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“Many of the distortions associated with the present system of capital gains taxation result
from its deviation from the Haig-Simons approach. These deviations may have historical expla-
nations but their persistence is hard to rationalize from an economic perspective.” (Auerbach,
1989)

The treatment of capital gains due to changing asset prices lies at the heart of many debates
regarding the taxation of capital income and wealth. While capital gains are typically taxed
on realization (i.e. asset sale) in practice, a long tradition in public finance going back to von
Schanz (1896), Haig (1921), and Simons (1938) advocates for taxing capital gains on accrual.
This idea has recently made its way into policy proposals, including by the Biden administra-
tion.1 In the United States, such tax policies would invariably end up in the Supreme Court
which has never conclusively ruled on whether unrealized gains constitute income.2 Because
wealth changes due to asset-price movements typically dwarf ordinary saving and income flows
for top wealth holders, debates about wealth taxation also often end up being about the desir-
ability (and practicality) of taxing unrealized capital gains.

The existing public finance literature on optimal capital taxation abstracts from explicitly
modelling asset prices, and therefore provides no guidance in these debates.3 Our paper aims
to fill this gap by “putting the ‘finance’ into ‘public finance’.” That is, we study optimal redis-
tributive taxation in the presence of asset price fluctuations. Importantly, we do so adopting the
view of the modern finance literature that asset prices change not only in response to changing
cash flows but also due to changes in discount rates (Campbell and Shiller, 1988). In this di-
chotomy, “discount rates” simply means any sources of asset price changes other than current
and expected future cash flows. Empirically, asset prices move too much to be accounted for
by changing cash flows alone, both at high frequencies and over longer time horizons.4

We show that optimal redistributive taxes generally differ from the case with constant asset
prices. While there are many tax implementations of the optimal allocation, there always exists
a particularly simple and robust one that targets realized trades rather than asset holdings. This

1U.S. Office of Management and Budget (2022), U.S. Department of the Treasury (2022), Saez et al. (2021), and
Zucman (2024). Leiserson and Yagan (2021) calculate that the 400 wealthiest U.S. families paid an average tax rate
of only 8.2% in the years 2010 to 2018 by including unrealized capital gains in the tax base.

2This is despite the Supreme Court having repeatedly heard such cases since Eisner v. Macomber in 1920. The
key question is whether unrealized gains constitute income under the 16th Amendment of the U.S. constitution. See
Fox and Liscow (2024) for a useful summary of the legal arguments and the U.S. Supreme Court’s position.

3See, for example, Atkinson and Stiglitz (1976), Chamley (1986), and Judd (1985). Like us, Piketty et al. (2023)
lament the absence of asset-price effects from the literature. Interestingly, Lucas (1990) begins his review of the
literature with a discussion of capital gains taxation: “When I left graduate school, in 1963, I believed that the single
most desirable change in the U.S. tax structure would be the taxation of capital gains as ordinary income. I now
believe that neither capital gains nor any of the income from capital should be taxed at all. My earlier view was based
on what I viewed as the best available economic analysis, but of course I think my current view is based on better
analysis.” However, also Lucas does not explicitly consider changing asset prices.

4See for example Shiller (1981), Campbell and Shiller (1988), Cochrane (2011), Greenwald et al. (2019) and
van Binsbergen (2020), the secular increase in many measures of price-dividend ratios, and the decline in real interest
rates. While this is the conventional view, others have argued that fluctuations in cash flows are first order. Our reading
of this debate is that it is imperative to understand the tax implications of both sources.
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implementation, which is a combination of realization-based capital gains and dividend taxes,
applies without requiring knowledge of the source of asset-price changes. In contrast, taxing
unrealized capital gains is suboptimal whenever asset-price changes are not exclusively driven
by cash flow changes. The intuition is that, holding constant cash flows, asset-price increases
redistribute toward asset sellers who realize capital gains, away from asset purchasers who pay
a higher price for a given dividend stream, while not directly affecting those who do not trade.
Optimal redistributive taxation takes this dynamic into account, as well as accounting for any
changes in relative income due to cash flows changes.

Taxes that are optimal in environments with constant asset prices may cease to be optimal, or
change in counterintuitive ways, when asset prices fluctuate. While a wealth tax may be optimal
with constant asset prices, its progressivity needs to change whenever asset prices move and
optimal taxation may even prescribe tax cuts for the wealthiest when asset prices rise. Taxing
unrealized capital gains is optimal only in restrictive knife-edge cases, so that our results also
stand in contrast to the classic Haig-Simons comprehensive income tax concept.5

Our study of redistributive taxation with changing asset prices starts from a simple baseline
environment: a small open economy in which a large number of investors trade two assets
(risky capital and a risk-free bond) with exogenously given asset prices and asset returns that
are homogeneous across investors. Investors begin with heterogeneous endowments of the two
assets and face different income profiles. The small open economy assumption allows us to
study the implications of fluctuations in asset prices and cash flows on the income distribution
in a transparent manner. Later, we study various extensions, including general equilibrium and
heterogeneous returns, and show that the results from this simple setting generalize.

We are interested in how the optimal tax system redistributes in response to changing asset
prices. As a first step, we assume the government has access to type-specific lump-sum taxes
and characterize the set of first-best tax schedules that trace out the Pareto frontier. This bench-
mark is useful as it generates a clear distinction in how a investor’s tax burden should react to
changes in discount rates versus cash flows. We then show that the principles observed in the
first-best problem are present in a second-best allocation in which the government is restricted
to distortive taxes à la Mirrlees (1971), so that the classic tradeoff between redistribution and
efficiency arises. While the first-best is clearly not realistic and implies extreme predictions
about optimal tax rates, it turns out to be instructive about the optimal tax base, i.e., what
taxes should condition on depending on the sources of asset price changes. These results then
generalize in a natural way to more interesting second-best tax systems.

To explain our findings, it is useful to consider the standard definition for an asset’s return

Rt+1 =
Dt+1 + pt+1

pt
, (1)

5After the quote at the beginning of this introduction, Auerbach (1989) adds: “It is therefore disappointing and
puzzling that the debate about capital gains taxes continues to focus almost exclusively on tax rates rather than on tax
structure.” We wholeheartedly agree.
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where pt denotes the asset’s price and Dt its cash flow, i.e. the return equals dividend yield
plus capital gain. Suppose the economy is initially in a steady state with a constant asset price
p, dividend D, and associated asset return R. This is an example of the case typically studied
in the literature and the properties of optimal capital tax systems in such steady states are well
understood (see the literature discussion below). We instead allow {pt,Dt,Rt} to fluctuate
in flexible ways. Suppose that at time t = 0 a shock hits the economy and results in asset
prices, returns and cash flows deviating from the initial steady state. For example, asset prices
pt may increase because expected future cash flows Dt increase or for other reasons that are
independent of changes in cash flows Dt, i.e. discount rate changes. The question we are after
is: how should the tax system redistribute in response to these changes?

A useful stepping stone for answering this question is the idea of “Slutsky compensation,”
defined as the change in the investor’s budget that keeps the initial consumption bundle af-
fordable at the new prices and dividends. We show that this compensation generally requires
conditioning on realized trades: when asset prices rise, sellers benefit and hence need to be
taxed whereas buyers lose and hence need to be compensated. Dividend income changes are
similarly compensated or taxed. Building on the Slutsky-compensation logic, optimal first-best
taxation is straightforward: just like Slutsky compensation, it taxes sellers, compensates buyers,
and taxes dividend income changes. Importantly, it generally targets realized trades rather than
asset holdings.

There are two useful polar special cases. In the first special case, the time path of asset prices
{pt} changes while cash flows remain at the initial steady state D. This case corresponds to
asset price changes driven entirely by discount rates. In the second special case, asset prices
and cash flows {pt,Dt} instead change proportionately and in such a way that the asset return
remains at the initial steady state R, corresponding to asset prices driven entirely by cash flows.

We show that, in the first special case with changing discount rates, the change in the tax
burden depends only on investors’ realized trades (purchases and sales) and the price changes
relative to steady state—it is independent of investors’ asset holdings. Intuitively, rising asset
prices benefit sellers, who are therefore taxed, and hurt buyers, who are therefore subsidized. In
contrast, in the second special case with changing cash flows, optimal lump-sum taxes target the
investor’s individual wealth gain due to the asset price change, so that it is asset holdings rather
than transactions that matter. However, this is a knife-edge result: whenever asset-price changes
are not exclusively driven by cash flow changes, optimal lump-sum taxes target realized trades
as well. A simple implementation that works in both special (and all intermediate) cases is a
realization-based capital gains tax combined with a dividend tax.

Wealth taxes are sometimes likened to taxes on “presumptive income” (Zucman, 2024, or
the Dutch “box 3” wealth tax): for example, a 2% wealth tax is equivalent to a 40% tax on
presumed capital income from a constant asset return of 5%. When asset values increase and the
increase is entirely due to higher cashflows (the second special case), the asset return remains
constant and therefore the increase in presumptive income exactly matches the increase in
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actual income. But in all other cases, the return falls and therefore actual income rises by
less than presumptive income calculated as a constant return to the increased market value
of wealth. Thus “presumptive income” is overestimated and hence wealth taxes redistribute
suboptimally whenever asset valuations are not exclusively driven by cash flows.6

One asset class where the disconnect between income and asset valuation can be especially
pronounced is startups. These firms often generate little or no current income but may neverthe-
less command staggering valuations (e.g., “unicorn” valuations of $1bn). Furthermore, these
valuations then frequently collapse to zero down the road – see, e.g., Azevedo et al. (2025)
who document that founders receive zero exit value after more than 80% of U.S. venture capi-
tal deals. Taxes on wealth or unrealized capital gains would tax startup owners on these paper
valuations. By contrast, our theory implies that taxes should only be levied on cashflows and in
case of a successful exit.

While our formula for optimal redistributive taxes is reminiscent of realization-based capital
gains taxes in practice, it also differs in important ways. For example, optimal taxes (i) not only
tax sellers but also compensate buyers who experience “purchasing losses” when prices rise;
(ii) they compensate realized capital losses and tax “purchasing gains” when prices fall; (iii)
they tax net rather than gross transactions (selling and re-investing at the same price incurs no
tax liability); (iv) they adjust for inflation; and (v) the capital gain or loss is typically calculated
relative to a basis that differs from the historical basis at which the investor purchased the
asset. Finally, in the first-best case with lump-sum taxes, our formula corresponds to a tax rate
of 100%, i.e. the government taxes away realized capital gains in their entirety and uses the
proceeds to compensate the losers from rising prices.

The first-best tax scheme is designed for redistribution, not to replace missing insurance mar-
kets. As a result, there exist other implementations, including one that achieves all redistribution
in the initial period by ensuring that all investors hold the market portfolio and are therefore
equally affected by future asset price or cash flow fluctuations. Our tax scheme focusing on
net trades, however, does have important advantages in terms of simplicity and robustness over
ones that involve transfers only in the initial period, a point we discuss in more detail later on.

Turning to second-best tax systems à la Mirrlees (1971), our results regarding the optimal tax
base carry over from the first-best analysis in a natural way. In this environment, only investor
choices can be taxed, for example asset sales, consumption, or savings. Our interest remains
how the second-best optimal policy redistributes when asset prices change. We show that the
tax schedule monotonically increases as a function of trading gains, albeit with a slope less than
in the first-best. This is intuitive—taxing asset sellers in response to a price increase achieves a
preferred distribution of income, like in the first-best, but now also distorts saving behavior. We
also show that the optimal tax schedule converges to the first-best optimum as the investors’
inter-temporal elasticity of substitution goes to zero. Hence, our insights from the first-best

6Supplementary Appendix F further illustrates this analogy by means of a simple numerical example.
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tax system are not knife-edge, but extend qualitatively to environments with more limited and
realistic tax instruments.

If wealth is taxed rather than sales, optimal taxes may become less progressive when asset
prices rise. Intuitively, if those holding the asset at the end of the period are net purchasers,
they should be subsidized rather than taxed (relative to the baseline tax schedule). While this
example is extreme, it illustrates why the fluctuating market value of investors’ asset holdings
is a problematic target for redistributive taxes.

Our analysis of second-best tax systems also considers the ”lock-in” effect emphasized in the
capital gains taxation literature: realization-based taxes may incentivize deferring the liquida-
tion of appreciated assets and distort optimal portfolio allocation. Using a two-asset version of
our model, we show that an optimally designed second-best tax system avoids such distortions
even when it targets realized capital gains. It does so by targeting total net trades rather than
gains from selling individual assets: when an investor sells one asset and uses the proceeds to
purchase another one, there is no tax burden, thus eliminating the lock-in effect.

Finally, we consider several extensions: general equilibrium, return heterogeneity, and be-
quests. While some of these features modify our optimal tax formula in natural ways, the key
findings emphasized so far remain unchanged. Specifically, in contrast to the classic Haig-
Simons comprehensive income tax concept, there generally exists an implementation of opti-
mal redistributive taxes that targets realized trades. In fact, we show that when investors receive
heterogeneous cash flows, taxes on unrealized capital gains or wealth are no longer optimal
even when asset prices are driven entirely by cash flows, reinforcing our results from the base-
line setting. Our model with borrowing also speaks to an issue that has received attention in the
popular debate: wealthy individuals borrowing against appreciating assets rather than selling
them, often aiming to take advantage of the “stepped-up basis” for bequeathed assets as part
of a “buy, borrow, die” strategy. Our results suggest that basis step-up should be abolished,
eliminating the viability of such plans.

Literature. Our paper contributes to the literature studying the optimal taxation of capital
income and wealth.7 To differentiate our paper, it is again useful to consider the expression for
an asset’s return (1). The existing literature features either a constant asset price (and hence
no capital gains or losses) or works with variants of the neoclassical growth model. In this
model, asset-return movements are typically small, reflecting the disappointing asset-pricing
properties of the standard real business cycle model. Our analysis instead allows for flexi-
ble changes in asset returns that are independent of changes in cash flows, i.e. discount rate
changes. Within the environments it has considered, the literature has shown that taxing asset
holdings may be optimal, for example by means of a wealth tax. Our paper instead shows that

7Apart from the classic contributions mentioned above, see the references in Section 1.5 and the surveys by
Golosov et al. (2007), Banks and Diamond (2010), Bastani and Waldenstrom (2020), Stantcheva (2020), and Scheuer
and Slemrod (2021).
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such taxes are problematic whenever asset prices fluctuate and are not exclusively driven by
cash flow changes. Instead, in all such cases, a combination of realization-based capital gains
and dividend taxes still implements the optimal allocation.

In line with our argument that it is essential to “put the ‘finance’ into ‘public finance’,” a
growing positive literature has documented an important role for asset-price and interest-rate
changes in driving wealth inequality (e.g. Bonnet et al., 2014, Rognlie, 2015, Kuhn et al.,
2020, Gomez, 2016, Wolff, 2022, Gomez and Gouin-Bonenfant, 2020, Cioffi, 2021, Cather-
ine et al., 2020, 2024, Greenwald et al., 2021, Moll, 2020, Martínez-Toledano, 2022, Fagereng
et al., forthcoming, Coven et al., 2024). The logic of our results is related to Moll (2020) and
Fagereng et al. (forthcoming) who study the welfare-relevant redistributive effects of changing
asset prices. Our paper contributes to this literature by instead studying the normative implica-
tions of changing asset prices, specifically their implications for optimal capital taxation.

There is also an empirical literature studying behavioral responses, specifically of asset sales,
to capital gains taxation aiming to estimate the relevant elasticities.8 Our paper tackles optimal
distortive taxation à la Mirrlees (1971) only in a stylized two-period model, which is not suit-
able for making quantitative predictions about optimal tax rates, but such elasticities will be
key inputs in more quantitative work.

While the modern capital taxation literature provides no guidance on how to tax capital
gains, an older literature anticipates some of the ideas in our paper using verbal or graphical
arguments. This includes Paish (1940), Kaldor (1955) and Whalley (1979), which were partly
reactions to Haig (1921) and Simons (1938) who developed the eponymous income concept.

Roadmap. Section 1 spells out our baseline environment. Section 2 focuses on a special
case with two time periods and no risk to convey our key results most transparently. Section 3
studies the first-best allocation assuming that the government has access to type-specific lump-
sum taxes. In contrast, Section 4 considers the second-best problem with distortive taxation
and discusses the lock-in effect. Section 5 shows how our findings carry over to the stochastic
multi-period model of Section 1. Section 6 considers extensions and Section 7 concludes.

1. BASELINE MODEL

We begin by spelling out our baseline environment, which is kept purposely simple: A large
number of investors trade two assets (risky capital and a risk-free bond) in a small open econ-
omy with exogenous asset prices and returns that are homogeneous across investors. In Section
6, we will consider various extensions, including general equilibrium, return heterogeneity,
and intergenerational considerations. For now, we omit taxes from the analysis, which we will
introduce in Section 3.

8See for example Poterba (2002), Feldstein et al. (1980), Agersnap and Zidar (2021), and Msall and Næss (2025).
There are also theoretical and quantitative studies of behavioral responses including the lock-in effect (e.g. Constan-
tinides, 1983, Chari et al., 2005, Smith and Miller, 2023).
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1.1. Investors

Time is discrete and indexed by t= 0,1, ..., T , where T may be finite or infinite. Let st denote
the state of nature in period t, which takes discrete values in a set S , and let st ≡ {s0, s1, . . . , st}
denote the history of states up to and including period t with associated probabilities π(st).
When convenient, we shall suppress the history notation and simply use the time index.

There is a continuum of heterogeneous investors indexed by their type θ ∈ [θ, θ̄], which is
distributed in the population according to the cumulative distribution function F (θ). Investors
have preferences over consumption sequences, {ct(θ, st)}t,st , captured by the utility function
U({ct(θ, st)}), which is assumed to be homothetic, strictly increasing, strictly concave and dif-
ferentiable in all its arguments. We embed the probability of history st inside the function U ,
which allows us to nest both expected utility and other popular specifications, such as Epstein
and Zin (1989). Investors receive type-specific exogenous income flows {yt(θ)}Tt=0. Since we
focus on wealth and capital gains, we assume for simplicity that the income paths are deter-
ministic for each type.

Households can transfer income across periods by saving in two assets: a potentially risky
asset k that pays a dividend stream {Dt(s

t)}t,st and a risk-free, zero-coupon bond b. For now,
we also take prices as given, with pt(s

t) denoting the price of capital and qt(s
t) the price

of the bond in period t. Investors are endowed with initial assets {k0(θ, s−1), b0(θ, s−1)} at
time zero and, at each history st, choose a portfolio {kt+1(θ, s

t), bt+1(θ, s
t)} to carry into the

next period. There is no short-selling constraint, and hence asset positions may be positive or
negative. In particular, investors can have negative bond holdings (i.e., borrow) while at the
same time owning the capital asset. In Section 5.2 we will use this setup to discuss optimal
taxation when investors borrow against appreciating assets.

The problem of an investor of type θ is to maximize her utility

U(θ) = max
{ct(θ,st),kt+1(θ,s

t),bt+1(θ,s
t)}

t,st

U ({ct(θ, st)}t,st) subject to

ct(θ, s
t) + pt(s

t)(kt+1(θ, s
t)− kt(θ, s

t−1)) + qt(s
t)bt+1(θ, s

t)

= yt(θ) +Dt(s
t)kt(θ, s

t−1) + bt(θ, s
t−1) ∀t, st.

(2)

We impose pT (s
T ) = qT (s

T ) = 0 if T is finite or a No-Ponzi condition if T =∞.

1.2. Aggregate economy

The economy’s aggregate resource constraint is found by simply aggregating investors’ bud-
get constraints (2) across individuals. To this end, we use the convention to denote aggregate
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variables by capital letters, for example

Ct(s
t) =

∫
ct(s

t, θ)dF (θ), Kt(s
t−1) =

∫
kt(s

t−1, θ)dF (θ), Bt(s
t−1) =

∫
bt(s

t−1, θ)dF (θ),

and so on. With this notation, the aggregate resource constraint is

pt(s
t)Kt+1(s

t)+qt(s
t)Bt+1(s

t)+Ct(s
t) = (pt(s

t)+Dt(s
t))Kt(s

t−1)+Bt(s
t−1)+Yt (3)

for all t, st. As already noted, our benchmark analysis focuses on a small open economy with an
exogenously given time path for asset prices and dividends {qt(st), pt(st),Dt(s

t)}t,st . Hence,
the economy’s aggregate bond and capital holdings at time t + 1 may differ from those at t
as the economy as a whole may be a net buyer or net seller of B or K . In Section 6.1, we
alternatively consider a closed-economy general equilibrium version of the model in which the
assets are in fixed supply, so that sales or purchases are zero in the aggregate: for every seller,
there is a buyer.

1.3. Sources of asset-price changes

Our interest is in the taxation of gains or losses due to changes in asset prices. The asset-
pricing literature emphasizes different sources of asset price changes, in particular distinguish-
ing between asset discount rates and cash flows. In this dichotomy, “discount rates” simply
means any sources of asset price changes other than current and expected cash flows. Using a
decomposition of observed asset price changes due to Campbell and Shiller (1988), much of
this literature has found that discount rate shocks account for most of asset price fluctuations.9

Other studies have argued that fluctuations in cash flows are first order.10 Our reading of this
debate is that it is imperative to understand the tax implications of both sources.

Our partial equilibrium model takes dividends {Dt(s
t)} and asset prices {pt(st), qt(st)} as

given. Instead, the perspective of the asset pricing literature is to treat required asset returns or
stochastic discount rates as a primitive and prices as an outcome. One way of thinking about
this is that, in equilibrium models, it is typically the discount factor that is pinned down which,
in turn, determines asset prices. To this end, retain the small-open-economy assumption and
denote by mt+1(s

t+1) the stochastic discount factor of the representative counterparty in global
financial markets between history st and st+1. To simplify notation, we drop the st-arguments
and write mt+1. Using this, the asset prices in period t satisfy

qt = Et [mt+1] , (4)

pt = Et [mt+1 (Dt+1 + pt+1)] . (5)

9See Campbell (2018, Section 5.3.1) for an expository derivation of the Campbell-Shiller decomposition.
10See for example, Larrain and Yogo (2008) and Atkeson et al. (2024), but also see Nagel (2024).



PUTTING THE ‘FINANCE’ INTO ‘PUBLIC FINANCE’ 9

In words, since a bond purchased in period t pays off one unit of consumption in all states of
the world in period t+1, its price is given by the mean stochastic discount factor. Similarly, the
price of the risky asset at time t equals the expected discounted sum of dividend and price at
t+1, i.e., it consists of dividend yield and capital gain. Dividing both sides by pt and using the
definition of the asset return Rt+1 in equation (1) yields 1 = Et[mt+1Rt+1], so the stochastic
discount factor mt+1 and Rt+1 are inversely related. Defining

mt→t+k ≡mt+1 ·mt+2 · · ·mt+k

as the stochastic discount factor between history st and st+k and iterating on equation (5) yields

pt = Et

[
T−t∑
k=1

mt→t+kDt+k

]
, (6)

i.e., the asset price equals the expected present-discounted value of future dividends. The asset
price may therefore change for two reasons: changing dividends {Dt+k} or changing discount
factors {mt→t+k}. Accordingly, we can consider the following two extremal cases:

1. Changes in asset prices {pt, qt} driven entirely by changes in the stochastic discount fac-
tor {mt} while holding dividends {Dt} fixed. An important special case occurs when
discount rates change such that the bond price {qt} and hence the risk-free interest rate
{1/qt} remain unchanged, which corresponds to a pure risk-premium change.

2. Changes in the asset prices {pt} driven entirely by changes in dividends {Dt} while hold-
ing the stochastic discount factor {mt} fixed (the bond prices {qt} remain constant in this
case). An important special case is the Gordon growth model (Gordon and Shapiro, 1956)
or stochastic versions of it.

Both of these cases are the opposite extremes of the general, intermediate case, with arbitrary
changes in {pt, qt} and {Dt}, which corresponds to asset price changes driven by a mixture of
dividend and discount rate changes.

Thus, our approach is flexible enough to capture a wide range of state-of-the-art asset pric-
ing models. For example, since by equations (4) and (5) the asset prices {pt, qt} depend on the
probabilities π(st) with which different histories occur (through the expectations operator), we
can also allow for subjective beliefs as potential drivers of asset prices (Adam et al., 2017, Bor-
dalo et al., 2023). More optimistic beliefs correspond to putting higher subjective probabilities
π̃(st) on histories in which cash flows Dt(s

t) are high. This generates an increase in the asset
price pt while leaving actual cash flows unaffected. Changes in subjective beliefs are therefore
equivalent to discount rate shocks (Special Case 1).
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1.4. The deterministic case

While our results hold for the general model we have just introduced, some insights become
particularly easy to understand in the special case without uncertainty (|S|= 1). Then (4) and
(5) imply qt =mt+1 = 1/Rt+1, so the bond and the capital asset are equivalent and the model
collapses to the single-asset case. Furthermore, rather than considering different realizations
of random variables, the deterministic case lends itself to simple comparative statics exercises
which can be interpreted as realizations of MIT shocks.

Comparative statics as MIT shocks. In the deterministic case, equation (6) simplifies to

pt =
T−t∑
k=1

Dt+k

Rt→t+k

, (7)

where Rt→t+k is the cumulative return between time t and t+ k:

Rt→t+k ≡Rt+1 ·Rt+2 · · ·Rt+k. (8)

Below we will often conduct comparative statics in which the time path of some variable
changes from a baseline to an alternative, which then induces a change in asset prices. For
example, in Special Case 2 above, dividends may change from {Dt} to {Dt}= {Dt +∆Dt}
holding constant {Rt}= {Rt}, resulting in a change in the time path of asset prices

∆pt =
T−t∑
k=1

R
−1

t→t+k∆Dt+k. (9)

Alternatively, in Special Case 1 above, asset prices may change without any corresponding
change in dividends. One useful interpretation of such comparative statics is as MIT shocks, i.e.
realizations of zero-probability events in a stochastic setting: at time t, some new information
arrives which changes asset prices going forward. As we show when we analyze the fully
stochastic model in Section 5, our expressions take the same form regardless of whether we
conduct comparative statics in a deterministic setting or compare across histories in a stochastic
setting. For this reason, our analysis in Sections 2 to 4 focuses on the deterministic case.

Haig-Simons income. As already noted, in the deterministic case, the model collapses to
the single-asset case. Dropping the bond, we can write the budget constraint (2) as

ct(θ) + pt(kt+1(θ)− kt(θ)) = yt(θ) +Dtkt(θ) ∀t≥ 0, (10)

which states that “consumption plus saving equals income.” An equivalent way of writing this
accounting identity adds unrealized capital gains (pt−pt−1)kt(θ) on both sides, thus changing
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the definitions of saving and income (consumption is unchanged):

ct(θ) + ptkt+1(θ)− pt−1kt(θ)︸ ︷︷ ︸
change in wealth

= yt(θ) +Dtkt(θ) + (pt − pt−1)kt(θ)︸ ︷︷ ︸
Haig-Simons income

∀t≥ 0.

Formulation (10) features disposable income, whereas this formulation features “Haig-Simons
income” which includes unrealized capital gains (Haig, 1921, Simons, 1938). Defining the
market value of wealth at(θ)≡ pt−1kt(θ) and the net return including capital gains rt ≡Rt−1,
Haig-Simons income also equals yt(θ) + rtat(θ), i.e. income including total capital income.11

Similarly, adding at(θ) on both sides of the budget constraint yields the standard

ct(θ) + at+1(θ) = yt(θ) +Rtat(θ) ∀t≥ 0, (11)

with a0(θ) = p−1k0(θ) given.

1.5. Comparison to setups studied in the capital taxation literature

Before proceeding, we briefly connect our setup to other models in the existing literature on
optimal capital taxation. These make different assumptions on the determination of asset prices
and dividends {pt,Dt}, and hence returns {Rt}.

Partial equilibrium models. This is the special case with Rt =R for all t. The most obvious
way of generating this is to assume that pt = p and Dt =D for all t. Alternatively, prices and
dividends could grow at the same constant rate. This captures models of capital taxation with
a linear savings technology, such as the finite-horizon models based on Atkinson and Stiglitz
(1976) (e.g. Saez, 2002, Scheuer and Wolitzky, 2016, Hellwig and Werquin, 2024, Ferey et al.,
2024), some of the new dynamic public finance literature (surveyed in Golosov et al. (2007)),
or infinite-horizon partial equilibrium models such as Saez and Stantcheva (2018).

Neoclassical growth model. Starting with Chamley (1986), many papers have studied opti-
mal capital taxation in variants of the growth model. Denote by

∑T

t=0 β
tU(Ct) the preferences

of the representative consumer and by f(Kt,AtLt) the constant-returns technology for pro-
ducing output, where Ct is consumption, Kt is capital, At is productivity, and Lt is labor with
inelastic supply Lt = 1. How to map the growth model into our setup depends on the particular
decentralization. In any case, the asset return is Rt+1 = fK(Kt+1,At+1) + 1− δ and this asset
return equals the relevant discount rate (this is the standard Euler equation):

Rt+1 =
1

β

U ′(Ct)

U ′(Ct+1)
. (12)

11The mismatching time subscripts in at(θ)≡ pt−1kt(θ) are solely due to our notational convention which uses
kt(θ) to denote asset holdings at the beginning of period t. Alternatively, using kt(θ) to denote asset holdings at the
end of period t, (2) becomes ct(θ)+pt(kt(θ)−kt−1(θ)) = yt(θ)+Dtkt−1(θ) so that wealth is at(θ)≡ ptkt(θ).
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Furthermore, the unit price of capital (relative to consumption) equals one because the con-
sumption good can be converted into investment one-for-one.12

In contrast, dividends and asset prices {Dt, pt} differ across decentralizations. For example,
our asset may correspond to shares in the representative firm which are in unit fixed supply,
the typical assumption in the literature studying asset pricing in production economies (e.g.
Jermann, 1998).13 The cash flows Dt are then firm profits net of investment and the asset price
equals the firm’s capital stock pt =Kt+1 (see Supplementary Appendix A so variations in the
capital stock generate capital gains and losses.

An interesting case is that of a balanced growth path (BGP) with productivity growth
At+1/At = G > 1 and isoelastic preferences U ′(C) = C−1/σ . On this BGP, the asset return
is constant and pinned down from R= (1/β)G1/σ but it consists of both a dividend yield and
a capital gains component:

Dt+1

pt
=R−G,

pt+1

pt
=G.

Capital income is the sum of dividend income plus (unrealized) capital gains and Chamley’s
result is that the long-run tax rate on this combined capital income should be zero.

Our interest is in optimal capital gains taxation in response to asset-price fluctuations away
from such a balanced growth path. With the right decentralization, a stochastic version of the
model above (as in, for example, Zhu, 1992, Chari and Kehoe, 1999) would feature such asset-
price fluctuations. However, with standard shock processes, movements in the stochastic dis-
count factor and hence asset return Rt+1 would be quantitatively small, analogous to the dis-
appointing asset-pricing properties of the real business cycle model.14 We instead allow for
flexible stochastic processes for the drivers of asset prices, including potentially large fluctua-
tions in stochastic discount factors and asset returns.

Growth models with heterogeneous households. Going back to Judd (1985), many con-
tributions have studied capital taxation in growth models with heterogeneous households or
entrepreneurs (see Werning (2007), Shourideh (2012), Farhi et al. (2012), Straub and Wern-
ing (2020), Benhabib and Szöke (2021) and Guvenen et al. (2023, 2024) for recent examples).
Despite the (often) rich heterogeneity, the backbone of all of these papers is the neoclassical
growth model, so the discussion in the preceding paragraph still applies.

Our setup. In sum, the setups studied in the existing literature feature either constant as-
set prices or small movements of asset returns and a constant unit price of capital. We instead

12We discuss this property in more detail in Supplementary Appendix A where we also discuss how to break it.
13Chari et al. (2018), an earlier version of Chari et al. (2020), analyzes optimal capital taxation in such a setup.
14The difficulty with explaining asset returns in RBC models is connected to the assumption that the consumption

good can be converted into investment one-for-one. For example, Jermann (1998) writes that “in the standard one-
sector model agents can easily alter their production plans to reduce fluctuations in consumption. This suggests that
the frictionless and instantaneous adjustment of the capital stock is a major weakness in this framework.”
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study optimal taxation with exogenous stochastic processes for discount factors and dividends
{mt,Dt} and associated prices and returns {pt,Rt}. This allows us to take on board the mod-
ern finance view that asset prices change not only because of changing cash flows but also
due discount rates. While our baseline analysis is therefore silent on the ultimate fundamental
drivers of asset prices (preferences and technology), Sections 5 and 6 show that our findings
remain valid in richer environments endogenizing these fluctuations.

1.6. Efficient allocations

We conclude this section by evoking an auxiliary property of first-best Pareto efficient allo-
cations in our general model that will be useful below. For now we do not consider the question
of implementing these allocations with taxes, which will be the focus of the next sections.

Let ω(θ) be the Pareto weight on an investor of type θ. Any Pareto efficient allocation
{c∗t (st, θ)} must satisfy the following sub-problem:

max
{c(st,θ)}

∫
ω(θ)U({c(st, θ)})dF (θ) s.t.

∫
c(st, θ)dF (θ)≤Ct(s

t) ∀t, st (13)

for some aggregate consumption {Ct(s
t)}. The following lemma shows that, given our as-

sumption of homothetic preferences, any optimum will obey a linear sharing rule.

LEMMA 1: Any solution {c∗t (st, θ)} to problem (13) satisfies

c∗t (s
t, θ) = Ω(θ)Ct(s

t) ∀θ, t, st

for some θ-dependent constant Ω(θ) that is increasing in ω(θ) and satisfies
∫
Ω(θ)dF (θ) = 1.

This property will allow for particularly transparent expressions in our benchmark results
below on how first-best optimal taxes respond to changes in asset prices. In Section 4, we will
consider second-best optimal taxes where this property no longer necessarily holds.

2. TWO TIME PERIODS

To build intuition, we now turn to the case with two time periods and no risk. Our analysis
of optimal taxation in the next two sections uses this model before we show in Section 5 that
our findings carry over to the general multi-period case with uncertainty.

2.1. The investor’s problem

With two time periods t= 0,1 and no risk, we can drop the bond (as discussed in Section 1)
and the investor’s problem is to maximize utility U(c0(θ), c1(θ)) subject to:

c0(θ) + p(k1(θ)− k0(θ)) = y0(θ), (14)
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FIGURE 1.—Example of heterogeneity in initial assets and incomes over time

c1(θ) = y1(θ) +Dk1(θ). (15)

Given that the world ends after time period 1, the asset price p1 = 0. For simplicity, we also
assume that the asset pays no dividend in the first period D0 = 0. Given this, we then drop the
time-subscripts on p0 and D1 to ease notation. The asset’s returns in the two time periods are
given by

R0 ≡
p

p−1

and R1 ≡
D

p
, (16)

which is the standard expression (1) with D0 = p1 = 0 and where p−1 is a baseline price.
A useful reformulation of the investors’ problem is in terms of asset sales x(θ) ≡ k0(θ)−

k1(θ), where x > 0 represents sales and x < 0 purchases of k. Using this, the investors solve:

U(θ)≡ max
{c0(θ),c1(θ),x(θ)}

U(c0(θ), c1(θ)) s.t.

c0(θ) = y0(θ) + px(θ)

c1(θ) = y1(θ) +D(k0(θ)− x(θ))

(17)

The t = 0 budget constraint states that consumption c0(θ) equals exogenous income y0(θ)

plus revenue from asset sales px(θ). The t= 1 budget constraint states that consumption c1(θ)

equals exogenous income y1(θ) plus capital income D(k0(θ)−x(θ)) consisting of the dividend
payments D on the assets brought forward to period 1, k0(θ)− x(θ).

Fundamentally, investors differ in initial asset holdings k0(θ) and incomes {y0(θ), y1(θ)}.
This heterogeneity generates gains from trade, with natural buyers and sellers of the as-
set. Figure 1 depicts an example in which high-θ types have lower initial income y0(θ) but
higher future income y1(θ) and relatively similar initial asset holdings k0(θ). In this exam-
ple, low-θ types are buyers of the asset with x(θ) < 0 whereas high-θ types are sellers with
x(θ) > 0. Effectively, low-θ types, who have a more front-loaded income profile, are savers
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(with c0(θ)< y0(θ)) whereas high-θ types, who have more future income, are borrowers (with
c0(θ)> y0(θ)).15

It is sometimes useful to combine the two period budget constraints in (17) into a present-
value budget constraint:

c0(θ) +
p

D
c1(θ) = y0(θ) +

p

D
y1(θ) + pk0(θ). (18)

This constraint states that the present-discounted value of consumption (discounted at the asset
return R1 = D/p defined in (16)) equals the present-discounted value of income plus initial
wealth. This constraint can also be aggregated across all investors to yield

C0 +
p

D
C1 ≤ Y0 +

p

D
Y1 + pK0, (19)

which is the economy’s aggregate resource constraint in this partial equilibrium model.
Sources of asset-price changes. In this model, the discussion of cash flows and discount

rates as drivers of asset-price changes in Section 1.3 becomes particularly simple. Treating the
required return R1 and dividends D as the primitives in (16), the two-period version of (7) is
simply p=D/R1. Special Case 1 is thus the case in which the asset price p changes holding
dividends D fixed. On the opposite extreme, Special Case 2 is the case in which both p and D

change proportionately such that the asset return R1 =D/p stays constant.

2.2. An Envelope Condition

The goal of our paper is to study how the optimal tax system deals with changing asset prices.
As a warm up, it is useful to first consider a simpler question: what are the redistributive effects
of rising asset prices and cash flows, i.e., who wins and who loses as a result of these changes?
Consider small deviations of the asset price dp and dividends dD. Following Dávila and Ko-
rinek (2018), Moll (2020) and Fagereng et al. (forthcoming), we use the envelope theorem to
differentiate the value function U(θ) of investors defined in (17) to obtain

dU(θ) = Uc0(θ)
(
x(θ)dp+

p

D
k1(θ)dD

)
. (20)

Consider first Special Case 1: the asset price rises (dp > 0) but cash flows are fixed (dD = 0).
The marginal welfare effect is given by marginal utility times the extent to which this rise
relaxes the budget constraint at t = 0, namely asset sales x(θ) times the price change dp.
Intuitively, a rising asset price benefits sellers of the asset (i.e., x(θ)> 0) and hurts buyers (i.e.,
x(θ)< 0). To first order, it does not affect individuals who do not plan to trade (i.e., x(θ) = 0):

15For example, when interpreting the asset as a bond, (2) implies the budget constraints c0(θ) = y0(θ)+ b0(θ)−
qb1(θ) and c1(θ) = y1(θ) + b1(θ) where q is the bond price. Thus, those with a steeper income profile (e.g., more
future human capital) are borrowers who sell bonds (b1(θ)< 0) and vice versa.
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for them, the increasing asset price is merely a “paper gain” with no corresponding effect on
welfare. Hence, only asset transactions matter whereas asset holdings do not.

When dividends rise (dD > 0)—as in Special Case 2—the second term in (20) becomes
non-zero since this directly benefits asset holders (k1(θ)> 0). However, it remains true that the
welfare effect of the asset-price change dp itself depends only on asset transactions x(θ).

3. FIRST BEST

We are interested in how the optimal tax system redistributes in response to changing asset
prices. As a first step, we will assume that the government has access to type-specific lump-
sum taxes. While this implies extreme predictions about tax rates, it turns out to be instructive
about the optimal tax base, i.e., what quantities taxes should target, which is our main object of
interest. We will consider more realistic, second-best tax systems in Section 4.

3.1. First-best consumption allocation

For a given asset price p and dividend D, any Pareto efficient allocation {c∗0(θ), c∗1(θ)} solves

max
{c0(θ),c1(θ)}

∫
ω(θ)U(c0(θ), c1(θ))dF (θ) s.t. (19). (21)

By Lemma 1, we have c∗t (θ) = Ω(θ)C∗
t , so the planner assigns to each investor θ a time-

invariant share of (optimally chosen) aggregate consumption C∗
t . The optimal allocation can

be implemented in a decentralized equilibrium when the government is able to redistribute with
type-specific lump-sum taxes T0(θ) in period 0 and T1(θ) in period 1. The investors’ budget
constraints (14) and (15) become

c0(θ) = y0(θ) + px(θ)− T0(θ) (22)

c1(θ) = y1(θ) +D(k0(θ)− x(θ))− T1(θ). (23)

We impose the government budget constraints∫
T0(θ)dF (θ) =

∫
T1(θ)dF (θ) = 0,

which implies, without loss, that the government does not own assets itself.
To back out the optimal taxes from the optimal consumption allocation {c∗0(θ), c∗1(θ)}, we

can use the budget constraints (22) and (23). Given the ability of an investor to move resources
inter-temporally, T0(θ) and T1(θ) are not separately pinned down and we require a normal-
ization. One example is to set T1(θ) = 0. Then the second-period budget constraint (23) de-
termines x∗(θ) and we obtain T0(θ) from the first-period budget constraint (22). However, we
will also consider alternative normalizations below when this is convenient.
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3.2. Taxing changing asset prices

We begin with the general case of prices and dividends (p,D) that vary relative to some
baseline values (p,D), allowing for asset prices driven by a mixture of discount rate and divi-
dend changes. The goal is to design a tax rule T0(θ) = T0(θ;p,D) that optimally redistributes
across investors in response to these (p,D) variations. We denote by T 0(θ) = T0(θ;p,D) the
taxes that implement the Pareto efficient allocation at the baseline prices and dividends, and by
∆p= p− p and ∆D =D−D the changes in prices and dividends relative to the baseline.

PROPOSITION 1: Let the asset price change from p to p= p+∆p and dividends from D to
D =D+∆D. Then the optimal tax T0(θ) (when T1(θ) is held fixed) is given by

T0(θ) = T 0(θ) + x(θ)∆p+
p

D
k1(θ)∆D−Ω(θ)

[
X∆p+

p

D
K1∆D

]
= T 0(θ) + x(θ)∆p+

p

D
k1(θ)∆D−Ω(θ)

[
X∆p+

p

D
K1∆D

]
where x(θ) and k1(θ) are investor θ’s asset sales and second-period asset holdings at the new
price p and dividends D, X and K1 are the corresponding aggregate asset sales and holdings,
and, similarly, x(θ), k1(θ), X , and K1 are asset sales and holdings at the baseline price p and
dividend D.

Slutsky Compensation. To build intuition for this result, it is helpful to relate it to the con-
cept of “Slutsky compensation,” which is sometimes used to define income and substitution
effects of price changes. Slutsky compensation is defined as the change in the investor’s total
budget (i.e., the change in initial endowment y0) that keeps the initial consumption bundle af-
fordable at the new prices (e.g. Mas-Colell et al., 1995, pp. 29-30).16 Using this idea, we have
the following lemma:17

LEMMA 2: When the asset price changes from p to p= p+∆p and dividends change from
D to D+∆D, the corresponding Slutsky compensation ∆y0(θ) is given by

∆y0(θ) =−x(θ)∆p− p

D
k1(θ)∆D.

This reveals that the first part of the optimal tax change characterized in the first equation in
Proposition 1 coincides with the Slutsky compensation for the underlying price and dividend

16The standard use of Slutsky compensation is to compute “Slutsky-compensated demand.” In particular, the dif-
ference between Slutsky-compensated demand at the new prices and demand at the old prices is one definition of the
substitution effect. An alternative definition of income and substitution effects is based on “Hicksian compensation,”
which is the change in total budget that restores the original level of utility. We thank Dejanir Silva for pointing out
the connection of the welfare gains formula (20) to the Slutsky compensation idea. See Caramp and Silva (2023) for
a related result in the context of monetary policy transmission via asset prices.

17The term “Slutsky compensation” is normally reserved for pure price changes. Here and elsewhere we use it to
also refer to compensation of dividend changes ∆D.
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change. It is useful to organize the interpretation of the result and why it is related to Slutsky
compensation along the special cases from Section 1.3.

Special Case 1: Only Discount Rate Changes

This is the first experiment discussed in Section 1.3, namely, an asset price change ∆p exclu-
sively driven by a change in the discount rate and hence holding dividends constant (∆D = 0).
Then we immediately obtain the following corollary of Proposition 1:

COROLLARY 1: Let the asset price change from p to p = p+∆p holding dividends fixed
D =D. Then the optimal tax T0(θ) is given by

T0(θ) = T 0(θ) + x(θ)∆p−Ω(θ)X∆p= T 0(θ) + x(θ)∆p−Ω(θ)X∆p.

The first equation shows that the response of the optimal tax system to an asset price change
is closely related to the Slutsky compensation from Lemma 2. Indeed, the two would coincide
if there were no aggregate asset trade with the rest of the world, X = 0. The change in T0(θ)

makes investor θ’s original consumption allocation just affordable again, and then redistributes
the aggregate capital gains in the optimal way, determined by the welfare weights Ω(θ).

According to Lemma 2, to make investors’ initial consumption bundle just affordable, buyers
(i.e., x(θ)< 0) are compensated for the price increase (subsidized) whereas sellers (i.e., x(θ)>
0) are taxed. Figure 2 provides a graphical representation of Slutsky compensation based on
the Fisher diagram, the standard graphical apparatus for intertemporal consumption choice
problems. However, we include only the budget sets, and omit the indifference curves. Panel
(a) plots the case of a seller while panel (b) plots that of a buyer. In both panels, the steeper solid
line is the budget constraint at the initial asset price p and the dashed line is that at the new,
higher price p. A change in the asset price rotates the budget constraint through the endowment
point, with an increase in price generating a shallower budget line (the slope is −D/p). A
reference line is drawn through the initial consumption allocation (c0, c1) with the slope of the
new budget line. The horizontal shift between the dashed line and this parallel reference line
is the amount of resources needed to be added or subtracted in period 0 to afford the initial
consumption allocation at the new prices. This is the Slutsky compensation. For the seller (left
panel), the rise in price moves the initial consumption point into the interior of the budget set,
implying a negative Slutsky compensation. The converse is true for the buyer.

The intuition for why the Slutsky compensation is relevant for the optimal tax change in
Corollary 1 is that a pure discount rate change does not change aggregate resources other than
through trade with the rest of the world; hence, in a closed economy, the initial consumption
level of every individual remains the relevant target for optimal policy, which is precisely what
Slutsky compensation is designed to deliver. The additional term in Corollary 1 then captures
the optimal distribution of the aggregate gains, which is additively separable from the individual
compensation under homothetic preferences.
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FIGURE 2.—Slutsky compensation after a pure asset-price increase (Special Case 1)
Notes: The figure depicts Slutsky compensation in response to an asset price increase. In both panels, the solid red line is the initial budget

line, with the endowment and consumption points marked. The shallower dashed line through the endowment point is the new budget line after

the price change. The solid black line parallel to the dashed line is the budget line after the Slutsky compensation, which by definition contains

the initial consumption allocation at the new prices. Panel (a) depicts an initial seller of the asset while Panel (b) depicts a buyer.

The second equation in Corollary 1 shows that the optimal tax T0(θ) can also be written in
terms of asset sales at the new asset price p. For example, if x(θ)> 0 and ∆p > 0, then T0(θ)

effectively taxes the realized capital gains of investor θ. Because of the lump-sum nature of the
tax system, these gains are in fact taxed away completely, at a rate of 100%. Note that x(θ) are
the new asset sales not only at the new price but also at the new taxes. In certain cases, the old
and new asset sales coincide, x(θ) = x(θ).18

When X = 0, as happens under some parameter configurations19 or in the closed economy
we consider in Section 6.1, the tax T0(θ) = T 0(θ) + x(θ)∆p corresponds to a realization-
based capital gains tax (relative to the reference price p), akin to the kind of capital gains
taxes implemented in many countries.20 However, our tax formula is not limited to when the
investor sells the asset (x(θ)> 0) and realizes a gain (∆p > 0). It also prescribes to compensate
realized capital losses (x(θ) > 0 and ∆p < 0) as well as purchasing gains and losses (when
x(θ) < 0). For instance, when the investor purchases the asset and its price falls, she benefits
from a “purchasing gain” x(θ)∆p > 0, which is also taxed away. Generally, optimal taxes target
“trading gains and losses.”

Importantly, when the investor does not trade (x(θ) = 0), no tax change is triggered by the
asset price change (except for a redistribution of the potential aggregate capital gains or losses
X∆p). This reveals another difference from typical real-world capital gains taxes: the optimal

18This happens in the closed economy of Section 6.1 in which aggregate asset sales are zero. In this case, optimal
policy simply takes everyone back to their baseline consumption allocation, which implies x(θ) = x(θ).

19For example, with preferences u(c0) + βu(c1), u′ > 0, u′′ < 0, X = 0 if βD/p= 1 and Y0 = Y1 +DK0.
20Our theory features only real variables, so it prescribes taxing inflation-indexed capital gains (as practiced in

some countries like Israel).
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tax conditions on net transactions only. For instance, if an individual sells a house and then buys
a similar house of the same price, and house prices go up, she realizes a capital gain on the sale
and a purchasing loss on the purchased house, which cancel out. By contrast, since typical tax
systems, in practice, do not contain the second component (i.e., the subsidy on the purchasing
loss), they would only tax the (gross) realized capital gains from the first transaction. We will
return to this in Section 4.21

General Case

We now return to the general case in Proposition 1. In addition to the terms discussed so far,
new terms capturing the dividend change ∆D emerge. According to both formulas in Proposi-
tion 1, the additional dividend income, discounted back to period 0, must also be taxed away,
and the aggregate dividend income change is redistributed optimally according to the welfare
weights. In other words, the tax/subsidy on trading gains and losses is complemented by a
dividend income tax.

This is again closely related to the Slutsky compensation in Lemma 2. Intuitively, investors
with asset holdings k1(θ) > 0 benefit from a higher dividend ∆D > 0 and therefore need to
be taxed in order to make their initial consumption bundle just affordable. Graphically, the
combination of rising asset prices and rising dividends means that the budget line not only
rotates around the endowment point but also shifts outwards—see Figure 3a.

While the intuition is therefore similar to the welfare gains formula (20), an important dif-
ference is that the Slutsky compensation argument follows exclusively from investors’ budget
constraints at the two prices. As a result, assumptions on preferences or the optimality of the
initial allocation (used in applying the envelope theorem in equation (20)) play no role. Since
budget constraints are linear in prices, Lemma 2 holds for arbitrary non-infinitesimal asset price
and dividend changes. This property translates to the optimal tax result in Proposition 1.

Similar to the special case in Corollary 1, Proposition 1 shows that T0(θ) can be written
both in terms of asset sales x(θ) and asset holdings k1(θ) under the old prices (in which case
dividend income must be discounted using the new discount rate p/D) or in terms of asset sales
x(θ) and asset holdings k1(θ) under the new prices (in which case the old discount rate p/D

must be used). In fact, when we allow the lump-sum taxes in both periods to adjust (rather than
using the normalization T1(θ) = 0), we can write the optimal tax as

T0(θ) = T 0(θ) + x(θ)∆p−Ω(θ)X∆p= T 0(θ) + x(θ)∆p−Ω(θ)X∆p

T1(θ) = T 1(θ) + k1(θ)∆D−Ω(θ)K1∆D = T 1(θ) + k1(θ)∆D−Ω(θ)K1∆D,

21As mentioned in Section 2, selling the asset corresponds to borrowing and buying the asset to saving. Thus,
when interpreting the asset as a bond, the analogue of Corollary 1 is that, when the bond price changes by ∆q, the
optimal change in the tax T0(θ) is ∆T0(θ) =−b1(θ)∆q+Ω(θ)B1∆q. In other words, when the discount rate falls
(∆q > 0), those who borrow (b1(θ)< 0), for instance, because they have more future human capital (i.e., a steeper
income profile), should see their tax burden increase (∆T0(θ) > 0), and vice versa. We will discuss this in more
detail in the dynamic, multi-asset model in Section 5.
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FIGURE 3.—Slutsky compensation of combined asset-price and cash-flow changes

Notes: This figure is similar in composition to Figure 2, but allows for both price and dividend changes. Relative to the previous figure, in this

case the endowment point shifts by the change in dividend income. The figure omits the new budget line absent the Slutsky compensation.

where {T t(θ)}, t = 0,1, are some optimal baseline taxes. Hence T0(θ) deals with the pure
asset price change in the form of a realization-based tax on capital gains just like in Corollary
1, whereas T1(θ) acts as a tax on the changed dividend income in t = 1. In particular, no
discounting is needed under this alternative normalization.

Special Case 2: Only Cash Flow Changes

Finally, we consider the second extreme case from Section 1.3 in which asset prices change
exclusive because of future dividends. For simplicity, we return to the normalization T1(θ) = 0.

COROLLARY 2: Let the asset price change from p to p= p+∆p and let dividends change
from D to D =D+∆D such that ∆D/∆p=D/p. Then the optimal tax T0(θ) is given by

T0(θ) = T 0(θ) + k0(θ)∆p−Ω(θ)K0∆p

Since dividends and the asset price grow by the same percentage, the asset return R1 =D/p

remains unchanged, i.e., the new return R1 = (D+∆D)/(p+∆p) equals the old return R1 =

D/p. According to the corollary, the optimal tax T0(θ) then taxes the investor’s individual
wealth gains k0(θ)∆p due to the asset price change. Hence, in this case, the first-best optimal
tax system conditions on the investor’s unrealized capital gains. This tax base is therefore
consistent with an accrual-based capital gains tax, as under the Haig-Simons comprehensive
income tax (Haig, 1921, and Simons, 1938), or a wealth tax.

Of course, since Proposition 1 continues to apply, we could still express the optimum as a
combination of a tax on trading gains and a dividend income tax. Why do the two collapse to the
accrual-based tax in Corollary 2, which only depends on initial wealth in t= 0? The reason can
be understood as follows: If the investor sells all her assets, then x(θ) = k0(θ) and k1(θ) = 0.
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Hence, there is no dividend income in t = 1, and realized capital gains in t = 0 are given by
k0(θ)∆p, just as in the corollary. Now suppose instead that the investor decides not to sell all
her assets. This results in some dividend income in t= 1 (since now k1(θ) = k0(θ)−x(θ)> 0),
but at the same time in reduced realized capital gains in t = 0. When the price and dividend
changes happen to be proportional, the two effects exactly offset each other and the overall
income change is still given by k0(θ)∆p, no matter how much the individuals sells. Formally,
we can use the first equation in Proposition 1 to obtain

x(θ)∆p+
p

D
k1(θ)∆D = x(θ)∆p+

p

D
(k0(θ)− x(θ))∆p

D

p
= k0(θ)∆p.

Since this holds for all investors, the aggregate quantities collapse in the same way.
Figure 3b relates this case graphically to the corresponding Slutsky compensation. In contrast

to Figures 2 and 3a, the budget line does not change slope (which remains unchanged at −D/p)
and instead shifts outward. Specifically, the increase in dividends means that the endowment
point (y0(θ), y1(θ) +Dk0(θ)) shifts upward. In the lifetime budget constraint (18), the return
D/p remains unchanged and therefore the only effect of the joint asset price and dividend
change is the revaluation of initial wealth pk0(θ).

While this special case therefore provides a justification for using the Haig-Simons income
concept as the tax base, this logic demonstrates that it is knife-edge. Whenever capital gains
are not entirely due to dividend changes, i.e. as soon as discount rate changes are part of the
story as well—in the Fisher diagram of Figures 2 and 3, as soon as the budget line rotates even
a little bit—, the additional dividend income and capital gains no longer cancel out. Moreover,
we will show in Section 6.2 that the cancellation result will break down, even when asset prices
are exclusively driven by dividend changes, in a richer model with heterogeneous returns.

3.3. Discussion

Baseline asset price. While the “trading gains and losses” x(θ)∆p bear similarities to re-
alized capital gains (in case of an asset sale), an important difference is that the price change
∆p is relative to some baseline price p, which does not necessarily coincide with the historical
basis at which the investor purchased the asset. Instead, one needs to decide which price (and
dividend) change the tax system should compensate. This becomes particularly clear in the case
of a purchasing gain or loss (with x < 0): in this case, Proposition 1 prescribes a tax or subsidy,
but since the investor has not owned the asset prior to purchasing it, there is no historical basis
to go back to when computing the price change.

In the general model with uncertainty from Section 1, a natural baseline price and dividend
would be given by the corresponding means. Hence, the old allocation can be interpreted as
the optimum under these expected prices and dividends whereas the new prices and dividends
p and D would be the ex-post realized ones, so the tax system is tasked to compensate the
winners and losers relative to the ex-ante expectations. Another natural baseline is a Gordon
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growth model or BGP in which the asset return is constant and dividends grow at a constant
rate (see Section 1). 22

Baseline taxes. Proposition 1 also assumes that taxes are set optimally for given Pareto
weights at the baseline prices and dividends. If baseline taxes were not set optimally (or based
on different Pareto weights), we could always decompose the overall change in taxes into two
steps: First, holding baseline prices and dividends fixed, a reform of the baseline taxes towards
the optimum according to the new Pareto weights. Second, holding Pareto weights fixed, a
move towards the optimum under the new prices and dividends. Our analysis isolates the second
step. The first step has nothing to do with asset prices and is completely standard, namely, a
tax reform moving the allocation from the interior of the Pareto frontier (or along the frontier)
towards a particular point on that frontier in a given economy.

Endogenous payout policy and share repurchases. Businesses have control over their div-
idend payments and may have alternative means of distributing their profits to shareholders,
specifically via share repurchases. Supplementary Appendix B provides an alternative, capital-
structure neutral formulation of our setup in which such distinctions are immaterial. The key
idea of this formulation is to consolidate the firm and investor budget constraints, in particular
to consider profits net of investment as the relevant measure of cash flows Dt regardless of
whether they are distributed to investors via dividend payments or share repurchases and to
consider the firm’s total value as the relevant measure of the share price pt.

Owner-occupied housing. Owner-occupied housing generates a flow of housing services
and implementing our tax formula therefore requires valuing this “dividend.” The solution is to
measure the dividend D as imputed rents, i.e., to value owner-occupied housing services as the
rental income the homeowner could have received if the house had been let out. Thus, if part
of the house-price increase in New York City was due to the city’s amenities improving, rents
would rise so that ∆Dt > 0 in addition to ∆pt > 0 and our formula would prescribe taxing the
additional imputed rents. This approach is already used by some countries such as Denmark
and Switzerland.

3.4. Alternative implementations: taxes on expenditure or total capital income

In Proposition 1, we have expressed the first-best tax response to asset price and dividend
changes in terms of investors’ realized capital gains and additional dividend income. We now
show that the optimal tax change can be equivalently understood in two alternative ways: one
based on consumption and another one based on total capital income.

22Observed capital gains taxes instead use historical purchase prices to compute capital gains upon sale. Imposing
this institutional feature would yield a third-best, Ramsey-style optimal tax problem rather than the clean compensa-
tion scheme we study here. We return to this point in Section 5.
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There is a long-standing debate in public finance about the potential advantages of taxes
on consumption or expenditures, notably in the context of capital gains. For instance, when
discussing the Haig-Simons income concept, Kaldor (1955, p. 44) writes:

“We may now turn to the other type of capital appreciation which reflects a fall in interest
rates rather than the expectation of higher earning power. [...] The rise in capital values in this
case [comes] without a corresponding increase in the flow of real income accruing from that
wealth. [...] For in so far as a capital gain is realized [...] the benefit derived from the gain is
equivalent to that of any other casual profit. If however it is not so realized, there is clearly only
a smaller benefit. [Therefore] treating the two kinds of capital gains in the same way is not an
equitable method of measuring taxable capacities.”

Given this problem with using Haig-Simons income as the tax base, Kaldor instead ad-
vocates for an expenditure-based tax. This raises the question whether the optimal tax re-
sponse to changing asset prices and dividends in Proposition 1 could also be understood as
an expenditure-based tax. Supplementary Appendix B formalizes this conjecture. It shows that
the new optimum after a change in asset price and dividends can be implemented with a com-
bination of lump-sum taxes and transfers targeting consumption changes. Notably, if the pa-
rameter changes ∆p and ∆D are “zero-sum,” so that optimal aggregate consumption Ct does
not change, then optimal redistributive taxation simply taxes away any increase in consump-
tion from the asset-price and dividend changes (or compensates the corresponding reduction in
consumption), i.e. a “pure” expenditure tax. In line with Kaldor’s logic, just like Proposition
1, this works for any combination of asset price and dividend changes, i.e. regardless of the
source of capital gains.

In Supplementary Appendix B, we also show that yet another way of writing the first-best tax
response in Proposition 1 is in terms of investors’ market value of wealth at(θ)≡ pt−1kt(θ) and
the changes in the total returns R0 and R1: In each period, the additional total capital income
at(θ)∆Rt, including unrealized gains, is taxed. While this may, at first glance, appear related
to a Haig-Simons notion of income, we discuss in Supplementary Appendix B that there are
important differences. For instance, a one-off permanent increase in the asset price increases
the return in period 0 (leading to a tax), but reduces the return in period 1 due to the reduced
dividend-price ratio (leading to a subsidy). This can lead to very volatile taxes compared to
Proposition 1.

4. SECOND BEST

We now turn to the case where the government’s tax instruments are more limited. Specifi-
cally, they are restricted to condition on investors’ choices, such as their asset sales, wealth, or
consumption. This distorts investors’ behavior, inducing the classic tradeoff between redistri-
bution and efficiency. Our main conclusion is that the previous results on the tax base generalize
in a natural way. We first consider a one-asset setup as above, isolating savings distortions. Sec-
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tion 4.4 then considers multiple assets and the question whether taxes create a “lock-in” effect
that distorts portfolio choice.

4.1. Mirrlees Problem

An asset sales tax. We begin with a (non-linear) tax Tx(px) on asset sales, paid in period
0, similar to a realization-based capital gains tax. The investors’ budget constraints become

c0(θ) = y0(θ) + px(θ)− Tx(px(θ)) and c1(θ) = y1(θ) +D(k0(θ)− x(θ)).

This corresponds to a situation where x(θ) (and hence zx(θ)≡ px(θ)− Tx(px(θ))) is observ-
able but k0(θ), y0(θ) and y1(θ) are not. The incentive constraints are therefore

U(θ)≡ U(zx(θ)+y0(θ),D(k0(θ)−x(θ))+y1(θ))≥ U(zx(θ̂)+y0(θ),D(k0(θ)−x(θ̂))+y1(θ))

for all θ, θ̂. Abstracting from bunching, we work with the local version of the incentive con-
straints. By the envelope theorem,

U ′(θ) = Uc0(c0(θ), c1(θ))y
′
0(θ) +Uc1(c0(θ), c1(θ))(Dk′

0(θ) + y′
1(θ)) ∀θ. (24)

Hence, the second-best problem corresponding to the optimal asset sales tax is

max
{c0(θ),c1(θ),U(θ)}

∫
ω(θ)U(θ)dF (θ) (25)

s.t. U(θ) = U(c0(θ), c1(θ)), the resource constraint (19) and the incentive constraints (24).

A wealth tax. Alternatively, consider a tax Tk(pk1(θ)) on investors’ wealth in period 1.23

This corresponds to a setting where k1(θ) (and hence zk(θ) ≡ Dk1(θ) − Tk(pk1(θ))) is ob-
servable, resulting in the global incentive constraints

U(θ)≡ U(p(k0(θ)−k1(θ))+y0(θ), zk(θ)+y1(θ))≥ U(p(k0(θ)−k1(θ̂))+y0(θ), zk(θ̂)+y1(θ))

for all θ, θ̂. The local incentive constraints can therefore be written in the same general form as
in the case of the asset sales tax, namely

U ′(θ) = Uc0(c0(θ), c1(θ))A(θ) +Uc1(c0(θ), c1(θ))B(θ) ∀θ, (26)

23This is equivalent to a tax on dividend income Dk1(θ) since dividends D are the same for all investors in our
baseline model. By contrast, a tax on period-0 wealth pk0(θ) would be lump-sum and return us to the first-best case
when k0(θ) is invertible.
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with the only difference that, now, A(θ) = pk′
0(θ) + y′

0(θ) and B(θ) = y′
1(θ). Hence, the

second-best problem for the wealth tax is the same as above, except for the incentive con-
straints (26) instead of (24).24

Other taxes. We can allow for other second-best tax instruments, such as consumption
taxes, in an analogous way. Notably, we show in Supplementary Appendix C that the general
incentive constraints (26) still apply, with modifications to the terms A(θ) and B(θ). In the case
of a nonlinear tax on c0, we have A(θ) = 0 and B(θ) =Dk′

0(θ) +
D
p
y′
0(θ) + y′

1(θ), whereas a
tax on c1 implies A(θ) = pk′

0(θ)+ y′
0(θ)+

p

D
y′
1(θ) and B(θ) = 0. More generally, this extends

to any such second-best problem, including when combinations of taxes are available.25

4.2. Taxing changing asset prices

We consider an example economy with investors θ uniformly distributed on the unit interval
and y0(θ) = 1−θ, y1(θ) = θ and k0(θ) = 0.1 for all θ ∈ [0,1]. Thus, similar to Figure 1, higher-
θ investors feature a more backloaded income profile (while there is no heterogeneity in the
initial asset endowment), making them natural sellers (borrowers), whereas lower-θ investors
are buyers (savers). We use preferences U(c0, c1) =G (C(c0, c1)) where

C(c0, c1) =
(
c

σ−1
σ

0 + βc
σ−1
σ

1

) σ
σ−1

and G(C) = C1−γ

1− γ
with σ,γ > 0. (27)

Here, C is a composite commodity in which β is the discount factor used to discount con-
sumption in the second time period and σ is the intertemporal elasticity of substitution. The
parameter γ governs curvature over this composite commodity.26 To start with, we set σ = 0.5,
γ = 1 (so G(C) = log(C)) and β = 0.5.

As a baseline, we consider an asset price p = 1 and dividends D = 2 (so D/p = 1/β). We
compute the utilitarian optimum (with ω(θ) = 1 for all θ) for this baseline and then compare
it to a situation where the asset price rises by 30% to p = 1.3, holding dividends fixed at D.
Hence, this illustrates Special Case 1, an asset price change driven by a discount rate change.

Asset sales tax. The left panel in Figure 4 shows the optimal asset sales tax schedules
Tx(px) in both of these economies, which are decreasing. The reason is that, in this specifica-
tion, higher-θ individuals have the lower present-value of income, so the direction of redistribu-

24In fact, as can be seen immediately from the incentive constraints, the two second-best problems are identical
when investors only differ in their incomes y0(θ) and y1(θ) but not in their initial wealth k0(θ). In other words, in
this case, a wealth tax and an asset sales tax are two decentralizations of the same optimal allocation.

25In Supplementary Appendix C, we characterize the Mirrlees (1971) Pareto optima for all these tax instruments
and develop a numerical algorithm to compute them for changing asset prices.

26(27) is a monotone transformation of the more standard intertemporally separable utility function
∑

t β
tu(ct)

with u(c) = c1−1/σ/(1− 1/σ). The reason for working with this monotone transformation is that, below, we will
be interested in the limit as the intertemporal elasticity of substitution σ goes to zero, which is ill-defined for the
standard specification. For example c1−1/σ/(1−1/σ)→ 0 as σ → 0 for all c > 1 (the numerator converges to zero
and the denominator to −∞). In contrast, (27) satisfies U(c0, c1)→G(min{c0, c1}) as σ → 0, i.e., it converges to
a (monotone transformation of a) Leontief utility function, as expected.



PUTTING THE ‘FINANCE’ INTO ‘PUBLIC FINANCE’ 27

FIGURE 4.—Optimal asset sales tax with increasing asset prices

Notes: The left panel depicts the second-best tax schedule, as a function of asset sales px(θ), for two alternative prices of the asset. The

right panel depicts the difference between the schedule associated with p=1.3 and the baseline p=1.0 schedule, ∆Tx . The right panel plots

∆Tx(px(θ)) against the net trading gains x(θ)∆p, depicting that the change in taxes increases in net gains.

tion runs from low- to high-θ types. As discussed above, asset sales x are naturally increasing
in θ, so the optimum puts a tax on the (richer) buyers and a subsidy on the (poorer) sellers.

Our main interest is in how the optimal tax changes in response to the asset price increase.
This is depicted in the right panel of Figure 4, where we plot the change in the tax ∆Tx(px)

as a function of the trading gains and losses x∆p. It reveals a positive relationship, just like in
Corollary 1, albeit with a slope of less than one. This is intuitive: the solution now balances the
optimal redistribution, which works in the same way as in the first-best case (namely, increasing
the tax burden on the sellers, who gain from the asset price increase, and lowering it for the
buyers), with the distortive effects of a positive marginal tax rate on investors’ savings behavior.

Wealth tax. Figure 5 shows the respective graphs for the alternative implementation of the
optimum with a wealth tax. In this example, the wealth tax is increasing in period-1 wealth
pk1: since richer, low-θ investors have a more front-loaded income stream, they buy more
assets and hence own more wealth at the beginning of the second period. Thus, in terms of
levels, a progressive wealth tax with a positive tax burden on the rich and a subsidy on the
poor is optimal. However, the right panel shows that the optimal response to increasing asset
prices is to make the wealth tax less progressive. This is because, again, wealthy individuals
are buyers in this case, who lose from the asset price increase, so their tax burden should fall
as a compensation. Conversely, low-wealth borrowers are sellers of the asset, and hence benefit
from the asset price increase, so their tax burden should increase.

An example of such a configuration would be housing markets where relatively well-off
households, who already own a house, want to upsize (for instance because of a growing fam-
ily). Thus, despite being in the upper percentiles of the wealth distribution, these households are
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FIGURE 5.—Optimal wealth tax with increasing asset prices

Notes: The left panel depicts the second-best tax schedule, as a function of period one wealth, pk1 , for two alternative prices of the asset. The

right panel depicts the difference between the schedule associated with p=1.3 and the baseline p=1.0 schedule, ∆Tk . The right panel plots

∆Tk(pk1) against period one wealth, depicting that the change in taxes decreases in period one wealth.

net buyers. As a result, when house prices rise, they are worse off, and introducing a progressive
wealth tax in this situation would not achieve the desired direction of redistribution.

In sum, while a wealth tax in this example can be used to implement the constrained opti-
mum, its comparative statics in response to an asset price increase are counter-intuitive. This is
because the wealth tax (or related accrual-based tax instruments) is an indirect way of target-
ing buyers versus sellers, which is what ultimately drives the welfare effects. By contrast, the
comparative statics of the asset sales tax are always the same (as in the right panel of Figure 4)
since conditioning on realized capital gains directly targets the correct tax base.

4.3. Role of the intertemporal elasticity of substitution

In Figure 6, we return to the asset sales tax and show its optimal response to an asset price
increase for different values of the intertemporal elasticity of substitution σ (the dark blue
schedule is the same as in the right panel of Figure 4). It illustrates that the optimal second-best
policy converges to the first-best solution in Corollary 1, with a 100% marginal tax rate on re-
alized capital gains, as σ approaches zero. The intuition is simply that a vanishing substitution
elasticity implies a vanishing savings distortion from the tax, which therefore becomes equiva-
lent in the limit to a lump-sum tax instrument. This demonstrates that our first-best results from
the previous Section 3 are not knife-edge, but extend qualitatively to the case of more realistic
and limited tax instruments as long as the distortive effects remain small.

The next proposition formalizes this result. Denote by Γ∗(σ) ≡ {(c∗0(θ,σ), c∗1(θ,σ))} the
optimal first-best allocation solving (21) subject to (19) when preferences are given by (27).
We are interested in the limit as σ → 0, so that C(c0, c1) = min{c0, c1}, which, as we show
in Supplementary Appendix C, implies c∗0(θ,0) = c∗1(θ,0) ≡ c∗(θ). We need the following
regularity assumption to obtain our convergence result:



PUTTING THE ‘FINANCE’ INTO ‘PUBLIC FINANCE’ 29

FIGURE 6.—Capital gains tax with a decreasing intertemporal elasticity of substitution

ASSUMPTION 1: (i) There exists a function α with 0<α(θ)< 1 for all θ such that

c∗′(θ) = α(θ)A(θ) + (1− α(θ))B(θ)

and (ii) letting g(θ)≡ log
(

1−α(θ)

βα(θ)

)
, g′(θ) exists and is bounded for all θ.

Part (i) amounts to a restriction on the Pareto weights ω(θ) for any given heterogeneity
{k0(θ), y0(θ), y1(θ)}. We show in Supplementary Appendix C that it follows from the first-best
allocation Γ∗(0) being incentive compatible when σ = 0, which is needed for the second-best
allocation to be able to approach it. Part (ii) is a technical regularity condition on these Pareto
weights.

Denote by ΓM(σ)≡ {(cM0 (θ,σ), cM1 (θ,σ))} the solution to the Mirrlees problem (25) sub-
ject to (19) and (26) for the same Pareto weights {ω(θ)}. This yields the following result:

PROPOSITION 2: Under Assumption 1 and utility (27), ΓM(σ)−−−→
σ→0

Γ∗(σ) uniformly.

Hence, for small σ and hence small distortions, our first-best results are informative about
general second-best tax instruments, since the respective allocations are close.

4.4. Portfolio choice with distortive taxes and the lock-in effect

Our analysis in this section thus far was based on a single-asset environment and empha-
sized the savings distortions from taxes. Therefore, it abstracted from taxes distorting portfolio
choice. An important example of such portfolio distortions is the “lock-in” effect emphasized
in the capital gains taxation literature (e.g. Holt and Shelton, 1962, Constantinides, 1983, Auer-
bach, 1991, Chari et al., 2005). Specifically, realization-based taxes incentivize deferring the
liquidation of appreciated assets and thus distort optimal portfolio re-balancing in response to
asset price changes.
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We now show that an optimally designed second-best tax system does not introduce such
distortions, even when it targets realized capital gains. The reason is that, in a multi-asset set-
ting, it is always optimal to tax total net trades, i.e., to net all sales and purchases across the
entire portfolio of assets, rather than taxing the gross gains from selling individual assets. As a
result, when an investor sells one asset and uses the proceeds to purchase another one, there is
generally no tax burden and therefore no lock-in effect.

As in Section 1, we introduce a second asset in the form of a bond. For simplicity, we consider
a deterministic setup and therefore include a trading friction to prevent portfolio choice from
being indeterminate. An investor’s budget constraints are

c0 = px− qb− χ(x) + y0 − T (x, b) and c1 =D(k0 − x) + b+ y1.

Trading frictions are captured by an adjustment cost χ(x) that is increasing in |x| and convex.
We allow for a general tax T (x, b) on all trades x and b. In principle, such a tax could distort
the investor’s portfolio choice between capital and the bond, but we show that this is never
optimal. To do so, we compare to a tax T (z) on the total net trades z ≡ px− qb−χ(x), which
by construction leaves the portfolio choice undistorted.27

PROPOSITION 3: Any optimum achieved by a tax T (x, b) leaves portfolio choice undistorted
and can be implemented with a tax on total net trades T (z). Thus, there is no lock-in effect at
the optimum.

Hence, even if it is possible to condition taxes on individual (gross) trades, any optimum will
not do so and instead will simply tax total net trades in or out of the portfolio. This result is akin
to a production efficiency result (Diamond and Mirrlees, 1971). It implies that the second-best
optimal policy does not introduce a lock-in effect. The lock-in effect results from the fact that,
in practice, the capital gains from individual gross trades are taxed. Instead, by Proposition 3,
pure portfolio re-balancing trades should not trigger a tax liability. This result is not specific to
our setting, i.e. taxing net transactions eliminates the lock-in effect also in other settings.28

27Whether the tax is imposed in period 0 or 1 makes no difference for our argument. In particular, a tax on net
trades in period 1, b−Dx, would be equivalent. We will relate our results to the deferral advantage, i.e., the interest
advantage from deferring realization, in our general dynamic model in Section 5.

28For example, Auerbach (1991) starts with a simple two-period illustration: “An investor, having accrued a first-
period gain, g, must decide whether to realize the gain and reinvest at the rate of return, i, or hold the asset for an
additional rate of return r. [A tax on realized capital gains...] makes the investor willing to hold even for a range of
returns r < i.” The investor’s reinvestment decision is a case of pure portfolio re-balancing. Therefore not taxing such
re-balancing eliminates the lock-in effect. Magnus (2024) makes a related proposal. Indeed, some real-world capital
gains tax systems already include provisions that imply the taxation of net trades only. Examples are Section 1031
in the U.S. tax code on “like-kind exchanges” in the context of real estate investments, Section 351 on transfers to a
corporation, and Section 368 on some types of mergers. Proposition 3 implies that such provisions are a good idea
more broadly.
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5. OPTIMAL TAXATION IN THE GENERAL MODEL

We now return to the case of first-best tax instruments and show how our results on optimal
taxation from the deterministic two-period model extend to the general model in Section 1.

5.1. Risk and Borrowing

First Best. With lump-sum taxes, the investors’ sequential budget constraints (2) become

ct(s
t, θ) + pt(s

t)(kt+1(s
t, θ)− kt(s

t−1, θ)) + qt(s
t)bt+1(s

t, θ)

= yt(θ) +Dt(s
t)kt(s

t−1, θ) + bt(s
t−1, θ)− Tt(θ, s

t) ∀t, st.

We allow taxes and transfers Tt(θ, s
t) to be indexed by st. In order to ensure that risk is relevant,

we assume ∫
Tt(θ, s

t)dF (θ) = 0 ∀t, st,

so the economy cannot insure itself other than through trading capital and the bond with the rest
of the world. In other words, it does not have access to the full set of Arrow-Debreu insurance
markets. The first-best allocation is the solution to

max
{ct(θ,st),Ct(st),Kt+1(s

t),Bt+1(s
t)}

∫
ω(θ)U({ct(θ, st)})dF (θ) s.t.

∫
ct(θ, s

t)dF (θ) =Ct(s
t) ∀t, st

and the aggregate resource constraint (3).29

Shocks to asset prices and dividends. We are now in position to revisit how shocks to asset
prices and cash flows induce changes in the optimal tax burden. We begin with a pairwise
comparison across two arbitrary potential histories, mirroring the preceding comparative static
exercise. Let st and st denote two alternative histories starting from a common s0. We refer to
st as the “baseline” and st as the alternative history of interest. These histories could feature
different stochastic discount factors (mt(s

t) ̸=mt(s
t)) or dividend streams (Dt(s

t) ̸=Dt(s
t)),

and hence represent different prices pt and qt.
To fix ideas, consider Figure 7: the baseline is a steady state with constant dividend Dt(s

t) =

D, discount factor mt(s
t) = 1/R, and asset prices pt(st) = p and qt(s

t) = q.30 At time t= 1,
an alternative path is realized and Dt(s

t),mt(s
t), pt(s

t), qt(s
t) deviate from the initial steady

state. The question we consider is: how does the optimal tax system redistribute in response
to this different realization? For example, as in Figure 7, pt(st) starts increasing but without

29Without loss of generality, we assume that the government does not own bonds or capital directly, and thus the
aggregates Bt and Kt reflect the aggregated holdings of private investors.

30An alternative baseline is a BGP where dividends grow at some constant rate G, so Dt(st) =GtD0, and rates
of return are constant mt(st) = 1/R. This could be the BGP of an equilibrium model with a neoclassical production
side and productivity growth of the type discussed in Section 1.5.
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FIGURE 7.—Example time paths for asset price, dividends, and discount rate

any corresponding increase in cash flows Dt(s
t) (panels (a) and (b)); equivalently, the asset

discount rate jumps up initially and then declines secularly to a lower long-run level (panel
(c)), which generates capital gains. The example in Figure 7 therefore corresponds to Special
Case 1 from Section 1.3 with an asset price change driven entirely by a discount rate change.

Optimal taxation. To simplify notation, we suppress st and simply write ∆pt = pt(s
t)−

pt(s
t) and analogously for ∆Dt, ∆qt and ∆Tt(θ). Similarly, we write kt(θ) as a shorthand

for kt(θ, s
t−1), bt(θ) for bt(θ, st−1), xt(θ) for xt(θ, s

t), and analogously for the corresponding
aggregates Kt, Bt, and Xt. The next result extends Proposition 1 to the general model:

PROPOSITION 4: Consider a shock that changes asset prices by {∆pt,∆qt} and dividends
by {∆Dt}. Then the following tax change is an optimal response for all st, st:

∆Tt(θ) = xt(θ)∆pt + kt(θ)∆Dt − bt+1(θ)∆qt −Ω(θ) (Xt∆pt +Kt∆Dt −Bt+1∆qt) .

Compared to Proposition 1, the only difference is the additional compensation for changes
in the bond price ∆qt. The intuition is simply that a change in the interest rate on the bond
redistributes between borrowers and savers, and the first-best tax response counteracts this. In
particular, when the interest rate increases (∆qt < 0), Proposition 4 prescribes higher taxes
on savers (bt+1(θ)> 0) and lower taxes on borrowers (bt+1(θ)< 0), which could be achieved
by a standard income tax (with interest deductibility in case of debt). As described in Section
2, this could be driven by heterogeneity in the underlying income profiles, with borrowers, for
example, featuring a more backloaded income process (e.g., due to more future human capital).

More generally, a noteworthy example to illustrate Proposition 4 is a shock to the pricing
kernel ∆mt such that Et[∆mt+1] = 0. Then, by (4), ∆qt = 0, so the risk-free rate is unchanged.
If dividends are also held fixed, this corresponds to a pure risk-premium change. In this case,
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Proposition 4 collapses to

∆Tt(θ) = xt(θ)∆pt −Ω(θ)Xt∆pt (28)

just like in Corollary 1. In other words, even in this richer setting, the optimal tax response to
an asset-price change induced by a risk-premium change targets the realized trading gains and
losses exactly like in our deterministic benchmark model.

As discussed in Section 1.3, such a risk premium change could equivalently be driven by
changes in subject beliefs about future cash flows because, by equations (4) and (5), the asset
prices {pt, qt} depend on the probabilities π(st) with which different histories occur (through
the expectations operator). Thus, if the shock increases subjective probabilities π̃(st) on histo-
ries in which cash flows Dt(s

t) are high, without affecting actual dividends and while leaving
Et[mt+1] unchanged (so that ∆qt = 0), the optimal tax response also collapses back to (28).

As in our two-period model, the timing of taxes is not pinned down; Proposition 4 picks
one particular normalization, which taxes or subsidizes the trading gains and losses as well
as the change in dividend and interest income relative to the baseline period by period. Our
next result derives a present-value condition that any tax implementation needs to satisfy. Our
condition concerns the difference in the present-discounted value of taxes in any fixed history
st compared to the present value over all possible baseline histories s̃t:

E0

T∑
t=0

m0→t(s̃
t)∆Tt(θ) = E0

T∑
t=0

m0→t(s̃
t) [Tt(θ, s

t)− Tt(θ, s̃
t)]

=
T∑

t=0

q0→tTt(θ, s
t)−E0

T∑
t=0

m0→t(s̃
t)Tt(θ, s̃

t),

where the expectation E0 is taken over all possible reference histories s̃t and the second line
uses the pricing condition for the risk-free rate.31 That is, we consider the change in the present
value of taxes along a particular history st relative to the unconditional present value of taxes.

PROPOSITION 5: Consider a history st that differs relative to any alternative history s̃t

in asset prices by {∆pt,∆qt} and dividends by {∆Dt}, where ∆pt = pt(s
t) − pt(s̃

t) and
similarly for qt and Dt. Then, letting E0 represent expectation over s̃t, the relative tax burden
of st is such that

E0

[
T∑

t=0

m0→t(s̃
t)∆Tt(θ)

]

31q0→t ≡ E0[m0→t(s̃t)] is the value of a risk-free bond at time t= 0 that pays off one unit of consumption at
time t in all possible states s̃t.
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= E0

[
T∑

t=0

m0→t(s̃
t) [xt(θ)∆pt + kt(θ)∆Dt − bt+1(θ)∆qt −Ω(θ) (Xt∆pt +Kt∆Dt −Bt+1∆qt)]

]
.

Thus, our results from the two-period case generalize to the expected present value of taxes.

Role of the government. Proposition 5 speaks to the fact that there are many tax schemes
that implement the same optimal allocation, with private agent portfolios adjusting accordingly
to maintain the same consumption allocation. In fact, it is possible to set ∆Tt(θ) = 0 for all
t≥ 1 by ensuring, through appropriate taxation in period 0, that all investors θ hold the market
portfolio from period 1 on, i.e.

kt(θ, s
t−1) = Ω(θ)Kt(s

t−1) and bt(θ, s
t−1) = Ω(θ)Bt(s

t−1) ∀t≥ 1, st.

In this case, there is no trade within the economy, only with the rest of the world, so all investors
are equally affected by future shocks. As a result, there is no scope for redistributive taxation
going forward, and Tt(θ, s

t) = 0 for t > 0 along any history st.32 In Supplementary Appendix
D, we use a two-period variant of our general model with risk to explain this in more detail.

Why do we instead focus on tax implementations beyond the initial period? The first reason
is that we regard our preferred implementation, which targets realized capital gains and divi-
dends in each period, as much simpler. Tracking cash flows and trades along the way is easier
than assessing the stocks of all portfolio holdings in the initial period. Second, in practice, it
may not be feasible to ensure that all investors hold the full market portfolio after the initial
period. For example, and outside our model, some assets (e.g., a startup) may not be publicly
traded, rendering an implementation that redistributes only in period zero infeasible. However,
when the founder takes the company public and sells part of their shares, our preferred imple-
mentation will tax (or subsidize) those sales when they happen, which is straightforward.

Alternative baseline asset prices. As discussed above, our tax formulas are based on a com-
parison between alternative price and dividend paths, compensating investors for a given shock
relative to a baseline path. As a result, the asset price change ∆pt refers to the (contempora-
neous) difference between pt(s

t) relative to the baseline price pt(s
t), not a price increment

pt − pt−1. Notably, the baseline price pt(s
t) does not necessarily correspond to the historical

acquisition prices at which the investor purchased the asset. In other words, the realized capital
gains xt(θ)∆pt in (28) may differ from taxable capital gains in real-world capital gains tax
systems, which are typically based on price changes between acquisition and sale.

An interesting alternative problem would be to characterize optimal taxes subject to the insti-
tutional constraint that capital gains must be computed relative to the historical purchase price.

32To focus on asset prices and capital gains, we have assumed that the income paths {yt(θ)}T
t=0 are deterministic.

With stochastic income paths yt(θ, st)
T
t=0, taxes would still be required beyond the initial period to insure income

risk, taking the form Tt(θ, st) = yt(θ, st)−Ω(θ)Yt(st).



PUTTING THE ‘FINANCE’ INTO ‘PUBLIC FINANCE’ 35

In general, this would not fully achieve the compensation we focus on here (and only apply
to asset sales, not purchases), but it may be able to approximate it, giving rise to a different,
Ramsey-style problem. It would also introduce technical complications because the optimal
policy would depend on the history of past prices, rather than just contemporaneous compar-
isons (see, e.g., Boerma et al. (2023), for tools to solve such problems). We leave this for future
research.

5.2. Borrowing versus Selling

An argument that frequently comes up in discussions about the redistributive effects of asset-
price changes is that wealthy individuals do not necessarily need to sell their appreciated assets
by borrowing against them. The Economist (2024) provides an instructive example:

“Say you own a successful business – so successful that your stake in it is worth $1bn.
How should you finance your spending? If you [...] sell $20m-worth of shares [...], the entire
sum represents capital gains and will be taxed at 20%, which would mean a $4m hit. What if,
instead, you called up your wealth manager and agreed to put up $100m-worth of equity as
collateral for a $20m loan. [...] Returns from holding the equity, rather than selling it, would
easily have covered the cost of servicing the borrowing. Because the proceeds of loans, which
must be eventually repaid, are not considered income, doing so would have incurred no tax
liability at all.”

Our analysis in the preceding subsection is useful for determining how optimal taxation
should treat borrowing versus selling. The most instructive case is that of positive capital gains
∆pt > 0 but without a corresponding change in interest rates ∆qt = 0, which is the case of
a pure risk-premium change—see equation (28). Perhaps surprisingly, the tax formula is in-
dependent of whether and how much investors borrow when their assets appreciate and is, in
fact, identical to Corollary 1. Contrary to a recent proposal by Fox and Liscow (2024), it is not
necessary to tax borrowing.

The intuition (sometimes missed in the popular debate) is that, also with the option to borrow,
investors need to sell their appreciating assets at some point in order to repay their loans and
benefit from rising asset prices. If investors never sell their assets, they will need to repay their
loans out of income they could have otherwise consumed and hence they do not benefit from
the capital gains.33 On the other hand, if investors do sell to repay the loan, the realized trade
should be taxed at that point.

The Economist (2024) quote above emphasized an important motive for borrowing rather
than selling an asset: the asset’s return often exceeds the rate at which investors can borrow.
While the model here does not allow for this possibility, Section 6.2 considers a setup with

33An exception is “stepped-up basis” which we discuss in Section 6.3. Moreover, investors may benefit from
capital gains even without selling if a collateral constraint gets relaxed by a rising asset price (Fagereng et al., forth-
coming). Here, given our focus on the top of the wealth distribution, we abstract from such binding constraints.
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heterogeneous returns with precisely this feature – see equation (32) below. Still, it turns out
that the optimal tax formula is unaffected. The intuition is that, while such return differences
are undoubtedly important, they are not specific to the case of wealthy individuals borrowing
against appreciating assets. Instead, they are a feature of any levered investment strategy. For
example, many homeowners with an outstanding mortgage invest some of their income in the
stock market rather than pre-paying their mortgage, precisely because stock returns exceed
mortgage interest rates. Investors using levered investment strategies to take advantage of such
return differences is an orthogonal issue that should not be considered tax avoidance.

5.3. The deterministic case

The case without uncertainty is again particularly instructive because the two assets collapse
to a single one and we can think of Proposition 5 as a comparative static exercise comparing
taxes under two different time paths for discount rates and dividends {Rt,Dt}Tt=0 and associ-
ated asset prices {pt}Tt=0 satisfying (7). Since m0→t =R

−1

0→t, we obtain the following corollary
of Proposition 5:

COROLLARY 3: Suppose asset prices change by {∆pt} and dividends by {∆Dt}. Then
optimal taxes {Tt(θ)} change such that

T∑
t=0

R
−1

0→t∆Tt(θ) =
T∑

t=0

R
−1

0→t[xt(θ)∆pt + kt(θ)∆Dt −Ω(θ)(Xt∆pt +Kt∆Dt)].

Proposition 5 now applies to the comparison between any two price and dividend paths.34 In
Special Case 1, where asset prices change exclusively because of a change in discount rates,
i.e. ∆Dt = 0 for all t, we see that optimal redistributive taxes condition only on realized trades
{xt(θ),Xt} and not on asset holdings {kt(θ),Kt}.35

In Special Case 2, where asset prices change exclusively because of a change in future divi-
dends, the returns Rt+1 remain unchanged for all t≥ 1 and the asset price change satisfies (9).
Analogous to the example in Figure 7, the economy could initially be in a steady state with
constant D,p and R but then there are capital gains that are instead driven exclusively by a
change in future dividends {∆Dt}. Then we obtain the following result:

34Corollary 3 expresses the change in the present value of taxes using sales xt(θ) and asset holdings kt(θ)
under the new prices and dividends, but the rates of return R0→t under the old prices and dividends. Analogously to
Proposition 1, it is also possible to write the change in taxes in the opposite way, namely

T∑
t=0

R−1
0→t∆Tt(θ) =

T∑
t=0

R−1
0→t[xt(θ)∆pt + kt(θ)∆Dt −Ω(θ)(Xt∆pt +Kt∆Dt)].

35Note also that Corollary 3 fixes the present value of taxes, consistent with a requirement of Vickrey (1939)
for desirable tax systems: “The discounted value of the series of tax payments made by any taxpayer should be
independent of the way in which his income is allocated to the various income years.”
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COROLLARY 4: Suppose the change in prices {∆pt} is exclusively driven by the change in
dividends {∆Dt}. Then optimal taxes change such that

T∑
t=0

R
−1

0→t∆Tt(θ) = [k0(θ)−Ω(θ)K0] (∆D0 +∆p0).

In words, the change in the present value of taxes in this special case is given by the accrued
gains in period 0, precisely like in Corollary 2 in the two-period model. One particular imple-
mentation is ∆T0(θ) = [k0(θ)−Ω(θ)K0] (∆D0 +∆p0) and ∆Tt = 0, t ≥ 1, i.e. a one-time
accrual-based capital gains tax at t= 0.

However, even in Special Case 2 with a purely dividend-driven asset price change, this Haig-
Simons tax only works once in the initial period, not each period. Indeed, from (9) we have
∆p0 =

∑T

t=1R
−1

0→t∆Dt and hence another way of writing the tax change is

T∑
t=0

R
−1

0→t∆Tt(θ) = [k0(θ)−Ω(θ)K0]
T∑

t=0

R
−1

0→t∆Dt.

Thus, a period-by-period implementation would set ∆Tt(θ) = k0(θ)∆Dt − Ω(θ)K0∆Dt for
all t, which does not correspond to a tax on accrued gains (nor dividend income) in each period.

6. EXTENSIONS

In this section, we show how the results derived in the benchmark setting extend to richer
environments, namely a closed economy general equilibrium model, heterogeneous returns,
and intergenerational transfers. For simplicity, we return to the two-period case.

6.1. General equilibrium

Our baseline model features a small open economy with an exogenously given asset price
and dividend. Instead, we now consider a closed economy with the asset in fixed supply, so∫

k0(θ)dF (θ) =

∫
k1(θ)dF (θ) =K. (29)

The asset price p must adjust to satisfy the market clearing condition (29). For example, if
preferences are given by (27), the equilibrium asset price p∗ can be solved in closed form:

p∗ = βD

(
Y0

Y1 +DK

) 1
σ

. (30)

This illustrates the various potential drivers of asset price changes in general equilibrium. A
particularly natural one is an increase in the discount factor β, which increases the asset price p∗
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proportionally (holding dividends fixed). More generally, regardless of what causes the change
in the equilibrium price p∗, we obtain the following result:

PROPOSITION 6: Suppose the equilibrium asset price changes from p∗ to p∗ = p∗ +∆p∗,
holding dividends D and the aggregate endowment (Y0, Y1) fixed. Then the optimal tax T0(θ)

is given by

T0(θ) = T 0(θ) + x(θ)∆p∗ = T 0(θ) + x(θ)∆p∗

where T 0(θ) is the optimal tax at the initial price p∗ and x(θ) = x(θ) are investor θ’s asset
sales at the initial and old prices p∗ and p∗, respectively.

Hence, we obtain the same result as in Corollary 1 except that, since aggregate asset sales
X must be zero in the closed economy, the intercept term vanishes. Moreover, individual asset
sales in fact remain unchanged in response to the asset price change, so x(θ) = x(θ) for all
θ. Intuitively, in the closed economy, total resources do not change when dividends and the
aggregate endowment are held fixed. Hence, the planner aims to get each investor back to
its original consumption bundle after the asset price change. The tax reform in Proposition 6
achieves this via Slutsky compensation as in Lemma 2.

We can also consider a change in dividends D in general equilibrium. Equation (30) reveals
that an increase in D has a less than proportional effect on the asset price p∗ due to the indirect
effect on the aggregate endowment. Hence, a change in dividends will simultaneously increase
the equilibrium rate of return R∗ = D/p∗. As a result, the knife-edge result in Corollary 2,
which lent support to a Haig-Simons accrual-based tax in the special case of a purely dividend-
driven asset price change, does not extend to general equilibrium.

Since our first-best exercise here considers lump-sum taxes that do not distort investor behav-
ior, the equilibrium asset price in equation (30) is independent of the level of taxes T0(θ), T1(θ).
This result would not survive in the presence of distortive taxes, as in Section 4, because equi-
librium asset prices may then depend on taxes and transfers. More generally, in a general-
equilibrium version of our dynamic model with risk from Section 5, distortive taxation would
generally affect both the stochastic discount factor and dividends. Thus, optimal taxes and asset
prices would need to be jointly determined as the solution to a fixed point problem; see, e.g.,
the general-equilibrium compensation formulas developed by Schulz et al. (2022) in the con-
text of labor income taxation. Embedding our second-best analysis from Section 4 in general
equilibrium would be a promising first step in this direction.

6.2. Heterogeneous returns

So far, we have assumed that investors are heterogeneous in their initial endowments k0(θ)

and incomes y0(θ) and y1(θ), but they all achieve the same dividends D per unit of their asset
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holdings k1(θ) in period 1. We next show how our results extend to the case with heterogeneous
dividends D(θ) which implies that different investors earn different returns R(θ)≡D(θ)/p.36

Just introducing this additional heterogeneity into our baseline model does not change our
results on Pareto optimal tax policy. The reason is that, in the absence of further frictions, it
is efficient to allocate all asset holdings to the individual with the highest dividends Dmax ≡
maxθ D(θ). Hence, the planner can transfer resources at rate of return R=Dmax/p, effectively
returning us to the case without return heterogeneity. Those individuals with lower dividends
will not hold the asset, but the government saves for them (using the highest-return individual)
through taxes and transfers T0(θ) and T1(θ). Hence, Proposition 1 goes through, with the only
twist that almost all investors will be sellers with x(θ) = k0(θ) and k1(θ) = 0.

Trading with adjustment costs. To prevent this trivial outcome, we build on our analysis
in Section 4.4 and re-introduce a bond and some trading friction. Using the same notation as
there, an investor’s budget constraints are:

c0(θ) + qb(θ) = px(θ)− χ(x(θ)) + y0(θ)− T0(θ)

c1(θ) =D(θ)(k0(θ)− x(θ)) + b(θ) + y1(θ).

The adjustment cost χ(x) ensures that it is no longer efficient to allocate all capital to the
individual with the highest return. An an investor’s optimal asset sales x(θ) satisfies

qD(θ) + χ′(x(θ)) = p. (31)

The left-hand side captures the marginal cost of selling more assets: the investor will have
less dividend income and will need to pay the additional trading cost. On the other hand, the
asset price on the right-hand side is the additional revenue from the sale. Due to the convex
adjustment cost, investors with higher returns D(θ) will sell less and hold more of the asset.
Also note that the presence of adjustment costs in (31) implies that

R(θ)≡ D(θ)

p
≥ 1

q
, (32)

so that (i) the usual no-arbitrage condition equalizing the return on the asset R(θ) to that on the
bond 1/q may not hold and, therefore, (ii) different investors θ may obtain different asset re-
turns R(θ) in equilibrium. This opens up the door to different investors’ returns R(θ) changing
differentially in response to heterogeneous cash flow changes.

The aggregate resource constraint can be written as∫
c0(θ)dF (θ) + q

∫
c1(θ)dF (θ) = Y (33)

36See, for example, Gerritsen et al. (2020), Schulz (2021) and Guvenen et al. (2023, 2024).
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where

Y = Y0 + qY1 + max
{x(θ)}

∫
[px(θ) + qD(θ)(k0(θ)− x(θ))− χ(x(θ))]dF (θ)

Thus, the first-best problem takes the same form as in Section 3. Normalizing T1(θ) = 0:

PROPOSITION 7: Suppose the equilibrium asset price changes from p to p= p+∆p, holding
dividends D(θ) and the bond price q fixed. Then the optimal tax T0(θ) satisfies

T0(θ) = T 0(θ) + x(θ)∆p−Ω(θ)X∆p+O
(
∆x(θ)2

)
where ∆x(θ)≡ x(θ)− x(θ).

Hence, even with heterogeneous returns and trading frictions, Corollary 1 goes through to
first order, and an additional second-order term emerges that captures the change in adjustment
costs due to the asset price change.

General equilibrium. This result is particularly useful when combining it with our previous
general-equilibrium analysis. Suppose the asset is in fixed supply, as in the preceding subsec-
tion, and assume, for simplicity, a quadratic adjustment cost χ(x) = κx2. Then the optimality
condition (31) together with the market clearing condition X = 0 immediately implies

p∗ = q

∫
D(θ)dF (θ).

The equilibrium price equals the discounted average dividends in the economy. This is intuitive,
since even investors with a low dividend can sell their asset to other investors with higher
dividends, so the asset price must reflect the average dividend. As already anticipated above, in
equilibrium, different investors experience differential returns given by

R∗(θ)≡ D(θ)

p∗
=

D(θ)

q

∫
D(θ̃)dF (θ̃)

.

Consider now an increase in dividends D(θ) for some subset of the investors in the econ-
omy. This induces an increase in the equilibrium asset price p∗ for all investors, including for
those whose dividends did not change.37 Put differently, those investors whose dividends D(θ)

increase experience an increase in their asset return R∗(θ); however those investors whose div-
idends D(θ) remain unchanged experience a decline in their asset return R∗(θ). Since these
latter investors face a pure asset price increase without a simultaneous dividend change, their
optimal tax change satisfies ∆T0(θ)≈ x(θ)∆p∗ as in Propositions 6 and 7.

37If bonds are in fixed supply as well, then the bond price q also adjusts, but in general this does not undo the
change in the average dividends.
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Importantly, this is true even though the asset price change is ultimately driven by a divi-
dend change. Hence, our knife-edge result from Corollary 2, which found that a Haig-Simons
accrual-based tax can implement the optimum in the special case of a purely dividend-driven
asset price change, does not survive in this richer model. The reason is that Corollary 2 relied
on the fact that the effect of the asset price change and the dividend change happened to cancel
in the baseline model where everyone achieves the same rate of return. With heterogeneous
dividends, these effects no longer cancel (not even for the investors whose dividends change)
so the Haig-Simons tax never applies. By contrast, a tax on both realized capital gains and
dividends as in Proposition 1 continues to work.

6.3. Bequests and Suboptimality of Step-Up in Basis at Death

We finally consider a version of our model with multiple generations in which parents be-
queath to their children. We use this version to consider a peculiarity of the tax system in the
U.S. and many other advanced economies: step-up in basis at death for inherited assets, a tax
rule that eliminates the taxable capital gain that occurred between the original purchase of the
asset and the heir’s acquisition, thereby reducing the heir’s tax liability.38

To keep things simple, we model dynasties of non-overlapping generations that are altruistic
toward their offspring (Barro and Becker, 1989). A new generation of investors is born every τ

years and lives for τ − 1 periods. An investor of dynasty θ born at time t has lifetime utility

Vt(θ) = U(ct(θ), ..., ct+τ−1(θ)) + αβτVt+τ (θ), (34)

where 0≤ α≤ 1 measures altruism toward the next generation and U(ct, ..., ct+τ−1) is homo-
thetic. The sequential budget constraint is still given by (10) but now with the convention that
kτ (θ), k2τ (θ), k3τ (θ), and so on denote bequests left by investors in their last year of life to-
ward their offspring in the next generation. Because investors are altruistic, these bequests will
generally be positive. As is standard, the Barro-Becker assumption implies that we can work
with the preferences of dynasties.39 The Pareto problem is to maximize

∫
ω(θ)V0(θ)dF (θ) sub-

ject to (3) where ω(θ) is the Pareto weight on dynasty θ. Hence, everything collapses to the
multi-period model from Section 5 and Corollary 3 applies with the only modification that, in
general, it includes a time-varying consumption allocation rule Ωt(θ) in place of the constant
rule Ω(θ) (i.e. the planner now allocates consumption ct(θ) = Ωt(θ)Ct to dynasty θ).

38Many good explanations of step-up in basis can be found on the internet, particularly by financial and estate
planning services. Some of these are explicit that they consider the rule to be a loophole, for example Trust and Will
(2024) which begins the discussion thus: “Loopholes – you may not always use them, but when you do need them,
you’re sure glad they’re there. [...] The Step-Up in Basis loophole is used to circumvent capital gains taxes, or to pay
the least amount of this type of inheritance tax as is legally possible.”

39Repeated substitution of (34) implies that the dynasty θ’s utility at time 0 is given by

V0(θ) = U(c0(θ), ..., cτ−1(θ)) + αβτU(cτ (θ), ..., c2τ−1(θ)) + α2β2τU(c2τ (θ), ..., c3τ−1(θ)) + ...
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Suboptimality of Step-Up of Basis on Death. Because (a modified) Corollary 3 still applies,
so does the discussion in Section 3.3 about the baseline relative to which capital gains are
calculated. As discussed there, a natural benchmark is the price path on an initial BGP on
which dividends and hence prices grow at a constant rate pt =Gtp0. Step-up of basis at death
would instead correspond to a case in which the baseline price pt resets to the current market
price pt every τ years, i.e. whenever a generation dies. From the point of a view of a dynasty
or the social planner, there is nothing special about the dates at which one generation passes
the baton to the next and therefore also no argument for resetting the basis in this way. Instead,
a natural approach is the “carry-over basis” already used by a number of countries including
Germany, Italy, and Japan (OECD, 2021).

Buy, Borrow, Die. A tax avoidance strategy of wealthy families known as “buy, borrow, die”
has received attention in recent years (e.g. Ensign and Rubin, 2021, The Economist, 2024).40

The idea is to borrow against appreciating assets rather than selling them and then taking ad-
vantage of the stepped-up basis at death, thereby avoiding capital gains taxes altogether. In
combination with Section 5.2, our results suggests that the stepped-up basis loophole should
be eliminated. Absent stepped-up basis, the wealthy would still benefit from borrowing against
high-return assets with lower-interest loans but this is just like any other levered investment and
should not be considered a tax avoidance strategy.

7. CONCLUSION

We “put the ‘finance’ into ‘public finance’,” meaning that we study optimal redistributive
taxation with changing asset prices. Importantly, we adopt the modern finance view that asset
prices change not only because of changing cash flows but also due to changes in discount
rates, risk premia, or subjective beliefs.

It is useful to juxtapose our results with the following naïve intuition implicit in proposals
for wealth taxes or taxes on unrealized capital gains: when the value of Jeff Bezos’ Amazon
stocks doubles so should his tax liability. We show that this intuition is, in general, incorrect.
Instead, we show that optimal taxes can always be implemented in such a way that they depend
on (i) whether Bezos sells his Amazon shares and (ii) whether and by how much cash flows,
here Amazon’s profits, increase. In our baseline model these are, in fact, the only determinants
of optimal taxes. Generalizations of the type considered in Section 6 complicate the optimal tax
formulas in some cases, but it remains true that taxing asset holdings each period is generally
suboptimal.
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