Present Bias Amplifies the Household Balance-Sheet Channels of Macroeconomic Policy

David Laibson Peter Maxted Benjamin Moll Slides at https://benjaminmoll.com/PBMP_slides/

Econometric Society NASM, June 13, 2021

Idea with long tradition (Strotz 1956, ...)

- dynamically inconsistent preferences alter dynamic choices
- particular form with strong empirical support: present bias (e.g. Ashraf-Karlan-Yin, Augenblick-Niederle-Sprenger, Laibson-Maxted-Repetto-Tobacman, ...)

Monetary and fiscal policy \Rightarrow household consumption and investment

• = leading examples of dynamic choices affected by present bias

To what extent does present bias alter impact of these policy tools?

(To be clear: present bias = β - δ preferences = quasi-hyperbolic discounting)

Starting point: "positive household finance"

- households face complex financial planning problem, behavior is influenced by psychological factors
- want our model to capture relevant complexities

Develop partial-equilibrium heterogeneous-household model with

- 1. rich household balance sheets ("Aiyagari w mortgages & housing") (e.g. Guerrieri-Lorenzoni-Prato, Wong, Eichenbaum-Rebelo-Wong, Kaplan-Mitman-Violante,...)
 - assets: liquid wealth and illiquid housing
 - liabilities: credit card debt and fixed-rate mortgages
 - liquidity constraints
- 2. present biased preferences
 - naïve present bias with procrastination

Goal: understand how interaction of (1)+(2) affects policy transmission

Our Scope: Monetary Policy Transmission

Important: today \neq GE analysis, want to first understand PE Paper: speculative discussion through lens of HANK literature

Our Scope: Monetary Policy Transmission

Important: today \neq GE analysis, want to first understand PE

Paper: speculative discussion through lens of HANK literature

What We Find

1. Fiscal policy

- present bias amplifies potency
- generically increases economy's average MPC
- 2. Monetary policy
 - present bias amplifies potency...
 - ... but at same time slows down transmission speed

Both effects of present bias move model toward data

- 3. Methods (not today's focus)
 - continuous-time present bias, option value problem via HJBQVI

What We Find

1. Fiscal policy

- present bias amplifies potency
- generically increases economy's average MPC
- 2. Monetary policy
 - present bias amplifies potency...
 - cash-out refis = liquidity injections to high-MPC households
 - ... but at same time slows down transmission speed

o refinancing inertia due to procrastination

Both effects of present bias move model toward data

- 3. Methods (not today's focus)
 - continuous-time present bias, option value problem via HJBQVI

Model

- 1. Household balance sheets: "Aiyagari with mortgages & housing"
- 2. Time preferences: naïve present bias
- 3. Refinancing procrastination

Household Balance Sheets

- Continuum of households
- Stochastic income y_t , liquid wealth b_t , housing h, mortgage m_t
- Can refinance mortgage at cost (both \$ and effort details later)
- When not refinancing:

$$\dot{b}_t = y_t + r_t b_t + \omega^{cc} b_t^- - (r_t^m + \xi)m_t - c_t$$

$$\dot{m}_t = -\xi m_t$$

- credit card limit: $b_t \ge \underline{b}$
- LTV constraint: $m_t \leq \theta h$
- Note shortcut: housing *h* is fixed and cannot be adjusted
 ⇒ when taking to data, restrict to home-owners who do not move
- "Monetary policy": exogenous process for liquid rate r_t
- Mortgage interest rate r_t^m fixed until refinance, then $r_t^m = r_t + \omega^m$

- 1. Rate refinancing motive
 - Lower mortgage interest payments if market rate falls
- 2. Cash-out refinancing motive
 - Access home equity during low-income spells (c smoothing)
 - Replace expensive credit card debt w cheaper mortgage debt

- Model: refinancing is costly
 - $\circ~{\rm fixed~cost}~\kappa^{\rm refi},$ effort cost $\bar{\varepsilon}\approx 0$

Key behavioral element: present bias = β - δ discounting

Additional assumption: households are naive about their present bias

Key behavioral element: present bias = β - δ discounting

Additional assumption: households are naive about their present bias

Discrete-time warmup:

 \circ Current self discounts all future selves by eta < 1

$$u(c_0) + \beta \sum_{t=1}^{\infty} \delta^t u(c_t)$$

• Naïveté: current self believes future selves time-consistent ($\beta = 1$) \Rightarrow no game between current and future selves Key behavioral element: present bias = β - δ discounting

Additional assumption: households are naive about their present bias

Continuous time:

- $\circ~$ Current self discounts all future selves by $\beta < 1$
- $\circ~$ Take period length $\rightarrow 0$

(Laibson-Maxted, Augenblick, Augenblick-Rabin, McClure et al.)

Refinancing Procrastination

Large empirical literature: households slow to refinance – think Calvo (e.g. Andersen-Campbell-Nielsen-Ramadorai, Keys-Pope-Pope,...)

Naïve $\beta < 1$ naturally generates such refinancing procrastination

- Key ingredient: effort $\cos t \bar{\epsilon} \approx 0$
- Application of result from theory literature (O'Donoghue-Rabin): naïfs procrastinate on immediate-cost delayed-benefit tasks
- Take $\bar{\varepsilon} \rightarrow 0$: no effect when $\beta = 1$ but procrastination when $\beta < 1$
- Monetary cost not enough. Why? Effect on *u*-flow over next hrs of:
 - \$10k payment \Rightarrow small effect (via *c*)
 - \circ 10 hours of pain \Rightarrow large effect

How get Calvo? Stochastic $\varepsilon_t \in \{\underline{\varepsilon}, \overline{\varepsilon}\}$, flicks from $\overline{\varepsilon}$ to $\underline{\varepsilon}$ at rate ϕ

- $\underline{\varepsilon} < \beta \overline{\varepsilon} \Rightarrow$ procrastinate whenever $\varepsilon_t = \overline{\varepsilon}$, refi whenever $\varepsilon_t = \underline{\varepsilon}$
- True even though we take limit as $\underline{\varepsilon}, \overline{\varepsilon} \to 0$

Model Summary

- Aim: analyze monetary and fiscal policy in heterogeneous-household model with present-biased preferences
- Household problem has 6 state variables:
 - 1. *b*: liquid wealth / credit card debt
 - 2. *m*: mortgage (illiquid home equity)
 - 3. y: stochastic labor income
 - 4. r: liquid rate
 - 5. r^m: mortgage rate

Notation: $x = (b, m, y, r, r^m)$ = household state variables

- Households make two decisions:
 - 1. consumption
 - 2. mortgage refinancing and prepayment

Effect of $\beta < 1$ on Policy Functions

Effect of present bias on consumption

Warmup: continuous-time FOC and Euler equation with $\beta = 1$

1. FOC for today vs future:

$$u'(c) = \frac{\partial v(x)}{\partial b}$$

2. Euler equation:

$$\frac{\mathbb{E}_t[du'(c_t)]/dt}{u'(c_t)} = \rho - r_t(b_t)$$

where $x = (b, m, y, r, r^m)$ = household state variables

Note: no discounting in FOC, unlike discrete-time $u'(c) = \delta \mathbb{E} \left[\frac{\partial}{\partial b} v(x') \right]$ (Comes from HJB equation $\rho v(x) = \max_{c} u(c) + \frac{\partial v(x)}{\partial b} (y + rb + ... - c)$) Effect of present bias on consumption

Continuous-time FOC and Euler equation with present bias, $\beta < 1$

1. FOC for today vs future:

$$u'(c) = \frac{\beta}{\partial b} \frac{\partial v(x)}{\partial b}$$

and naïveté $\Rightarrow v(x) =$ time-consistent value function ($\beta = 1$)

2. Euler equation:

$$\frac{\mathbb{E}_t[du'(c_t)]/dt}{u'(c_t)} = \left[\rho + \gamma \left(1 - \beta^{\frac{1}{\gamma}}\right) \frac{\partial c(x_t)}{\partial b}\right] - r_t(b_t)$$

3. When unconstrained, households overconsume by $\beta^{-1/\gamma} > 1$

 $c(x) = \beta^{-1/\gamma} \widehat{c}(x)$ where $\widehat{c}(x) =$ time-consistent policy fn (*)

Observation: interaction of $\beta < 1$ with liquidity constraint is critical. Otherwise (*) $\Rightarrow \beta < 1$ and $\beta = 1$ observationally equivalent

Proposition

Mortgage adjustment policy function independent of β , i.e. only depend on long-run discount rate ρ (and other model parameters)

 $\beta < 1$ affects refinancing decision only through procrastination

Calibration and Results

Discount Function

- Calibrate discount function to match empirical wealth moments
- 2016 SCF wave of home owners who don't move:
 - Average LTV = 0.54
 - Average credit card debt to income ratio = 0.09

	Data	Exponential	Intermediate	Present-Bias
		Benchmark	Case	Benchmark
Discount Function				
β	-	1	0.7	0.83
ρ	-	1.65%	0.66%	1.08%
Calibration Targets				
LTV	0.54	0.54	0.54	0.54
Avg. CC Debt	0.09	0.04	0.09	0.09
Share CC Debt > 0	60%	27%	51%	46%

Results: how does $\beta < 1$ affect transmission of monetary and fiscal policy?

Always show results for 3 cases

- 1. Rational Benchmark: $\beta = 1$, Procrastination
- 2. Intermediate Case: $\beta < 1$, Procrastination
- 3. Behavioral Benchmark: $\beta < 1$, Procrastination

Fiscal Policy: \$1000 Helicopter Drop

• Present bias $\beta < 1$ robustly amplifies potency of fiscal policy

Fiscal Policy: \$1000 Helicopter Drop

• Present bias $\beta < 1$ robustly amplifies potency of fiscal policy

Fiscal Policy: \$1000 Helicopter Drop

• Present bias $\beta < 1$ robustly amplifies potency of fiscal policy

Present bias amplifies potency of fiscal policy: intuition

• $\beta < 1$ creates large MPCs + large mass of households at <u>b</u>

Monetary Policy: 1% Interest-Rate Cut

Monetary Policy: 1% Interest-Rate Cut

- Present bias $\beta < 1$ amplifies potency of monetary policy ...
 - o cash-out refis imitate liquidity-injection of fiscal policy

Monetary Policy: 1% Interest-Rate Cut

- Present bias $\beta < 1$ amplifies potency of monetary policy ...
- ... but slows transmission speed
 - \circ refi procrastination \Rightarrow "dry powder" ignited more slowly

Summary: Effect of $\beta < 1$ on Magnitude and Timing

• Fiscal and Monetary Policy scaled to impact of $\beta = 1$ case

(a) Fiscal policy

(b) Monetary policy

• Fiscal Policy: $\beta < 1$ amplifies potency

• Monetary Policy: $\beta < 1$ amplifies potency but slows transmission

Our main result – that present bias amplifies consumption response to monetary policy – still holds in both cases

Conclusion: Present bias amplifies household balance-sheet channels of macroeconomic policy

1. Fiscal policy

- present bias amplifies potency
- generically increases economy's average MPC

2. Monetary policy

- present bias amplifies potency but...
- ... at same time slows down speed of monetary transmission

Final thought: het. agent macro as gateway to behavioral macro

- all about building things "from the ground up"
- for more see https://benjaminmoll.com/research_agenda_2020/

Thanks!

Fiscal Policy: Distributional Effects

- For $\beta < 1$, fiscal policy driven by low-*c* households
 - Low-c households are constrained, have high MPCs

Monetary Policy: Distributional Effects

- For β < 1, low-consumption households left out of MP on impact
 Low-c households constrained, procrastinate refinancing
- β critical for the distributional effects of stabilization policy

• $\beta = 1$: monetary policy promotes *c* of low-*c* households

• $\beta < 1$: fiscal policy promotes *c* of low-*c* households

Discussion: General Equilibrium

So far: partial equilibrium analysis

Raises question: how would present bias affect transmission of monetary and fiscal policy in full GE analysis?

GE effects through lens of HANK literature

Next: brief speculative discussion of this question

Fiscal policy:

- primary GE effect through labor income
- size depends primarily on MPCs
- present bias amplifies MPCs \Rightarrow likely amplifies overall response

Monetary policy:

- as for fiscal policy, GE effects through labor income
- additional GE effects through stock prices / returns, house prices also move but at much lower frequencies
- size depends on MPCs out of labor income and stock capital gains
- present bias amplifies MPCs \Rightarrow likely amplifies overall response