

¢ Smooth Pasting:

: ! ol
leing*\/(z)—S(b)



Luttmer (2007) — Long Version



Luttmer (2007)

¢ Preferences:

* differentiated commodities with permanent taste shocks

¢ Technologies:
e at a cost, entrants draw technologies from some distribution
« fixed overhead labor, asymptotic constant returns to scale
e random productivity, quality growth.



Consumers

A population He™ with preferences over per-capita consumption

Cte_"t:
00 C —nt\1l—y
Eo/ e_pti( ") dt
0 L -
¢ where

1/B
Ct = |:/ Ul_BCtﬁ(U)th(U)]
Elasticity of substitutionis 0 = 1/(1 — B)

¢ Demands 1/(1-p)
ce(u, p) = (Fi) uCy

where

~1-p)/B
P, — </ Up—ﬁ/(l—ﬁ)d/\//t(u)>



Firms

Firms indexed by age a and date of birth t.

Calendartime =t + a

Production function

Yta=Ztalta

¢ Revenues

Rt,a = Ctl—:f(ztvaLt,a)ﬁi Zt,a = (Utl,gﬁzléa)l/ﬁ

Z+ 50 combined quality and technology shock



Firms

Z+ 2: combined quality and technology shock (“productivity”)

evolves according to

Zia=Zexp(Oet+01a+o0zdW; )

That is, Z+ 5 is @ geometric Brownian motion

dZ: 4
Zta

=0cdt+0;da+ozdWs,s Zoo=Z2

fe: growth of productivity of new firms

9,: growth of productivity of incumbent firms

0, — O is key parameter.



Firms

e Continuation requires Ag units of labor per unit of time.

¢ Value of a firm:
.
Vi(Z) = max Et/ e "(Re.a — Wetallta + Af])da
T 0

e T: stopping time



Balanced Growth Path

¢ Will look for equilibria where a bunch of things are growing at a
constant growth rate k

* Aggregate labor supply: H; = He"*

¢ Number of firms: M; = Me™

* Initial productivity Z; ¢ = Ze%?

* Total consumption C; = Ce*t. Per capita C;e~t = Celk—mt,

* Revenues Ry, = C{iP(Zt.aL+.2)P also grow at k.

e ()1

e Growth rate



Production Decisions along BGP

¢ Firms maximize variable profits R 5 — Wy 4L+ 5. Solution:
ﬁzt 2 )5/(15)

Ct+a
Wt4a

Rta— Wtyalea= (1 _6) (
¢ Therefore total profits can be written as

Rta— Weyalta — Weradp = Wepahp(e™ — 1)

where s, = S(Z) + 5 éﬁ {In <Zt,a —GEa)}
w128 C (92)7

A W\ w
e s.: firm size relative to fixed costs. This is a Brownian motion

and e

dsy =puda+odW; ,
6]

where u = m(@, —0g), o=

'60'
1-8°%




Exit Decision: Stopping Time Problem

Value of a firm is
Vi(Z) = weAeV(S(2))

where

.
V(s) =max E [/ e~ (rmr)a(es _ 1)
T 0

Stopping time problem = threshold policy: shut down when s falls
below b.

For s > b, the HJB equation holds

(r—r)V(s)=e" —1+V'(s)u+ %\/"(5)02

b determined by value matching and smooth pasting

V(b)=0, V/(b)=0



Exit Decision: Stopping Time Problem

e Can show: exit barrier determined by

(5 (-222)

W N2 r—K
where = — (—)
ere & a2+\/ o +02/2

and the HJB equation has solution

R
V(S)_I’—K,<1—i—£><e *1*#,52[)

* Faster aggregate productivity growth g T = u x 8, — 6 | = b T,
i.e. incumbents more likely to exit.




Entry

Labor cost of an arrival rate of £; entry opportunities per unit of
time:
Let = Nelt

* An entry opportunity yields a draw Z from a distribution J

Zero profit condition

e = A / V(S(2))dJ(Z)

For now: J exogenous



Kolmogorov Forward Equation

Density of measure of firms of age a and size s at time t

f(a, s, t)=m(a, s)lem

The KFE is

‘%(‘;:*ﬂ __Qf(a s, t)—g[uf(a s, t)] + ;6 ——[0*f(a,s, t)]

Note: unit drift of age da = dt

Substituting in f(a, s, t) = m(a, s)le"* yields

om(a, s) 162

= = —nm(a,s) — —[p,m(a )+ 5 235 =—[0°m(a, s)]



Boundary Conditions

* Denote size distribution of entering firms by G(s), derived from
J(Z2) = G(5(2))

* First boundary condition: at age zero

/mOX G(s)— G(b) alls> b

or more intuitively in terms of the density g(s) = G'(s)
m(0,s) =g(s), alls>b
e Second boundary condition: at the exit threshold

m(a,b) =0, alla>0



Boundary Conditions

¢ Lemma 1 the solution to the KFE subject to the boundary
conditions is

m(a,s) = /boo e MY(a, s|x)dG(x)

1 S—X KA\ ux-b)/(0%/2) s+ x—2b—ua
R el i G~ R o(Z5n )]

¢ where ¢ is the standard normal probability density.

* (a, s|x) is the density of survivors at age a with size s of the
cohort that entered with the same initial size x (not a p.d.f.)



s)

: evoluti
ion of
m(a

Life of a Cohort

SN

N
NN
NN

A

7
7
7
%

N

N

N
N

Nkt
N
NN

N
NN

N
N

N

SN\
N\
>

R
N
N

NN
N
R
A
N
$

N
NN
N

R
N
N
N
O

N
AN
R
NN
R
N
O
s~

W\
R
R

X
N
R

58



Aside: Practical Advice

¢ Question: how to find solutions for these kinds of ODEs/PDEs?

e Answer; there is a collection of known solutions to a big number
of ODEs/PDEs. This one apparently from Harrison (1985, p.46)

e if you ever encounter an ODE or PDE that you need to solve, plug
into Mathematica (function DSolve). Knows all known
solutions.



Size Distribution

¢ \Want to obtain size distribution. Almost there.

* Denote by 7(a, s|x) the probability density of survivors at age a
with size s of the cohort that entered with the same initial size x
(proportional to ¥(a, s|x))

-1
1— e—a*(x—b)
m(a, s|x) = (77) e ""Y(a, s|x)

* Integrate this over all ages, a, to get density conditional on initial
size

m(s|x) o e—(s=b) in {e(a—l—a*)(s—b) 1 elatan)(x=b) _ 1}

¢ Density of e® is our friend the double Pareto distribution. Can write
in a better way.

e From fact: if s has an exponential distribution, then e® has a Pareto
distribution.



Special Case: n =0

e when n = 0, then the tail exponents are a, = 0 and

N =)
a =

o022 (1%30%/2>




