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2. Six lessons

3. Benefit of hindsight: omissions of (early) models, are lessons robust?
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Epi-econ models: integrated frameworks for thinking about

1. Empirical evidence on health and economic outcomes over last two years

2. Policy tradeoffs: save most possible lives while minimizing econ damage?
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Typical evidence: epidemic, economy, policy (here for UK)
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Typical evidence: GDP loss vs deaths across countries4

Figure 2: International COVID-19 Deaths and Lost GDP
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Note: “GDP Loss” is the cumulative loss in GDP since the start of 2020 and is annualized. For
example, a value of 6 means that the loss since the start of 2020 is as if the economy lost six percent
of its annual GDP. GDP data are through 2020Q3 and COVID-19 deaths are as of February 26, 2021.

economies are fortunate in some way and avoid exposure to cases early on, they

may be able to continue their economic activity without seeing a substantial rise

in COVID-19 cases, at least for a while. Or areas that adopt good policies, such as

universal masking, may be able to safely continue operating schools and many busi-

nesses at a higher level of activity. Good policies and good luck may shift the purple

trade-off line “in” toward the origin, resulting in fewer deaths and smaller losses in

GDP.

Which of these forces is more dominant in the data? Or are they both important

so that when we look at the evidence, we will see a cloud of data points with no clear

correlation?

The answer for countries around the world is shown in Figure 2. The perhaps

surprising message of this graph is that the correlation is positive rather than neg-

ative. Rather than being dominated by a trade-off between COVID-19 deaths and

GDP losses, the data suggest that the two have moved together, at least over the

Source: Jones (2021) https://web.stanford.edu/~chadj/Macroeconomics_Covid.pdf

How make sense of evidence? Models can help.
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Review of Epi-Econ Models



Simplest prototype epi-econ model

Version here due to Gianluca Violante. Many similar models in literature.
https://conference.nber.org/confer/2020/EFGs20/Violante.pdf

• Start with: susceptibles St , infectious It , recovered Rt , deaths at rate δ

Ṡ = −βSI (S)
İ = βSI − γI (I)
Ṙ = γI (R)

• Add: economic activity Yt , normalize pre-pandemic Ȳ = 1 so Yt ≤ 1
• Infections⇔ activity:

1. Risky activity: infections↗ in activity: β′ > 0, e.g β(Y ) = β̄Y α, α > 0
2. “Fear factor”: activity↘ in infections: Y ′ < 0, e.g. Y(I) = e−σI , σ > 0

• Richer models: lots of heterogeneity (age, occupation, ...), ICU capacity, ...

5
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Ṡ = −β(Y )SI (S)
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Two polar positions in popular debate

1. “Tradeoff between lives & livelihoods”
• Focuses on dynamics of infections

İ = β(Y )SI − γI with β′(Y ) > 0

• Policy that reduces Y ↓ implies I ↓ and ultimately D ↓

2. “To save the economy, save people first”
• Focuses on behavioral response

Y = Y(I) with Y ′(I) < 0

• Policy that reduces I ↓ (and hence D ↓) implies Y ↑

In standard epi-econ models, both polar positions are present
6



Policy intervention: two types of policies

1. τ = activity-reducing policies: reduce transmissions via reducing activity Y
Examples: lockdowns, Pigouvian taxes, communication policy (e.g. Trump speech)

2. h = “health policies”: reduce transmissions without affecting activity Y
Examples: masks, contact tracing, better indoor ventilation, ...

Ṡ = −β(Y, h)SI (S)
İ = β(Y, h)SI − γI (I)
Ṙ = γI (R)
Y = Y(I, τ) (Y)

Example functional forms:

Y(I, τ) = min
{
(1− τ), e−σI

}
, β(Y, h) = β̄(1− h)Y α

7



Lives and livelihoods: use models to populate this graph

• Laissez-faire counterfactual, activity-reducing policies, health policiesTradeoff: Economic Activity vs. Covid Deaths?

COVID DEATHS PER MILLION PEOPLE

GDP LOSS (PERCENT)

20• Note: GDP loss and deaths both cumulative,
∫ T
0
(1− Yt/Ȳ )dt and

∫ T
0
Ḋtdt = DT
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Typical lockdown dynamics vs laissez-faire counterfactual

Here: simulations from richer Fu-Kaplan-Moll-Violante (2020) model
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Pandemic Possibility Frontier (Fu-Kaplan-Moll-Violante)
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Distributional Pandemic Possibility Frontier (Fu-Kaplan-Moll-Violante)
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Six lessons from epi-econ models



Lesson 1: “fear factor”⇒ large costs even in laissez-faire counterfactual

Simplistic view that can be dismissed: in absence of lockdowns, economy
would have experienced only very mild recession or no recession at all 11



Lesson 2: “fear factor” flattens and draws out epidemic

Dynamics of epidemic without behavior: model vs data

COVID Dynamics of daily deaths 
without behavior
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Source: Atkeson (2022) model with Alpha, Delta, Omicron variants
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Lesson 2: “fear factor” flattens and draws out epidemic

Dynamics of epidemic with behavior: model vs data
Predicted Dynamics with Behavior 

Dramatically flattens peaks and draws out pandemic
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Lesson 2: “fear factor” flattens and draws out epidemic

Atkeson (2022) “Behavior turns what would be a short and extremely sharp
epidemic into a long, drawn out one”
• effective reproduction number Re ≈ 1 for long time
• rel. to pure epi model, epidemic “overshoots” herd imm. threshold by less

Farboodi-Jarosch-Shimer, Atkeson-Kopecky-Zha, Bognanni-Hanley-Kolliner-Mitman,...
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Lesson 3: lockdowns save lives primarily by buying time & ICU capacity

Theoretically four broad channels through which lockdowns could save lives

1. reduce “epidemic overshoot”

2. eliminate disease (“#ZeroCovid”)

3. flatten curve below ICU capacity constraint

4. buy time
• vaccines
• better treatments
• learning, e.g. better hygiene

Epi-econ models:
1. overshoot small (straight from Re ≈ 1)
2. elimination impossible (by assumption but perhaps not so crazy, eg China)15
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Lesson 4: lockdowns⇒ tradeoff between lives & livelihoods
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Another simplistic view that can be dismissed: with blunt lockdown-only policy
(US, UK), there is no tradeoff between lives and livelihoods
• I’ve never seen upward-sloping frontier in reasonably calibrated model 16



Lesson 5: targeted lockdowns & Pigouvian taxes do better489ACEMOGLU ET AL.: OPTIMAL TARGETED LOCKDOWNSVOL. 3 NO. 4

et al. 2020; and Glover et al. 2020). The main difference is our systematic analysis of 
optimal policies. Brotherhood et al. (2020) and Glover et al. (2020) study infection 
and economic dynamics in settings with labor supply and consumption choices and 
present complementary results to ours, focusing on younger individuals’  risk-taking 
behavior and the implications of this for testing and conditional quarantining or the 
conflict between the young and the old about mitigation policies, though Glover 
et al. (2020) also discuss optimal policy. Baqaee et al. (2020) present a model where 
policy is targeted according to age and sector to investigate alternative reopening 
scenarios (but consider only policies where  policymakers link activity to the unem-
ployment rate and whether deaths are high and/or rising).

The next section presents our  multigroup SIR model. Section  II describes our 
parameter choices. Our main results are presented in Section III, which also con-
tains a number of robustness exercises. Section IV concludes.

I. Multigroup SIR Model

A. Model Assumptions

Time is continuous,  t ∈  [0, ∞)  , and individuals are partitioned into 
groups  j = 1, … , J  with   N j    initial members. The total population is normalized to 
unity so that   ∑ j  

      N j   = 1 . Individuals within each group are subdivided into suscep-
tible (S), infected (I), recovered (R), and deceased (D),

   S j   (t)  +  I j   (t)  +  R j   (t)  +  D j   (t)  =  N j  . 

Deaths

O
ut

pu
t l

os
s

0
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Maximal fully
effective control  

Optimal 
uniform policies 

Optimal
targeted policies 

Figure 1. Frontier: Economic Losses versus (Excess) DeathsDimensions considered in literature
1. Sectors: Baqaee-Farhi-Mina-Stock, Favero-Ichino-Rustichini, Azzimonti-Fogli-Perri-Ponder

2. Age: Acemoglu-Chernozhukov-Werning-Whinston, Brotherhood-Kircher-Santos-Tertilt, Glover-Heathcote-Krueger-RiosRull,...

3. Occupations: Fu-Kaplan-Moll-Violante 17
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• Caveat: political, ethical, practical issues
• Most policy is targeted in practice (e.g. “work from home if you can”)
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Lesson 5: targeted lockdowns & Pigouvian taxes do better

Pigouvian taxes: Fu-Kaplan-Moll-Violante, Bisin-Gottardi
18



Lesson 6: heterogeneity⇒ importance of social insurance

Data: extremely heterogeneous exposure & vulnerability by occupation (eg waiters)
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CARES act shifts down PPF: cost ↓ by 20% on average, highly redistributive
• stimulus checks, pandemic UI, PPP, pension saving withdrawals 19



Lesson 6: heterogeneity⇒ importance of social insurance

Data: extremely heterogeneous exposure & vulnerability by occupation (eg waiters)
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But: diverting $ from fiscal toward “health policies” may generate large gains
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Summary: Six Lessons from Epi-Econ Models

1. “Fear factor”⇒ large costs even in laissez-faire counterfactual

2. “Fear factor” flattens and draws out epidemic

3. Lockdowns save lives primarily by buying time and ICU capacity

4. Lockdowns⇒ tradeoff between lives & livelihoods

5. Targeted lockdowns & Pigouvian taxes do better

6. Heterogeneity⇒ importance of social insurance

20



Benefit of Hindsight: Omissions



Important features of Covid not included in early models

1. Waning immunity

2. Declining disease severity with partial immunity

3. Variants (Delta, Omicron etc)

Do these affect the six lessons?

Simple model to think this through

21



Important features of Covid not included in early models

1. Waning immunity

at rate α, vaccination at rate ν

2. Declining disease severity with partial immunity

• Assumption for cleanest results: δ2 = 0, i.e. die only from first infection

S I R
β(Y )I γ(1− δ)

• Everyone gets Covid eventually
• Without vaccines etc, fraction δ1 of pop. dies regardless of lockdowns

22
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Important features of Covid not included in early models

1. Waning immunity at rate α, vaccination at rate ν
2. Declining disease severity: infections I1, I2, .., declining death rate δ2 < δ1

• Assumption for cleanest results: δ2 = 0, i.e. die only from first infection

S1 I1 R1

β(Y )(I1 + I2) γ(1− δ1)

ν

S2 I2 R2

β(Y )(I1 + I2) γ(1− δ2)

α

α

• Everyone gets Covid eventually
• Without vaccines etc, fraction δ1 of pop. dies regardless of lockdowns
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⇒ All Six Lessons of Epi-Econ Models are Robust

1. “Fear factor”⇒ large costs even in laissez-faire counterfactual

2. “Fear factor” flattens and draws out epidemic

3. Lockdowns save lives primarily only by buying time and ICU capacity

4. Lockdowns⇒ tradeoff between lives & livelihoods

5. Targeted lockdowns & Pigouvian taxes do better

6. Heterogeneity⇒ importance of social insurance
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Open question: cross-country patterns? (FernandezVillaverde-Jones)4

Figure 2: International COVID-19 Deaths and Lost GDP
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economies are fortunate in some way and avoid exposure to cases early on, they

may be able to continue their economic activity without seeing a substantial rise

in COVID-19 cases, at least for a while. Or areas that adopt good policies, such as

universal masking, may be able to safely continue operating schools and many busi-

nesses at a higher level of activity. Good policies and good luck may shift the purple

trade-off line “in” toward the origin, resulting in fewer deaths and smaller losses in

GDP.

Which of these forces is more dominant in the data? Or are they both important

so that when we look at the evidence, we will see a cloud of data points with no clear

correlation?

The answer for countries around the world is shown in Figure 2. The perhaps

surprising message of this graph is that the correlation is positive rather than neg-

ative. Rather than being dominated by a trade-off between COVID-19 deaths and

GDP losses, the data suggest that the two have moved together, at least over the

Candidate explanations for countries with good outcomes in both dimensions
1. good “health policies” β(Y, h): masks, contact tracing, better indoor ventilation, ...
2. good luck: low β or δ, e.g. age structure

Important caveat: figure above from 2021, needs updating 24



Thanks!



Simplest prototype epi-econ model: reduced form

• Define
β̃(I) := β(Y(I))

• Clearly β′ > 0 and Y ′ < 0⇒ β̃′ < 0

• Example: β(Y ) = β̄Y α and Y(I) = e−σI ⇒ β̃(I) = β̄e−ασI

• Reduced form epi-econ model:

Ṡ = −β̃(I)SI (S)
İ = β̃(I)SI − γI (I)
Ṙ = γI (R)

25



More exposed occupations also more financially vulnerable
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