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A Calibration Details

A.1 Summary of External Calibration

Description Value Target / Source
Preferences
1
γ

Intertemporal Elasticity Parameter 1
2

Literature

ϕ Procrastination Decay Rate − log(0.5) Andersen et al. (2020)

Income
yt Transitory Income {0.75, 0.98, 1.28} Guerrieri and Lorenzoni (2017)
Ay Income Transition Matrix (see text) Guerrieri and Lorenzoni (2017)

Interest Rates
rt Interest Rate {−1%, 0%, 1%, 2%} 10-Year TIPS
Ar Interest Rate Transition Matrix (see text) 10-Year TIPS
ωcc Credit Card Wedge 10.3% Credit Card - 10-Yr Treasury Spread
ωm Mortgage Wedge 1.7% 30-Yr FRM - 10-Yr Treasury Spread

Assets and Liabilities
h House Value 3.29 2016 SCF
θ Max LTV 0.8 Greenwald (2018)
ξ Mortgage Paydown 0.035 20 Year Half-Life
κprepay Prepayment Fixed Cost 0.002 Numerical Stability
κrefi Refinancing Fixed Cost 0.05 FRB Documentation
b Credit Limit −1

3
2016 SCF

Other Structural Assumptions
λF Rate of Forced Adjustment 1

15
2016 CPS Avg. Moving Rate

λR Retirement Rate 1
30

Average Working Life
yR Retirement Fixed Income yL Retirement Replacement Rate
- New-Homeowner Distribution m0 = θh, b0 ∼ U(0, yL

2
) Lifecycle Dynamics

Table 4: Externally Calibrated Parameters.
Notes: This table presents the model’s externally calibrated parameters. See Section 4.1 for details.
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A.2 SCF Details

Many of our calibrated parameters rely on data from the 2016 SCF. To construct a sam-

ple of households that is consistent with our model we impose the following data filters.

The household must own a home, possess a credit card, have a head or spouse in the labor

force, and have a head aged 25-61. In order to limit both measurement error and extreme

heterogeneity in home values and income, we also restrict our analysis to households with

after-tax permanent income between the 1st and 99th percentile, and a home value to per-

manent income ratio that is below the 95th percentile. Our sample is broadly representative

of working-age homeowners, and captures 74% of homeowners aged 25-61.51

All of our variables are scaled relative to permanent income. Following Kennickell (1995),

Kennickell and Lusardi (2004), and Fulford (2015) we use the SCF’s question about “normal

income” to measure each household’s permanent income.52 Though this is an imperfect proxy

for the household’s permanent income, it has the benefit of being both straightforward and

respecting the household’s information set. We adjust each household’s normal income for

2015 federal taxes, and deduct an additional 5% for state taxes.

We use the 2016 SCF to estimate six moments that are used in our calibration: (i)

permanent income; (ii) average home value to permanent income; (iii) average LTV; (iv)

average credit card debt to permanent income; (v) share of households with revolving credit

card debt; and (vi) average credit limit to permanent income. Moments (ii) – (v) are reported

in the main text. The average after-tax permanent income for our sample of homeowners is

$95,718. The average credit limit to permanent income is 0.35.

A.3 Calibration of Income and Interest Rate Processes

To calibrate our income and interest rate processes, we assume that these processes are

discretized versions of continuous-time Ornstein-Uhlenbeck (OU) processes.

Using Discrete-Time Estimates to Calibrate Continuous-Time Process. Consider

a generic mean-zero OU process u(t) =
´ t
0
e−κ(t−s)σdZs. Process u(t) has the conditional

distribution u(t+ τ)|u(t) = N
(
u(t)e−κτ , σ

2

2κ
(1− e−2κτ )

)
.

Assume that u(t) is only observed in snapshots every ∆ years. Let ds = u(s∆) denote the

51Working-age homeowners represent 61% of all households aged 25-61 in the 2016 SCF.
52SCF respondents are asked whether or not their 2015 income was normal. If not, they are asked to

report what their total income would be if it had been normal.
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s’th snapshot of process u(t). The discrete process ds can be modeled as an AR(1) process:

ds+1 = ρds + σdεs+1, where

ρ = e−κ∆

σ2
d =

σ2

2κ
(1− e−2κ∆).

Given any discrete-time AR(1) estimate, we can use the above formulas to back out the

parameters of the underlying OU process: κ and σ. We discretize the OU process using

finite difference methods. For details, see the Numerical Appendix of Achdou et al. (2022).

Implementation for Income Process. As already stated in the main text our income

process is calibrated following Guerrieri and Lorenzoni (2017) who in turn use data from

Floden and Lindé (2001). Specifically, Guerrieri and Lorenzoni assume that the logarithm

of income follows an AR(1) process at a quarterly frequency, and calibrate this process with

persistence of ρ = 0.967 and variance of σ2
d = 0.017. From the formulas we just discussed,

we get the parameters for our OU process of κ = 0.134 and σ = 0.265.

We set the three income states yt ∈ {yL, yM , yH} as follows. We set the low and high

income states equal to −1 and +1 annualized standard deviations of the log income process,

more precisely yL = yMe
−σ and yH = yMe

σ where σ = 0.265. We then set the middle income

state yM to normalize mean income to 1 which yields yM = 0.98 and hence {yL, yM , yH} =

{0.75, 0.98, 1.28}. In the stationary distribution of the income process, 31% of households

are low income, 39% are middle income, and 31% are high income. The expected persistence

of the low, middle, and high income states are 1.6 years, 1 year, and 1.6 years, respectively.
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B Naive Present Bias: Passing to Continuous Time

Here we present a heuristic derivation of naive IG preferences as the continuous-time limit of

a model where some of the decisions are made discretely. This heuristic approach is designed

to capture the intuition of the more rigorous derivation in Harris and Laibson (2013). We

begin by assuming a constant effort cost, as in Sections 2.1 and 2.2. The full setup with a

stochastic effort cost, as introduced in Section 2.3, is presented in Appendix B.3.

B.1 Naive IG Current-Value Function

Assume that the current self lives for a discrete length of time, denoted ∆. After this

time has elapsed, starting with the next self, time progresses continuously again.53 Since

the naive present-biased household incorrectly perceives that all future selves will discount

exponentially, continuation-value function v(x) characterizes the equilibrium starting with

the next self at time ∆. The current self discounts all future selves by β, so the current-value

function for the naive present-biased household is given by:

w(x) = max

{
max
c

u(c)∆ + βe−ρ∆E[v(x∆)|x], w∗(x)− ε̄

}
with

w∗(x) = max
{
wprepay(x), wrefi(x)

}
wprepay(x) = max

b′,m′
w(b′,m′, y, rm, r) s.t. prepayment constraint (4) holds

wrefi(x) = max
b′,m′

w(b′,m′, y, r + ωm, r) s.t. refinancing constraint (5) holds

(14)

and where x∆ denotes the vector of household states after time interval ∆ has elapsed, for

example b∆ = b+ (y + rb+ ωccb− − (rm + ξ)m− c)∆.

Equation (14) captures the consumption/adjustment decisions made by the current self.

In the left branch of the first line the household does not adjust, and chooses consumption

rate c over the next ∆ units of time to maximize the current-value function. In the right

branch of the first line the household pays effort cost ε̄ and fixed monetary cost κi to discretely

adjust its mortgage. Importantly, this discrete-time value function is written such that there

is no delay to refinancing (i.e., the current self benefits from refinancing).54 Though this is

unrealistic – there are time delays in refinancing – we write the Bellman equation in this

53This mixed discrete- and continuous-time setup is of course slightly non-standard. Alternatively, we could
have assumed that future selves also make decisions in discrete time, as done in Laibson and Maxted (2023).
In this case the continuation-value function v(x) would be the discrete-time analogue of the continuous-time
v(x) that we use below.

54To see how the value function is written in this way, note that refinancing gives the current self the
current-value function of w∗. As the first line of equation (14) shows, this value function consists of an
undiscounted utility flow earned for the current self, u(c)∆.
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way to emphasize that our results do not rely on assumptions about temporal delays.

Discrete-time Bellman equation (14) can be used to derive the current-value function in

continuous time. Taking the time-step ∆ to its continuous-time limit, we see that the term

u(c)∆ drops out of the current-value function, leaving:

w(x) = max

{
βv(x), w∗(x)− ε̄

}
.

This recovers equation (9) in the main text.

B.2 Continuous Control: Consumption (Proof of Lemma 1)

We now derive the continuous-time first-order condition for consumption stated in Lemma 1.

As shown in equation (14), the household makes a consumption choice in every period. For

the consumption decision, equation (14) implies that consumption is given by the following

first-order condition:55

u′(c(x)) = βe−ρ∆
∂

∂b
E[v(x∆)|x].

Taking ∆ → 0 at the points where ∂v(x)
∂b

exists yields

u′(c(x)) = β
∂v(x)

∂b
,

which is equation (11) in Lemma 1. This derivation continues to hold in the full setup with

a stochastic effort cost presented in Appendix B.3 below.

B.3 Full Setup with a Stochastic Effort Cost (Section 2.3)

Here we briefly spell out the full set of equations for the generalization with a stochastic

effort cost that evolves according to the two-state process in Assumption 1. In what follows,

we will denote value and policy functions in the normal high-cost state by the same functions

as in the baseline model with a constant effort cost, e.g. v(x) or R(x). Alternatively, we will

denote the corresponding value and policy functions in the temporary low-cost state with

underlines, e.g. v(x) or R(x).

We first show how to generalize equation (8′), the HJBQVI equation for the value function

55We ignore difficulties such as kinks when taking this first-order condition.
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v(x) of a β = 1 household:

ρv(x) = max

{
max
c

{
u(c)+

∂v(x)

∂b
(y + rb+ ωccb− − (rm + ξ)m− c)

}
(8′′)

−∂v(x)
∂m

(ξm)

+
∑
y′ ̸=y

λy→y′
[
v(b,m, y′, rm, r)− v(b,m, y, rm, r)

]
+
∑
r′ ̸=r

λr→r′
[
v(b,m, y, rm, r′)− v(b,m, y, rm, r)

]
+λR

[
vR(x)− v(x)

]
+λF

[
(v∗(x)− ε̄)− v(x)

]
+ϕ

[
v(x)− v(x)

]
,

ρ(v∗(x)− ε̄)

}
.

Relative to (8′), there is a new entry ϕ
[
v(x)− v(x)

]
. Parameter ϕ is the arrival rate of the

low-effort-cost state, and v(x) is the household’s value in this state. This value is given by

v(x) = max{v(x), v∗(x)− ε}. (15)

Intuitively, since the low-cost state only lasts for an instant (Assumption 1), the household

either takes advantage of refinancing at the lower effort cost ε or it loses the opportunity in

the next instant in which case its value reverts back to v(x).

We next show how to generalize (9), the equation for the current-value function w(x):

w(x) = max

{
βv(x), w∗(x)− ε̄

}
and

w(x) = max

{
βv(x), w∗(x)− ε

}
with

w∗(x) = max
{
wprepay(x), wrefi(x)

}
wprepay(x) = max

b′,m′
w(b′,m′, y, rm, r) s.t. prepayment constraint (4) holds

wrefi(x) = max
b′,m′

w(b′,m′, y, r + ωm, r) s.t. refinancing constraint (5) holds

(16)

Relative to (9), there is a new line w(x) = max

{
βv(x), w∗(x) − ε

}
that captures the

current-value of a household that has the opportunity to refinance at the low-effort-cost ε.

Like in Appendix B.1, the current-value function in (16) can be derived from a setup in
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which the current self lives for a discrete length of time ∆:

w(x) = max

{
max
c

u(c)∆ + βe−ρ∆
[
e−ϕ∆E[v(x∆)|x] +

(
1− e−ϕ∆

)
E[v(x∆)|x]

]
, w∗(x)− ε̄

}
,

w(x) = max

{
max
c

u(c)∆ + βe−ρ∆
[
e−ϕ∆E[v(x∆)|x] +

(
1− e−ϕ∆

)
E[v(x∆)|x]

]
, w∗(x)− ε

}
,

w∗(x) = max
{
wprepay(x), wrefi(x)

}
wprepay(x) = max

b′,m′
w(b′,m′, y, rm, r) s.t. prepayment constraint (4) holds

wrefi(x) = max
b′,m′

w(b′,m′, y, r + ωm, r) s.t. refinancing constraint (5) holds

w∗(x) = max
{
wprepay(x), wrefi(x)

}
wprepay(x) = max

b′,m′
w(b′,m′, y, rm, r) s.t. prepayment constraint (4) holds

wrefi(x) = max
b′,m′

w(b′,m′, y, r + ωm, r) s.t. refinancing constraint (5) holds

where ϕ and ϕ denote the Poisson switching rates between the two effort-cost states. As

stated in Assumption 1 we assume that ϕ→ ∞. Therefore e−ϕ∆ → 0 and

w(x) = max

{
max
c

u(c)∆ + βe−ρ∆
[
e−ϕ∆E[v(x∆)|x] +

(
1− e−ϕ∆

)
E[v(x∆)|x]

]
, w∗(x)− ε̄

}
,

w(x) = max

{
max
c

u(c)∆ + βe−ρ∆E[v(x∆)|x], w∗(x)− ε

}
,

w∗(x) = max
{
wprepay(x), wrefi(x)

}
wprepay(x) = max

b′,m′
w(b′,m′, y, rm, r) s.t. prepayment constraint (4) holds

wrefi(x) = max
b′,m′

w(b′,m′, y, r + ωm, r) s.t. refinancing constraint (5) holds

w∗(x) = max
{
wprepay(x), wrefi(x)

}
wprepay(x) = max

b′,m′
w(b′,m′, y, rm, r) s.t. prepayment constraint (4) holds

wrefi(x) = max
b′,m′

w(b′,m′, y, r + ωm, r) s.t. refinancing constraint (5) holds

Finally, we take the limit as ∆ → 0. Using the property that w∗(x) = w∗(x) in the limit as

∆ → 0 – which one can see by inspection since the left branch of the first line converges to

the left branch of the second line – we recover equation (16).
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C Proofs

C.1 Proof of Corollary 1

Recall that, with naiveté, the perceived continuation-value function of a β < 1 household

equals the value function of an exponential β = 1 household and solves (8′′). Assume that the

household is not in an adjustment region at time t so that the perceived continuation-value

function v(xt) is characterized by a standard HJB equation. This HJB equation is given by

the left branch of (8′′), which we write here as

ρv(x) = max
c

u(c) +
∂v(x)

∂b
(y + rb+ ωccb− − (rm + ξ)m− c) + (Bv)(x) (17)

where the operator (Bv)(x) is short-hand notation for lines two to seven of (8′′). Recall that

we use hat-notation to denote the policy functions that naive households perceive for future

selves, and denote by ĉ(x) and ŝ(x) = (y+ rb+ωccb−− (rm+ ξ)m− ĉ(x)) the corresponding

perceived consumption and liquid saving policy functions. In contrast, denote by c(x) (from

Proposition 1) and s(x) = (y + rb+ ωccb− − (rm + ξ)m− c(x)) the actual policy functions.

The following observation is important in the proof below: the HJB equation for the

perceived continuation-value function (17) features the perceived policy functions ĉ(x), ŝ(x),

rather than the actual policy functions. But what determines the evolution of liquid wealth

b are the actual policy functions.

Differentiate (17) with respect to b and use the envelope theorem:

(ρ− r(b))
∂v(x)

∂b
=
∂2v(x)

∂b2
ŝ(x) +

∂

∂b
(Bv)(x). (18)

Define the marginal continuation-value of wealth η(x) ≡ ∂v(x)
∂b

. From (18) it satisfies

(ρ− r(b)) η(x) =
∂η(x)

∂b
ŝ(x) + (Bη)(x). (19)

If β = 1, from Itô’s formula, the right-hand side of (19) also governs the expected change

in the marginal value of wealth: Et[dη(xt)] =
[
∂η(xt)
∂b

ŝ(xt) + (Bη)(xt)
]
dt. But with β < 1

this is no longer true: the evolution of b is governed by the actual drift s(x) rather than the

perceived drift ŝ(x) and so

Et[dη(xt)] =
[
∂η(xt)

∂b
s(xt) + (Bη)(xt)

]
dt. (20)
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Therefore, evaluating (19) along a particular trajectory xt, we have

(ρ− r(bt)) η(xt) =
1

dt
Et[dη(xt)]−

∂η(xt)

∂b
(s(xt)− ŝ(xt)).

Rearranging

1

dt
Et[dη(xt)] = (ρ− r(bt)) η(xt) +

∂η(xt)

∂b
(s(xt)− ŝ(xt))

= (ρ− r(bt)) η(xt) +
∂η(xt)

∂b
(ĉ(xt)− c(xt))

= (ρ− r(bt)) η(xt) +
∂η(xt)

∂b

(
β

1
γ − 1

)
c(xt)

Finally, recalling that η(x) ≡ ∂v(x)
∂b

, the first-order condition is u′(c(x)) = βη(x) and therefore

1

dt
Et[du′(c(xt))] = (ρ− r(bt))u

′(c(xt)) +
∂u′(c(xt))

∂b

(
β

1
γ − 1

)
c(xt)

= (ρ− r(bt))u
′(c(xt))− u′′(c(xt))c(xt)

(
1− β

1
γ

) ∂c(xt)
∂b

=

[
ρ+ γ

(
1− β

1
γ

) ∂c(xt)
∂b

− r(bt)

]
u′(c(xt)),

where going from the second line to the third line uses that, with CRRA utility, the coefficient

of relative risk aversion is γ = −u′′(c(xt))c(xt)
u′(c(xt))

. Dividing by u′(c(xt)), we have (12). ■

C.2 Proof of Proposition 2

When proving Proposition 2, we refer to Appendix B.3 which spells out the full set of

equations for the model with a stochastic effort cost satisfying Assumption 1.

We also note that clauses 1, 2a, and 2b do not rely on the instantaneous low-effort-cost

period used in Assumption 1. The purpose of Assumption 1 is to create the sorts of deadlines

that incentivize present-biased agents to complete effortful tasks (clause 2c).

C.2.1 Proof of Proposition 2, Clause 1

The proof of clause 1 follows from equation (16). Equation (16) shows that we can rewrite

wprepay and wrefi as:

wprepay(x) = max
b′,m′

βv(b′,m′, y, rm, r) s.t. prepayment constraint (4) holds

wrefi(x) = max
b′,m′

βv(b′,m′, y, r + ωm, r) s.t. refinancing constraint (5) holds
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These are exactly the same formulas as for vprepay and vrefi in (7), except that there is an

additional β discount factor. Since the additional β discount factor has no effect on the

optimal choice of (b′,m′), we recover clause 1 of Proposition 2 — the choice of (b′,m′) is

independent of β. ■

Since v∗(x) = max
{
vprepay(x), vrefi(x)

}
and w∗(x) = max

{
wprepay(x), wrefi(x)

}
, the

above proof also implies that:

w∗(x) = βv∗(x). (21)

This property will be used in the proof of clause 2 of Proposition 2.

C.2.2 Proof of Proposition 2, Clause 2

For clause 2a, when β = 1 the assumption that ε̄ and ε are vanishingly small (Assumption

2) implies that v(x) is arbitrarily close to v(x). Accordingly, policy function R(x) converges

pointwise to R(x) as the effort cost vanishes.

To prove clause 2b (procrastination when β < 1 and ε = ε̄), consider the self in control

at point x in the state space. Recall from (16) that the current-value function is given by

w(x) = max{βv(x), w∗(x) − ε̄}. Therefore the current self will not adjust their mortgage

when the value from not adjusting, βv(x), is larger than the value from adjusting, w∗(x)− ε̄.
The value of not adjusting is given by

βv(x) ≥ β(v∗(x)− ε̄), (22)

where the inequality v(x) ≥ v∗(x)− ε̄ follows directly from equation (8′′).

Alternatively, adjusting requires the household to incur the effort cost ε̄ in the current

period and the value of adjusting is given by

w∗(x)− ε̄ = βv∗(x)− ε̄, (23)

where the equality follows from equation (21).

Comparing the two alternatives (22) and (23) shows that the β < 1 household will always

prefer to procrastinate whenever εt = ε̄ , since

β(v∗(x)− ε̄) > βv∗(x)− ε̄.

Procrastination enables the effort cost ε̄ to be discounted by β, while there is at most an

infinitesimal cost to delaying refinancing for an instant.

To prove clause 2c (no procrastination when β < 1 and ε = ε), consider the self in control
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at point x in the state space. Following the second line of equation (16), it will be (weakly)

optimal for the current self to adjust their mortgage if and only if:

w∗(x)− ε ≥ βv(x).

Above, the left-hand side is the current-value from refinancing at effort cost ε, and the

right-hand side is the current-value from not refinancing and having the effort cost reset

immediately to ε̄. Since w∗(x) = βv∗(x) (see equation (21)), this can be rewritten as

βv∗(x)− ε ≥ βv(x). (24)

First, consider the case in which the next self is expected to adjust the mortgage if the

current self procrastinates.56 Since the next self is expected to have β = 1, this means

R̂(x) > 0. In this case, equation (8′′) implies that v(x) = v∗(x)− ε̄. Plugging this into (24)

shows that the current self will adjust their mortgage whenever βv∗(x)− ε ≥ βv∗(x)−βε̄ or

ε ≤ βε̄,

which is satisfied because Assumption 1 imposes that ε < βε̄. Intuitively, this says that

the current self will adjust their mortgage now if the cost of doing so, ε, is less than the

discounted cost of adjusting next period, βε̄. Thus, if R̂(x) > 0 then R(x) = R̂(x), meaning

that the household does not procrastinate.

Next, consider the case in which a β = 1 household would not refinance at point x, even

in the low-effort-cost state εt = ε, i.e. R̂(x) = 0. In that case, equation (15) implies that

v(x) ≥ v∗(x)−ε. Multiplying by β, this also implies that βv(x) ≥ βv∗(x)−βε, and therefore

βv(x) > βv∗(x)− ε.

Comparing this to equation (24) shows that it will not be optimal for the naive present-

biased household to refinance. This is intuitive — if it is not optimal for a β = 1 household

to refinance, there is no reason for it to be optimal for a naive β < 1 household to refinance.

Thus, if R̂(x) = 0 then R(x) = R̂(x).

Tying these two cases together, we have shown that:

1. If R̂(x) > 0 then R(x) = R̂(x)

2. If R̂(x) = 0 then R(x) = R̂(x)

Since clause 2a of Proposition 2 implies that R̂(x) converges pointwise to R̂(x) as the effort

56Note that the next self will face the high-effort-cost ε̄ if the current self procrastinates when εt = ε.
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cost vanishes, the first bullet above can be rewritten as: if R̂(x) > 0 then R(x) converges

pointwise to R̂(x). This completes the proof of clause 2c of Proposition 2. ■
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D Model Extensions and Robustness

D.1 The Distributional Effects of Policy

The top row of Figure 6 breaks down the consumption response to fiscal policy for our two

benchmark cases. Each panel plots the consumption response to fiscal stimulus on impact as

a function of pre-shock consumption. In the Exponential Benchmark (left) the consumption

response is relatively evenly spread across the consumption distribution. In the Present-Bias

Benchmark (right) this is not the case — the lowest consumption households experience a

drastic consumption boom from fiscal policy. These households are borrowing-constrained,

and sharply increase consumption following the liquidity shock.

The bottom row of Figure 6 breaks down the consumption response to monetary policy on

impact. In the Exponential Benchmark, the largest consumption response comes from low-

consumption households. These households are near b, and implement a cash-out refinance

following the rate cut. Thus, in the Exponential Benchmark the refinancing channel of

monetary policy endogenously targets itself to constrained households.

Alternatively, in the Present-Bias Benchmark the low-consumption households respond

very little to monetary policy on impact. The largest response now comes from house-

holds with intermediate levels of pre-shock consumption. Low-consumption households are

constrained on impact, and because they procrastinate on refinancing they cannot imme-

diately adjust consumption. Households with intermediate consumption are not liquidity

constrained on impact. These households will typically be in either a refinancing region

following the rate cut (in which case they expect to refinance in the next instant), or near a

refinancing region (in which case they expect to refinance soon). In both cases, consumption

smoothing implies that these households will increase consumption today in expectation of

the cash-out refinance that they plan to conduct in the near future. This ability to smooth

consumption relies on pre-existing liquidity at the time of the monetary policy shock, which

households at b do not have.

As discussed in the main text, the key takeaway from Figure 6 is that present bias reverses

the distributional consequences of fiscal versus monetary policy. In the Exponential Bench-

mark, monetary policy is an effective way to stimulate the consumption of low-consumption

households. In the Present-Bias Benchmark, procrastination hampers the ability for mon-

etary policy to stimulate the short-run consumption of constrained households. However,

fiscal policy instead becomes highly effective at increasing these households’ consumption.
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(a) Exponential: Fiscal Policy (b) Present Bias: Fiscal Policy

(c) Exponential: Monetary Policy (d) Present Bias: Monetary Policy

Figure 6: Heterogeneity Analysis.
Notes: This figure plots the on-impact consumption response to fiscal (top row) and monetary (bottom row)
policy as a function of households’ pre-shock consumption. The solid line plots the consumption response,
and the bars show the distribution of households over pre-shock consumption.

D.2 Adding Aggregate House Price and Income Shocks

Macroeconomic stabilization policy typically responds to shocks hitting the economy. In

particular, expansionary monetary and fiscal policy are often used in recessions. Recessionary

shocks, by definition, correspond to a temporary decline in aggregate income. Recessions can

also coincide with declining house prices. This section examines the ways in which shocks

to house prices and aggregate income affect our results.
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D.2.1 House Price Shocks

Present bias amplifies monetary policy by producing a consumption boom driven by home-

equity extractions. However, this cash-out channel of monetary policy is limited to house-

holds with enough home equity to actually conduct a cash-out refinance. This makes mone-

tary policy sensitive to house price shocks, which can quickly create or destroy home equity.

Understanding the effect of house price shocks on macroeconomic policy is particularly

important when considering the three most recent recessions: the COVID-19 Recession, the

Great Recession, and the Early 2000s Recession. Home prices collapsed during the Great

Recession, but boomed throughout the Early 2000s Recession and the COVID-19 Recession.

Our baseline analysis in Section 5 corresponds to the case where home prices are stable

before the cut to interest rates. To examine the effect of house price shocks we exogenously

shock the home value h by ± 25%.57 The negative 25% shock corresponds to the Great

Recession. The positive 25% shock corresponds to the early 2000s, where house prices

boomed while the Federal Reserve adopted a multi-year path of low interest rates. Second,

policymakers immediately respond to this house price shock with either monetary or fiscal

policy. As in Section 5, the monetary policy experiment is a rate cut from 1% to 0%, and

the fiscal policy experiment is a $1,000 liquid transfer.

Figure 7 plots the consumption response to monetary policy after a negative (left panel)

or positive (right panel) 25% shock to house prices. The solid curves plot the consumption

response to monetary policy in the shocked economy. For reference, the transparent lines

mark the baseline case in Figure 5. Though the magnitude of the consumption response is

sensitive to house price shocks, our main result that present bias amplifies the consumption

response to monetary policy holds in both cases.

The left panel of Figure 7 shows that monetary policy is significantly weakened by the

collapse in house prices. The negative shock wipes out home equity and prevents many

homeowners from refinancing. This result is consistent with recent research documenting

that negative house price shocks undermined monetary policy following the Great Recession

(e.g., Beraja et al., 2019).

The right panel of Figure 7 plots the positive 25% shock case. Now, the consumption

boom generated by the rate cut is even larger than in the baseline case. The positive shock

generates additional home equity, strengthening the cash-out channel of monetary policy.

This is consistent with the boom in home-equity extractions that was observed in the mid-

2000s (Khandani et al., 2013; Bhutta and Keys, 2016).

It is also important to explore whether house price shocks affect fiscal policy. Figure 8

plots the consumption response to fiscal stimulus in the negative (left) and positive (right)

57The economy starts in the “steady state” before the shock to h. For simplicity we assume that the shock
is permanent. However, we only study the short-run consumption response to monetary and fiscal policy.
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(a) -25% House Price Shock (b) +25% House Price Shock

Figure 7: Monetary Policy and House Price Shocks.
Notes: This figure plots the consumption response to an interest rate cut that immediately follows a house
price shock of -25% (left) or +25% (right). The transparent lines plot the baseline case in Figure 5, and are
included for reference.

shock cases. For both positive and negative house price shocks, we find that present bias

continues to strongly amplify the consumption response to fiscal policy.

(a) -25% House Price Shock (b) +25% House Price Shock

Figure 8: Fiscal Policy and House Price Shocks.
Notes: This figure plots the IRF of aggregate consumption to a $1,000 fiscal transfer that immediately
follows a house price shock of -25% (left) or +25% (right). The transparent lines plot the baseline case in
Figure 4, and are included for reference.
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D.2.2 Income Shocks

We also evaluate the effect of recessionary income shocks on monetary and fiscal policy.

We generate a temporary 5% fall in aggregate income by shifting a share of high-income

households to the middle-income state, and a share of middle-income households to the low-

income state.58 Policymakers immediately respond to this recessionary income shock with

either monetary or fiscal policy.

The left panel of Figure 9 plots the consumption response to monetary policy and the

right panel plots the consumption response to fiscal policy. Though this recessionary income

shock leads to an immediate decline in aggregate consumption, Figure 9 shows that the

subsequent consumption response to monetary and fiscal policy is almost identical to the

baseline results in Section 5. This is because liquidity, not income, is the key driver of the

consumption response to these policies.

(a) Monetary Policy (b) Fiscal Policy

Figure 9: Fiscal and Monetary Policy Following a Negative Income Shock.
Notes: This figure plots the consumption response to monetary (left) and fiscal (right) policy that is imple-
mented immediately following a transitory 5% decline in aggregate income.

D.3 A Call to ARMs?

In order to reflect the typical features of the U.S. mortgage market our paper studies macroe-

conomic stabilization policy under the assumption that households have fixed-rate mortgages

(FRMs). Since the 2007-08 Financial Crisis, many economists have argued that downwardly

58We shift 9.5 percentage points of high-income households to middle income, and 9.5 percentage points
of middle-income households to low income. The share of households across low, middle, and high income
goes from 31%, 39%, 31%, respectively, to 40%, 39%, 21%.
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flexible mortgages, such as adjustable-rate mortgages (ARMs), improve macroeconomic sta-

bility (e.g., Eberly and Krishnamurthy, 2014; Andersen et al., 2020; Campbell et al., 2021;

Guren et al., 2021). If the monetary authority cuts interest rates in a recession, ARM pay-

ments automatically adjust downward, thereby increasing households’ disposable income.

This creates a fast and direct transmission of monetary policy to household balance sheets.

Section 5.2 shows that refinancing procrastination slows down the transmission of mon-

etary policy. A natural policy question is whether such procrastination implies that down-

wardly flexible mortgages would improve the potency of monetary policy in our model with

present bias.

To study this question, we re-solve our Present-Bias Benchmark under the assumption

that all households have ARMs instead of FRMs. The model from Section 2 remains the

same, except that mortgage rate rmt automatically adjusts with interest rate rt. We also

recalibrate the mortgage wedge from 1.7% to 0.9%.59 This corresponds to the average

difference between a 5/1 hybrid ARM and the 10-year treasury yield from 2015 – 2017.

In our monetary policy experiment with ARMs we cut rt from 1% down to -1%. This

doubles the magnitude of the rate cut from our earlier FRM analysis, where interest rates

were reduced from 1% to 0%. This change ensures comparability across the two experiments,

since ARMs are more sensitive to monetary policy than long-duration FRMs.60

We find that the consumption response to monetary policy is almost identical with ARMs

versus FRMs (see Appendix Figure 17 for details). This result highlights that there is a

tradeoff between ARMs and FRMs that arises when households are present biased. On the

one hand, ARMs produce a fast pass-through of monetary policy that applies to all mortgage

holders. This is particularly important for constrained households who procrastinate on

refinancing. On the other hand, ARMs reduce the liquidity injection features of monetary

policy because ARMs imply that households no longer need to refinance when the interest

rate is cut. Present bias generates a powerful cash-out channel of monetary policy, but this

channel is stifled by ARMs. Overall, the stimulative effect of ARMs accrues quickly and

to all households, but is small. The stimulative effect of FRMs accrues slowly and only to

households who plan to refinance, but is large. These two effects are of similar magnitude

in our model.

An important factor explaining these offsetting effects is the large size difference between

ARM payment adjustments versus home-equity extractions. Recall that the home value is

calibrated to 3.29 times permanent income, and the average LTV ratio is roughly 0.5. With

ARMs, a 2% reduction in mortgage rates is therefore equivalent to roughly a 3.5% increase

59FRMs are typically more expensive than ARMs because FRMs lead to lower payments if interest rates
rise, and come with the option to refinance if rates fall. The borrower has to pay ex-ante for this insurance.

60Empirically there is roughly a 50% pass-through from monetary policy to the 30-year mortgage interest
rate. See Gertler and Karadi (2015), Gilchrist et al. (2015), and Eichenbaum et al. (2022) for details.
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in income for the average household (roughly $3,500 per year). Alternatively, with FRMs

the typical cash-out is about 35% of permanent income ($35,000) – an order of magnitude

larger than the typical ARM payment reduction – and present-biased households have large

MPCs out of these liquidity injections. Such large cash-outs are consistent with the data.

The average cash-out amount from 1999–2010 was $40,000 (Bhutta and Keys, 2016), and

there is little evidence that the majority of these home-equity extractions are kept as savings

(Greenspan and Kennedy, 2008; Bhutta and Keys, 2016). However, ARMs prevent this large

stock of dry powder from ever being ignited.

While we do not find that ARMs increase the power of monetary policy, we note that

our model is too stylized to make rigorous quantitative claims. Our analysis also assumes

that house prices are fixed. Negative house price shocks, such as those observed follow-

ing the financial crisis, can significantly reduce the cash-out channel of FRMs (see Section

D.2.1). Our results nevertheless highlight a new tradeoff between FRMs and ARMs that

policymakers should be aware of when considering different mortgage contract designs. Our

results also suggest that monetary policy is most powerful if mortgage contracts feature a

fast pass-through (like ARMs) while simultaneously allowing for cash-outs (like FRMs). Ap-

pendix Figure 18 shows just how powerful monetary policy can be in a FRM environment if

policymakers are able to reduce procrastination concurrently with a monetary expansion.

In addition to being stylized this section ignores important welfare considerations. For

example, FRMs produce a consumption boom by encouraging overconsumption out of home

equity. Monetary policy also appears to be more equitable under ARMs than FRMs. In

Section D.1 we showed that low-consumption households procrastinate on refinancing a

FRM, whereas ARMs provide immediate payment relief to low-consumption households.61

D.4 Alternate Calibrations: Intermediate Cases

As mentioned in Section 4.2, we also examine various Intermediate Cases that differentially

allow for present bias and/or refinancing inertia. We introduce four additional cases here

which, when combined with the two Benchmark calibrations in the main text, mean that

we study six calibration cases overall. These six calibration cases are summarized in Table

5 below, and we describe them more fully in the next paragraph. Overall, we consider three

types of refinancing inertia (no inertia, rational inertia, and procrastination), and two types

of time preferences (exponential preferences and present-biased preferences). In Table 5, the

cases marked Benchmark are the cases that we already studied in the main text, and the

cases marked IC are additional intermediate cases that we present below.

61As discussed in Harris and Laibson (2013) and Maxted (2023), the IG model is well-suited for studying
welfare because it features a single welfare criterion despite preferences being dynamically inconsistent. As
mentioned in the conclusion, we view welfare analyses as an interesting pathway for future research.
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Exponential Present Bias
No Refinancing Inertia Benchmark IC: εt ≡ 0
Rational Inertia IC: ε̄→ ∞ IC: ε̄→ ∞
Procrastination IC: β ↑ 1 Benchmark

Table 5: Summary of Calibration Cases.
Notes: The case with exponential time preferences and no refinancing inertia is our Exponential Benchmark.

The case with present-biased time preferences and procrastination is our Present-Bias Benchmark. The

other four cases marked IC are intermediate cases that we examine here.

Starting with the first row, the Exponential Benchmark studied in the main text has

exponential time preferences and no refinancing inertia. Moving to the second column of

that row, our first intermediate case is a model with present bias (β < 1) but without

refinancing inertia, which we achieve by setting all effort costs equal to zero (εt ≡ 0). Note

that present bias without refinancing inertia can also be viewed as present bias under full

sophistication (further details in Appendix D.5).

In the second row, we study an alternate setup that generates what we refer to as rational

inertia. Specifically, we break Assumption 2 that effort costs are vanishingly small, and

instead take the typical effort cost ε̄ → ∞ so that households optimally do not refinance in

the high-cost state (since the effort cost of doing so is exceedingly onerous). Below, we study

this alternate setup of rational inertia both for exponential and present-biased households.

In the third row, we return to our original assumption that effort costs are vanishingly

small (Assumption 2). While we cannot generate slow refinancing in this case when β = 1,

any amount of naive present bias is sufficient to generate procrastination.62 Hence, the case

in column one of the third row is not a true “exponential” case. Instead, we numerically set

β = 0.999: by setting β < 1 we introduce procrastination, but this tiny amount of present

bias also has essentially no effect on households’ consumption choices. Finally, our Present-

Bias Benchmark studied in the main text features both present bias and procrastination.

In all four of the intermediate cases presented below, we recalibrate the discount func-

tion to fit the same steady state targets as the Benchmark calibrations. Specifically, for

all cases we recalibrate ρ to fit the LTV moment, and for the present-bias cases we also

recalibrate β to fit the credit card borrowing moment. The purpose of these intermediate

cases is not necessarily to be realistic, but rather to provide various stepping stones that help

the reader traverse between the Exponential Benchmark and the Present-Bias Benchmark.

Additionally, the comparison between the Rational Inertia cases and the Procrastination

cases highlights the extent to which naive present bias can generate unexpected refinancing

inertia, which differentiates present-bias-driven procrastination from the sorts of “rational”

62I.e., there is a discontinuity in the limit as β → 1; with any amount of naive present bias, the effort costs
will always be small enough under Assumption 2 that households choose to procrastinate.
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refinancing inertia that could arise under exponential time preferences.

D.4.1 Intermediate Cases: Exponential Discounting

We start by presenting the intermediate cases with exponential discounting. The left panel

of Figure 10 plots the consumption response to fiscal policy, and the right panel plots the

consumption response to monetary policy. Both panels plot the two Benchmark calibrations

(opaque lines), and the two new intermediate cases (transparent lines) in order to provide

stepping stones between the two benchmarks. Solid lines correspond to No Refinancing

Inertia, dashed lines to Rational Inertia, and dotted lines to Procrastination.

(a) Fiscal Policy: Exponential Cases (b) Monetary Policy: Exponential Cases

Figure 10: Fiscal and Monetary Policy with Exponential Intermediate Cases.
Notes: This figure plots the consumption response to fiscal (left) and monetary (right) policy for the two
Benchmark calibrations and the two Intermediate Cases with exponential preferences (see Table 5).

Starting with fiscal policy, the consumption response is comparable in the Exponential

Benchmark and the exponential case with rational inertia, but is much larger in the cases

with procrastination. This relates to the share of borrowing-constrained households. In

the Exponential Benchmark, there are very few households at b because they refinance as

soon as they hit the constraint. In the case with rational inertia, households know that

they will be slow to refinance, so they endogenously refinance before hitting b if they are in

a stochastic low-cost state. Only in the case where households unexpectedly procrastinate

on refinancing do we get a buildup of households at b that generates a sizable short-run

consumption response.

Turning to monetary policy, the notable feature is that we see less of an on-impact

consumption response when households are rationally inertial. In this case, households are

fully aware that they will be slow to refinance following the rate cut, which makes them

more cautious about increasing consumption before that refinance is actually enacted.
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D.4.2 Intermediate Cases: Present-Biased Discounting

Next, Figure 11 presents the intermediate cases with present-biased discounting.

(a) Fiscal Policy: Present-Bias Cases (b) Monetary Policy: Present-Bias Cases

Figure 11: Fiscal and Monetary Policy with Present-Bias Intermediate Cases.
Notes: This figure plots the consumption response to fiscal (left) and monetary (right) policy for the two
Benchmark calibrations and the two Intermediate Cases with present-biased preferences (see Table 5).

Starting with fiscal policy, we first see that present bias generates a larger consumption

response than the Exponential Benchmark in all cases. Second, we again see that the con-

sumption response is broadly comparable for the two intermediate cases of no inertia and

rational inertia, but jumps up in the Present-Bias Benchmark with procrastination. The in-

tuition here is broadly similar to our discussion of the exponential cases, where unexpected

procrastination is key to getting a large short-run consumption response.

Turning to monetary policy, we again see a smaller on-impact consumption response in

the case of rational inertia, similar to the exponential case with rational inertia described

above. For the present-bias case with no inertia, we now see a larger short-run consumption

response, but also one that decays more quickly. The intuition for this no-inertia case is

largely similar to the “Present Bias 1Q No Proc.” case in Figure 5, except that the initial

response here is somewhat more mild because there are fewer constrained households ex-ante

(since households never procrastinate on refinancing).

D.5 Generalization to (Partial and Full) Sophistication

To this point we have assumed that households are fully naive about their present bias.

One benefit of our naiveté assumption is that it is theoretically and computationally easy to

handle — starting from a model without present bias, it is relatively simple to back out the
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behavior of households with naive present bias (see Propositions 1 and 2). As such, naive

present bias provides a bridge for the broader macroeconomics literature.

The case with (partial or full) sophistication is a much more complicated theoretical

object. Let βE denote the short-run discount factor that the current self expects all fu-

ture selves to have. Full naiveté means that βE ≡ 1, whereas (partial) sophistication sets

βE ∈ [β, 1) so that the current self is at least partially aware that future selves will also face

a self-control problem. Sophistication therefore implies that the current self is aware that

preferences are dynamically inconsistent, thus making behavior the equilibrium outcome of

a dynamic game. Despite being more complicated theoretically, the technical advances of

Harris and Laibson (2013) and Maxted (2023) imply that solutions to models with sophis-

tication are still available. We now utilize these advances to extend our analysis to the case

of sophistication.

In this appendix we ask how our results vary with sophistication, and we provide two

perspectives. On the one hand, we show that a model with partial sophistication can be

recalibrated with a different β so that it produces household-level behavior that is analogous

to that of full naiveté. That is, while we assumed full naiveté in the main text because it

is theoretically and computationally easy to handle, our analysis is robust to all but the

limiting case of complete sophistication (βE = β).63

On the other hand, one could also ask about comparative statics with respect to partial

sophistication (while not recalibrating any other model parameters). In this case, we show

that households’ propensity to procrastinate is (weakly) decreasing in their sophistication.

D.5.1 The Household Balance Sheet: A Slight Modification

Formalizing this analysis is, admittedly, complex, and we provide only a heuristic analysis

here. The material presented below likely requires familiarity with Harris and Laibson (2013)

and Maxted (2023), whose equilibrium construction techniques we adopt herein.

We begin by slightly modifying the model of the household balance sheet in Section 2.

Note that this modification is not necessary. However, we make it so that we can use the

theoretical results in Maxted (2023) to study the effects of sophistication in closed form,

which we believe provides clearer economic insights.64

To utilize the results in Maxted (2023), we need to respecify the model so that households

always remain in the interior of the liquid wealth space rather than occasionally facing a

63As we detail further below, the case of full sophistication does not generate procrastination under As-
sumption 2 that effort costs are vanishingly small. Intuitively, without some scope for incorrect expectations,
we cannot use vanishingly small effort costs to generate non-vanishing spells of procrastination.

64Without this modification one could still numerically solve the model under sophistication by using the
û technology developed in Harris and Laibson (2013), though numerical implementation could be difficult.
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binding hard borrowing constraint at b (see the “Key Assumption” of Maxted (2023)).65 To

do so we make two (realistic) changes, as presented below.

First, we now allow households to borrow beyond the ad-hoc limit of b to a lower limit

of b < b. For all debt beyond b, we assume that the household must incur a very large

borrowing wedge of ω↑ ≫ ωcc. For example, ω↑ ≈ 400% is a typical payday loan interest

rate (Lee and Maxted, 2023), but one could imagine ω↑ to be taken even larger. Following

the “Key Assumption” of Maxted (2023), we impose in Assumption 3 below that ω↑ is made

large enough that households always keep their liquidity strictly above b in equilibrium.66

Second, we introduce a small delay to refinancing. In the model in the main text we

assumed for simplicity that there are no delays to refinancing; refinancing occurs instantly

after a household completes its application. Without refinancing delays, households that

expect to refinance in the next instant will not care about borrowing at interest rate ω↑. So

long as households only expect their borrowing to persist for one instant, the rate at which

they borrow will not affect their overall wealth. Thus, we additionally assume that, after a

household fills out its refinancing paperwork, the new mortgage only closes at a Poisson rate

denoted λC .67 Such delays are realistic, as mortgage underwriting often takes over a month.

With these updates, we now have a model that can be calibrated so that households will

remain in the interior of their liquid wealth space. That is, we assume following Maxted

(2023):

Assumption 3 The model is calibrated such that borrowing limit b never binds along the

equilibrium path. Formally, if b0 > b then bt > b for all t ≥ 0.

We maintain Assumption 3 throughout the remainder of Appendix D.5, which will allow

us to utilize the equilibrium construction results of Maxted (2023) in this modified model

(while we focus here on an equilibrium construction, uniqueness is not guaranteed).

We also briefly mention one other complexity, which is that a full-sophisticate’s refi-

nancing policy function takes the form of a mixed-strategy equilibrium where the household

refinances probabilistically (e.g., O’Donoghue and Rabin, 2001). However, this added com-

plexity effectively drops out under Assumption 2 that ε̄ is vanishingly small, since in this case

65The basic issue which these modifications aim to address is that sophisticated present bias interacts
with binding hard borrowing constraints like b, because present-biased agents value such constraints as a
commitment device of sorts that limits the overconsumption of future selves (see equation (3)). This new
interaction – which does not arise under naiveté – limits our ability to directly map between sophistication and
naiveté (see Maxted (2023) for a fuller discussion). Note too that had we instead kept this interaction effect,
it would have led to larger consumption discontinuities at b and hence larger MPCs at b under sophistication.
In other words, this interaction effect would have led to larger differences relative to exponential discounting.

66Note that this will always be possible once we introduce refinancing delays (next paragraph). The basic
argument here is that as ω↑ increases, then households must keep their debt closer and closer to b in order
to avoid the possibility of a zero-consumption state (and hence −∞ utility).

67Specifically, the household pays the effort cost up front, but does not finalize its new mortgage terms
nor receive the cash out (or pay the cash in) until the mortgage closes (details in Appendix D.5.3).
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the probability of refinancing over any discrete interval of time converges to one. Further

details are left to Appendix D.5.4.

D.5.2 The Effect of Sophistication on Policy Functions and Results

We can now generalize Propositions 1 and 2 to allow for sophistication. To avoid complicating

the exposition with additional technicalities that arise when households are sophisticated,

we state the main points here and then add details later in Appendices D.5.3 and D.5.4.

We continue to use hat-notation to denote the policy functions of the “comparable house-

hold” that has β = 1. However, in this more general setup that allows for sophistication,

that comparable household is an otherwise-identical household that has β = 1 and faces a

refinancing effort cost of HE×εt (rather than just εt), where H
E =

(
γ−(1−βE)

γ

)−γ
. The intu-

ition behind this rescaling is that, once agents are at least partially sophisticated (βE < 1),

they are aware that their self-control problems will cause them to act as if they face a higher

hurdle rate to refinance.68 Further details are provided in Appendix D.5.3 below. Note that

this additional step of rescaling εt was not needed in the main text since we assumed that

βE ≡ 1 (full naiveté) so that HE = 1. Nonetheless, this rescaling effect remains trivial here,

due to Assumption 2 that effort costs are vanishingly small.

Using this agent with β = 1 and refinancing effort costs of HE × εt as a point of compar-

ison, we can start by characterizing the consumption function of present-biased agents using

a result from Maxted (2023):

Proposition 3 (Continuous Control) For all b > b, the household sets

c(x) =

(
βE

β

) 1
γ γ

γ − (1− βE)
ĉ(x),

where ĉ(x) is the consumption policy function of an exponential β = 1 household but with

effort costs of HE × εt in place of εt where H
E =

(
γ−(1−βE)

γ

)−γ
.

Proof. See Maxted (2023), with additional details in Appendices D.5.3 and D.5.4.

Proposition 3 is just like Proposition 1 in the main text, except that the consumption

scaling factor is generalized to allow for sophistication. For our purposes, the key implication

of Proposition 3 is the following corollary, which implies that there is a limiting observational

equivalence between the consumption decisions of sophisticates and naifs:

68Accordingly, this perceived hurdle rate increases as the agent gets more sophisticated, i.e. as βE

decreases.
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Corollary 2 The consumption function of a naif with short-run discount factor β converges

pointwise (as the effort cost vanishes) to the consumption function of a (partial) sophisticate

with perceived βE ∈ [β, 1) and a true short-run discount factor of β′ = ββE
(

γ
γ−(1−βE)

)γ
.

This means that there is an observational equivalence between the consumption policy of naifs

and (partial) sophisticates in the limit as ε̄→ 0.

Proof. This corollary would follow directly from Proposition 3, except that the consumption

function ĉ(x) changes with βE (since we use hat-notation to denote an otherwise-identical

household that has β = 1 and faces a refinancing effort cost of HE × εt, where HE =(
γ−(1−βE)

γ

)−γ
depends on βE). However, Assumption 2 that ε̄→ 0 means that the effect of

βE on ĉ(x) becomes arbitrarily small.

Next, we show that our results on refinancing procrastination in Proposition 2 also con-

tinue to hold for all but the limit case of full sophistication.

Proposition 4 (Optimal Stopping)

1. Adjustment targets m′ and b′ are independent of β. Thus, m′(x) = m̂′(x), b′(x) = b̂′(x),

m′(x) = m̂′(x), and b′(x) = b̂′(x) for all x. These adjustment-target functions may still

vary with βE, though this effect vanishes under Assumption 2. This effectively means

that neither β nor βE affects the adjustment targets.

2.(a-1) For β = 1, the refinancing policy function R(x) converges pointwise to R(x) as the

effort cost vanishes. This effectively means that the β = 1 household’s mortgage

adjustment behavior does not depend on the state of the effort cost.

(a-2) For β < 1 and βE = β (full sophistication), it is effectively the case that the fully

sophisticated household’s mortgage adjustment behavior does not depend on the

state of the effort cost (details are provided in Appendix D.5.4).69

(b) For β < 1, βE ∈ (β, 1], and ε = ε̄, R(x) = 0 for all x. This means that for

all but the limit of full sophistication, the present-biased household procrastinates

and will not adjust its mortgage when ε = ε̄.

(c) For β < 1, βE ∈ (β, 1], and ε = ε, R(x) converges pointwise to R̂(x) as the effort

cost vanishes. This effectively means that the present-biased household does not

procrastinate when ε = ε.

Proof. The first step of this proof is to show that full sophisticates do not procrastinate

(clause 2a-2). This is an important first step, since partial sophisticates believe themselves

69For now, a formal statement of this result is complicated by the fact that a sophisticate’s refinancing
policy function takes the form of a mixed-strategy equilibrium (details in Appendix D.5.4).
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to be fully sophisticated (with a perceived short-run discount factor of βE) starting next

instant. Though we leave details to Appendix D.5.4, the intuition is fairly straightforward.

Because a full sophisticate is aware of future selves’ behavior, the current self would rather

refinance now at cost ε̄ than let future selves procrastinate for long enough that the cost

of such procrastination amounts to more than ε̄ of effort. Under Assumption 2 that ε̄ is

vanishingly small, this effectively implies that a fully sophisticated household will never

procrastinate (conversely, this argument also implies that if ε̄ was not vanishingly small then

there would still be scope for a fully sophisticated household to procrastinate).

Next, we turn to clause 1 that the adjustment targets are independent of β and (effec-

tively) βE. The proof here is in some sense much more difficult than under full naiveté in

Appendix C.2, because it is no longer the case that the continuation-value function of a (par-

tially) sophisticated household is identical to that of a β = 1 household. But, in Appendix

D.5.3 we show that the continuation-value function of a (partially) sophisticated household

is still an affine transformation of the continuation-value function of a β = 1 household,

building on arguments from Harris and Laibson (2013) and Maxted (2023). Thus, it is still

the case that the m′ and b′ that maximize the value function of a present-biased household

will maximize that of the corresponding β = 1 household, and vice versa. The one slight

complication to this proof is that the corresponding β = 1 household denoted by the hat-

notation faces a refinancing effort cost of HE × εt instead of just εt. However, this effect is

trivial under Assumption 2 that εt is vanishingly small.

Third, we discuss clause 2b regarding the procrastination decision of a less-than-fully-

sophisticated household when ε = ε̄. The basic intuition follows from the fact that so long

as a household is at least partially naive, then they expect to be less present biased next

instant than they are now (i.e., βE > β). Accordingly, any time that a household with a

short-run discount factor of β would want to refinance, a less-present-biased household with

a short-run discount factor of βE > β would also want to refinance. But then, the current

self will always choose to procrastinate (again for one instant in expectation) in order to

push the effort cost off into the future. In short, we do not need full naiveté to generate

procrastination. Rather, all that is needed to generate procrastination is for the current self

to think that the next self is less present biased than they are, which is the case for all but

full sophistication.

More formally, a partially naive household will consider refinancing only if βv(x) ≤
βv∗(x)−ε̄, or equivalently v(x) ≤ v∗(x)− 1

β
ε̄. However, recall that the household also expects

that next instant it will have a short-run discount factor of βE > β. And, a sophisticated

household with a short-run discount factor of βE will refinance whenever v(x) < v∗(x)− 1
βE ε̄.

Thus, the household perceives that v(x) ≥ v∗(x)− 1
βE ε̄, which also implies that the current

self will never consider refinancing now (since v∗(x)− 1
βE ε̄ > v∗(x)− 1

β
ε̄).

Finally, the proofs of clauses 2a-1 and 2c are similar to those in Appendix C.2.
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Robustness of Results to Partial and Full Sophistication. In the modified model

described above in Section D.5.1, we are now prepared to present our main results on the

effects of sophistication. Namely, as the effort cost vanishes: (i) there is a limiting obser-

vational equivalence between the behavior of partial sophisticates and naifs, and (ii) in the

case of full sophistication (βE = β), there is a limiting observational equivalence between the

behavior of full sophisticates and naifs without any refinancing inertia. These two statements

follow from Corollary 2 and Proposition 4.

Explaining clause 1 in more detail, Corollary 2 implies that the consumption policy

function generated by discount-function parameters β and ρ under full naiveté is analogous

to that produced by discount-function parameters β′ and ρ under partial sophistication.

Similarly, Proposition 4 implies that the refinancing policy functions generated by discount-

function parameters β and ρ under full naiveté are analogous to those produced by discount-

function parameters β′ and ρ under partial sophistication. What this tells us is that, if we

were to assume that households were partially sophisticated instead of fully naive, then by

calibrating the discount function with parameters β′ and ρ we would still hit the same LTV

moment, the same credit card borrowing moment, and generate the same responses to fiscal

and monetary policy as in the full-naiveté case with discount-function parameters β and ρ.

The argument for clause 2 is similar, except that full sophisticates do not procrastinate.

Thus, the full-sophistication case can be calibrated to produce behavior that is analogous to

the case of naive present bias with no refinancing inertia.

As a final step, we note that the two clauses just discussed only apply in the modified

model of Section D.5.1, not the main-text model of Section 2. However, we conjecture that

there exist calibrations of the modified model studied here in which the naif’s equilibrium

behavior in the modified model is comparable to their equilibrium behavior in our main-

text model. In particular, by taking ω↑ → ∞ we can approximate the main-text model

with a hard constraint at b. Then, by taking λC → ∞ we minimize refinancing delays,

again as in the main-text model. Under such calibrations, our analysis would then imply

that a model with partial sophistication can provide comparable predictions about LTVs,

credit card borrowing, and consumption responses to fiscal and monetary policy as those in

the full-naiveté case studied in the main text. Similarly, the full-sophistication case can be

viewed as an alternate motivation for the intermediate case of naive present bias without

refinancing inertia that was already presented in Appendix D.4.

Generalization: Comparative Statics for βE. Proposition 4 implies that procrasti-

nation is unaffected by βE except for the limit case of full sophistication. We emphasize,

however, that this is partially due to our simple two-state effort cost in Assumption 1, which

can be generalized for additional richness. We summarize one possible extension in the

following remark:
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Remark 2 In Proposition 4 above, we get the stark result that households procrastinate

homogeneously for all but the limit case of full sophistication. This result can be modified for

additional richness by generalizing the structure of effort costs in Assumption 1.

For example, consider the case where the low-cost state ε is stochastic, such that condi-

tional on drawing an instantaneous low-cost state, the effort cost in that state is given by

ε̃ ∼ Uniform[0, ε̄]. In this case, households will procrastinate until they draw a low-cost

state in which ε̃ < β
βE ε̄.

70 Since β
βE ε̄ is increasing as households become more sophisticated,

this implies that procrastination decreases as agents become more sophisticated.

D.5.3 Additional Details: Value Functions with Sophistication

Turning to adding further technical details to the arguments above, we now present the

fuller system of value functions for fully and partially sophisticated households. Similar

to the main text, we will use v(x) to denote a household’s (perceived) continuation-value

function, and w(x) to denote its (perceived) current-value function.

Step 1: Defining Continuation-Value Function v(x) for Full Sophisticates. To

implement the equilibrium techniques in Harris and Laibson (2013) and Maxted (2023), we

start by expressing the continuation-value function v(x) for a fully sophisticated household.

As will be discussed in Step 2, this also provides the (perceived) continuation-value function

for a partially sophisticated household, since a partial sophisticate perceives themselves to

be fully sophisticated in the next instant with a short-run discount factor of βE.

Step 1a: Defining vrefi(x) for Full Sophisticates. To begin, we need to pin down the

continuation-value function from choosing to incur the refinancing effort cost in order to

enter the “intermediate” state where the household has filled out its refinancing paperwork,

but is waiting for the new mortgage to close. We denote the household’s continuation-value

70Because a partially sophisticated agent expects their future selves to be fully sophisticated (with short-
run discount factor βE), the current self expects future selves to refinance such that v(x) = v∗(x)− 1

βE ε̄. So,

by not refinancing the current-value is w(x) = βv∗(x)− β
βE ε̄. Alternatively, by refinancing the current-value

is w(x) = βv∗(x)− ε̃. Thus, the current self will refinance whenever ε̃ < β
βE ε̄.
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function in this intermediate state by vrefi(x), and it is expressed as follows:

ρvrefi(x) = u(c(x)) +
∂vrefi(x)

∂b
(y + rb+ ωcc

(
max{b−, b}

)
+ ω↑(b− b)− − (rm + ξ)m− c(x))

−∂v
refi(x)

∂m
(ξm)

+
∑
y′ ̸=y

λy→y′
[
vrefi(b,m, y′, rm, r)− vrefi(x)

]
+
∑
r′ ̸=r

λr→r′
[
vrefi(b,m, y, rm, r′)− vrefi(x)

]
+λR

[
vR(x)− vrefi(x)

]
+λC

[
max
b′,m′

{
v(b′,m′, y, r + ωm, r)

}
− vrefi(x)

]
, s.t. refi. constraint (5) holds,

subject to the optimality condition u′(c(x)) = β ∂v
refi(x)
∂b

. In the first line of this equation, we

use (b − b)− = min{b − b, 0} to denote that the consumer pays the borrowing wedge of ωcc

up to b, and then any debt beyond b incurs the higher borrowing wedge of ω↑.

This equation for vrefi is similar to equation (8′), but with three main changes. First,

in the equation above for vrefi, consumption is pinned down by the condition u′(c(x)) =

β ∂v
refi(x)
∂b

.71 This is in contrast to equation (8′), where the time-consistent household with

β = 1 chooses consumption optimally to maximize v.

Second, in the equation for vrefi we remove the outer maximization that exists in equation

(8′) over whether or not to adjust the mortgage, since the household in this intermediate

state is already in the process of refinancing. Instead, the equation for vrefi adds a new

line relative to (8′), which is line six: λC
[
max
b′,m′

{
v(b′,m′, y, r + ωm, r)

}
− vrefi(x)

]
. This line

captures the household’s continuation-value conditional on having its mortgage close, which

occurs at Poisson rate λC .72 Conditional on closing, the household chooses b′ and m′ to

maximize current-value function w(x). However, since w(x) = βv(x), we work directly with

v(x) in line six for notational simplicity.

Third and relatedly, the equation for vrefi removes the possibility of forced refinancing.

We make this simplification since the household is already in the process of adjusting its

mortgage.

Step 1b: Continuation-Value Function for Full Sophisticates. Next, we character-

ize when a sophisticated agent will choose to adjust their mortgage in the typical high-effort-

71For further details on the Bellman equation for the continuation-value function of households with
present bias, see Harris and Laibson (2013) and also Maxted (2023).

72As discussed above, by taking λC → ∞ we effectively remove refinancing delays and get back to
vrefi(x) → max

b′,m′
v(b′,m′, y, r + ωm, r).
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cost state of ε̄. Let v∗(x) = 1
β
w∗(x) denote the continuation-value from adjusting.

In the typical high-cost state, a sophisticated agent with present bias will adjust their

mortgage whenever v(x) < v∗(x) − 1
β
ε̄, and will not adjust whenever v(x) > v∗(x) − 1

β
ε̄.73

Using this property, we are now prepared to define the continuation-value function v(x) for

full sophisticates, following similar methods as in Harris and Laibson (2013) and Maxted

(2023). Specifically, the sophisticate’s continuation-value function v can be expressed as an

HJBQVI, as follows:

ρv(x) = max

{
u(c(x)) + (A′′v)(x) , ρ

(
v∗(x)− 1

β
ε̄

)}
, (25)

subject to the optimality condition u′(c(x)) = β ∂v(x)
∂b

. For notational compactness, equation

(25) uses similar infinitesimal generator notation as in (8), where A′′ is the generator defined

by the right-hand side of (8′′) but with v(x) = max{v(x), v∗(x)− 1
β
ε} instead of (15).

Step 2: Continuation-Value Function for Partial Sophisticates. A partially so-

phisticated agent perceives themselves to be fully sophisticated in the next instant, with

a short-run discount factor of βE. Thus, a partial sophisticate’s continuation-value func-

tion again follows equation (25), except that β is replaced with βE. That is, the partial

sophisticate’s continuation-value function v can be expressed as ρv(x) = max
{
u(c(x)) +

(A′′v)(x) , ρ
(
v∗(x)− 1

βE ε̄
)}

, subject to the optimality condition u′(c(x)) = βE ∂v(x)
∂b

.

Step 3: Current-Value Function. We now express the current-value function w(x).

In this modified model, current-value function w(x) remains similar to equation (16) in

Appendix B.3 (which is itself just the generalized version of equation (9) in the main text),

but with one key modification: we update the definition of wrefi(x) (i.e., the current-value

function from refinancing) because the modified model presented in Section D.5.1 imposes

delays between the start of a refinance and its close. Fully, w(x) is now given by:

w(x) = max

{
βv(x), w∗(x)− ε̄

}
and

w(x) = max

{
βv(x), w∗(x)− ε

}
with

w∗(x) = max
{
wprepay(x), wrefi(x)

}
wprepay(x) = max

b′,m′
w(b′,m′, y, rm, r) s.t. prepayment constraint (4) holds

wrefi(x) = βvrefi(x) where vrefi(x) is defined above

(26)

73Note the rescaling of the effort cost by 1
β , which we explained intuitively in Appendix D.5.2 above and

which follows from the first line of equation (26) in Step 3 below.
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Step 4: Defining the Comparable β = 1 Household. We end this subsection by

adding further details on mapping the (partially or fully sophisticated) present-biased house-

hold to a corresponding household with β = 1 and a refinancing effort cost of HE × εt.

Specifically, equation (25) above helps us to see that we can make use of the following result

from Harris and Laibson (2013).

Remark 3 (Value Function Equivalence) Continuation-value function v(x) of a fully

sophisticated present-biased agent is an affine transformation of the value function of an

otherwise-identical agent with β = 1 and a refinancing effort cost of H × εt, where H =(
γ−(1−β)

γ

)−γ
.

Remark 4 (Extension to Partial Sophistication) Continuation-value function v(x) of

a partially sophisticated present-biased agent is an affine transformation of the value function

of an otherwise-identical agent with β = 1 and a refinancing effort cost of HE × εt, where

HE =
(
γ−(1−βE)

γ

)−γ
.

These remarks are informal, and we direct the reader to Harris and Laibson (2013) and

Maxted (2023) for further details regarding the value function equivalence in Remark 3.

Remark 4 follows from Remark 3, since a partial sophisticate perceives themselves to be

fully sophisticated in the next instant with a short-run discount factor of βE.

Briefly sketching out the value function equivalence in Remark 3, the methods presented

in Harris and Laibson (2013) and Maxted (2023) show that the continuation-value function

v(x) of the fully sophisticated present-biased agent in equation (25) can be constructed from

the value function v̂(x) of a time-consistent (i.e., β = 1) “û agent” with a refinancing effort

cost of 1
β
εt. In particular, this time-consistent û agent has a modified utility function of

û(ĉ) = ψ
β
u
(

1
ψ
ĉ
)
+ ψ−1

β
, where u(c) is the standard CRRA utility function and ψ = γ−(1−β)

γ
.

From inspection one can see that û(ĉ) is an affine transformation of standard CRRA utility,

such that u(c) = β
ψγ û(c) + (other constants). Thus, by applying this affine transformation

to both the û utility function and to the û agent’s refinancing effort costs, we see that the

behavior of this û agent will be equivalent to the behavior of a “standard exponential agent”

with β = 1, standard CRRA utility u(c), and a refinancing effort cost of β
ψγ × 1

β
εt = H × εt,

exactly as stated in the Remark.

D.5.4 Additional Details: Policy Functions with Sophistication

As a final step, we provide further details on the policy functions of households with partially

or fully sophisticated present bias.

Consumption. Proposition 3 follows similar arguments as in Maxted (2023).
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Mortgage Adjustment (Full Sophistication). The mortgage-adjustment decision of

partially sophisticated households was described above in Proposition 4. However, the

mortgage-adjustment decision of fully sophisticated households features the added technical

complexity that the refinancing policy function becomes a mixed-strategy equilibrium, which

we discuss further here.

Specifically, so long as εt = ε̄ then in equilibrium it cannot be the case that a sophis-

ticate adjusts their mortgage with probability-one at any point x. As with naiveté, if the

current self believes with certainty that the next self will adjust, then the current self will

simply procrastinate. Thus, in equilibrium we instead assume that sophisticates adjust their

mortgage at a Poisson rate. Let λadjust : x→ [0,∞) denote this rate.

The fact that sophisticates adjust their mortgage probabilistically also means that there

is something “going on behind the scenes” in the right branch of equation (25). While it is

the case that v(x) = v∗(x) − 1
β
ε̄ when the household is in the adjustment region, it is not

necessarily the case that this adjustment happens immediately. Rather, in an adjustment

region the agent’s continuation-value function can be expressed as:

ρv(x) = u(c(x)) + (A′′v)(x) + λadjust(x) (v∗(x)− ε̄− v(x)) , (27)

where λadjust(x) is determined in equilibrium precisely to ensure that v(x) = v∗(x) − 1
β
ε̄.74

Rearranging this equation using the property that v(x) = v∗(x)− 1
β
ε̄ gives:

λadjust(x) =
ρv(x)− u(c(x))− (A′′v)(x)

ε̄
(

1
β
− 1

) .

On the one hand, when ε̄ is large then one can see how λadjust could be relatively low and

hence that slow refinancing can arise under full sophistication. On the other hand, under

Assumption 2 that ε̄ is vanishingly small, λadjust gets arbitrarily large and hence refinancing

occurs arbitrarily quickly.

74Alternatively, λadjust(x) = 0 whenever v(x) > v∗(x)− 1
β ε̄ because the household does not want to adjust.
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E Supplements to Section 4

E.1 MPCs and MPXs out of Discrete Wealth Shocks

In Section 4 the MPC and the MPX are defined over infinitesimal wealth shocks. Following

Achdou et al. (2022), this section extends these definitions to discrete wealth shocks.

Let Cτ (x) = E
[´ τ

0
c(xt)dt | x0 = x

]
denote total expected consumption from time 0

to time τ . Recall that x = (b,m, y, rm, r). Let x + χ be shorthand for the vector (b +

χ,m, y, rm, r), i.e. x+ χ is point x plus a liquid wealth shock of size χ.

For a discrete liquidity shock of size χ the MPC is defined as:

MPCχ
τ (x) =

Cτ (x+ χ)− Cτ (x)

χ
.

The MPX is defined as (see Laibson et al. (2022) for details):

MPXχ
τ (x) =

(
1− s+

νs

r0 + ν

)
MPCχ

τ (x) +
s

ν + r0

(
E [c(xτ ) | x0 = x+ χ]− E [c(xτ ) | x0 = x]

χ

)
.

Total consumption Cτ (x), which is used in the MPC calculation, can be calculated nu-

merically using a Feynman-Kac formula (see Lemma 2 of Achdou et al. (2022) for details).

To calculate the MPX we also need to solve for the expected consumption rate at time τ ,

E [c(xτ )|x0 = x]. Again, a Feynman-Kac formula can be used to solve for this directly.75

Numerically, we solve the Feynman-Kac formula for the sample path rt = 1% for all t (i.e.,

no aggregate interest rate shocks) since these calculations are conducted in the steady state.

75The Feynman-Kac formula for Cτ (x) is provided in Achdou et al. (2022). The Feynman-Kac formula
for E [c(xτ )|x0 = x] is specified slightly differently, but is again a direct application of the formula.

78



E.2 Model Solution Details: MPCs

(a) Quarterly MPCs Across Transfer Amounts

(b) Present-Bias Benchmark: MPCs over Liquid Wealth

Figure 12: MPCs Across Transfer Amounts.
Notes: The top panel plots quarterly MPCs out of transfers ranging from $1,000 to $50,000 for the two
calibration cases. The bottom panel replicates the MPC analysis in Figure 3 for the Present-Bias Benchmark
calibration across transfer amounts of $1,000 (benchmark), $10,000, and $25,000.
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E.3 Model Solution Details: Steady State Distributions

Figure 13: LTV Distribution.
Notes: This figure shows the steady state distribution of households over the LTV ratio.

(a) Exponential Benchmark

(b) Present-Bias Benchmark

Figure 14: Steady State Distribution.
Notes: This figure presents the full steady state distribution over income, liquid wealth, and mortgage debt.
Dark blue regions are rarely encountered, while light yellow regions feature large masses of households.
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F Supplements to Section 5

F.1 Fiscal Policy: Financing of Fiscal Stimulus with Future Taxes

As stated in Section 5.1, the government finances the initial $1,000 stimulus payment with a

flow income tax on all households in perpetuity that is chosen so as to satisfy the government

budget constraint. This appendix spells out the details of the fiscal rule the government

uses to achieve this in our environment with a stochastic interest rate on government debt,

building on work by Bohn (1998) and Blanchard (2023).

Before spelling out this fiscal rule, we spell out the government budget constraint. To this

end, Bt denotes real government debt in per-capita terms which the government can issue

at interest rate rt, the same stochastic interest rate as that on households’ liquid savings.

In our continuous-time model, we allow for fiscal stimulus payments not just in the form of

continuous flow payments but also as lumpy wealth transfers. To this end, denote by Tt the

government’s cumulative fiscal stimulus from time 0 to time t and denote by dTt the fiscal

stimulus at time t (so that Tt =
´ t
0
dTs). Finally, denote by τt the tax revenues from a flow

income tax that the government uses to pay for such stimulus (more on this below).

With this notation in hand, the flow government budget constraint is:

dBt = (rtBt − τt)dt+ dTt. (28)

This differential equation needs to hold for all t and for any realization of interest rates,

including the possible negative interest-rate realizations (recall from Section 4.1 that interest

rates in our calibration follow a Markov process with values rt ∈ {−1%, 0%, 1%, 2%}). The
fact that interest rates can go negative introduces a difficulty with writing the government

budget constraint in present-value form or, equivalently, with writing the appropriate no-

Ponzi condition. To resolve this difficulty we adopt the approach developed by Reis (2021)

to analyze present-value budget constraints when r < g (here with g = 0). Because this

difficulty is not central to our choice of fiscal rule satisfying the government budget constraint,

we postpone its discussion until the end of this appendix section.

Starting from the steady state at time t = 0, the government unexpectedly pays each

household a lumpy “helicopter drop” fiscal stimulus payment of $1, 000, i.e. T0+ = $1, 000.

Thereafter, there are no more fiscal stimulus payments, i.e. dTt = 0 for all t > 0 and so also

Tt = $1, 000 for all t > 0. We assume that, in the initial steady state, government debt is

zero, B0− = B̄. Given the time path for fiscal policy, government debt initially jumps up to

B0+ = B̄ + T0+ = $1, 000.

Going forward, we then assume that, at each time t > 0, the government levies a stochas-
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tic tax of τt given by

τt = rtBt + κ, with κ > 0 but κ ↓ 0 (until the debt is fully repaid). (29)

This simple fiscal rule ensures that the government budget constraint is satisfied and that

government debt eventually reverts to its initial steady state level. The intuition is as follows.

Suppose first that κ = 0 so that tax revenues are τt = rtBt. Examining (28) and

recalling that dTt = 0 for all t > 0, we then have dBt = 0 for all t > 0 and all interest-rate

realizations so that the real value of the government’s debt stays constant in perpetuity and

hence Bt = B0+ = $1, 000 all t > 0. If all interest-rate realizations were strictly positive,

then this would be enough to satisfy a standard no-Ponzi condition and hence to satisfy the

present-value government budget constraint. However, as just discussed, they are not; in

particular rt can take the values −1% and 0%.

The alternative fiscal rule with κ ≈ 0 as in (29) ensures that the present-value government

budget constraint is satisfied even with the possibility of zero or negative interest rates.

Intuitively, substituting (29) into (28) and recalling dTt = 0 for all t > 0, we have

dBt = −κdt < 0 for all t > 0 and all interest-rate realizations until the debt is repaid.

That is, at each point in time, the government raises “just a little bit more” tax revenue than

the interest payments resulting from the initial stimulus and thus repays a little bit of the

initial debt at each point in time, i.e. dBt < 0 for all t > 0 and all interest-rate realizations

until the debt is fully repaid (when rt < 0 we have τt < 0, i.e. the government makes a

transfer to households but one that is a little bit less than the revenues from the negative

interest rate on its debt). Therefore BT → 0 as T → ∞, i.e. government debt eventually

reverts to its initial steady state level B̄ = 0 regardless of the time path of interest-rate

realizations.

The fiscal rule (29) is similar to that proposed by Blanchard (2023), who suggests “making

the primary balance a function of debt service [...] with one-to-one pass-through” and points

out that the rule is a natural extension of the “Bohn rule” (Bohn, 1998) in which the primary

balance is an increasing function of the level of debt (rather than debt service).

Given that our model features heterogeneous households, there are some degrees of free-

dom in specifying how exactly to raise the tax revenues τt satisfying (29). In practice, we do

this by levying a proportional tax τ̄t× yit on households’ inelastically supplied labor income

yit so that higher-income households pay higher taxes in dollar terms. Tax revenues are then

given by

τt = τ̄t × ȳ,

where ȳ =
´
yitdi is average household income (which is constant because we assume a
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stationary income process).

Finally, it is worth emphasizing just how small the per-period taxes can be while still

satisfying the government budget constraint. Since households’ average income of $95,718
has been normalized to 1, τ̄t is given by:

τ̄t ≈ rt ×
Bt

ȳ
≈ rt ×

$1, 000

$95, 718
,

where the approximations use that κ ≈ 0 and Bt ≈ $1, 000 because the government pays its

debt down only slowly. That is, even in time periods with the highest interest-rate realization

rt = 2%, the tax rate equals only about τ̄t ≈ 2% × $1,000
$95,718

≈ 0.02% of labor income. This

explains why the initial short-run consumption response with our fiscal rule (29) is very

similar in size to the consumption response to the same fiscal stimulus but without imposing

a government budget constraint at all.

Present-Value Budget Constraint with Negative Interest Rates (Reis, 2021). As

already noted, a difficulty is that our model allows for the possibility of negative interest rates

on government debt. We here show how to write an appropriate present-value government

budget constraint corresponding to (28), and then show that the simple tax rule (29) satisfies

this present-value constraint.

To write the present-value budget constraint, we follow Reis (2021) and use a strictly

positive discount rate δ > 0 in place of interest-rate realizations {rt}t≥0 to compute present

values. Imposing the no-Ponzi condition

lim
T→∞

e−δTBT = 0, (30)
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the present-value budget constraint becomes76

ˆ ∞

0

e−δtdTt +B0 =

ˆ ∞

0

e−δtτtdt+

ˆ ∞

0

e−δt(δ − rt)Btdt. (31)

As discussed by Reis (2021), in principle, any discount rate δ > 0 can be used, but a

sensible choice is the private return from investing in productive capital (as opposed to

government bonds) which, in the data, has historically exceeded the economy’s growth rate.

In this case (31) has the interpretation of the present-value government budget constraint

but discounted at the return of private investors δ. The equation then states that the

government’s present value of spending dTt (discounted at δ) plus its initial debt B0 must

not exceed the present value of future taxes τt (discounted at δ) plus a non-standard term

that Reis names the “bubble premium revenue term” which is the present value of the

implicit government revenues that arise from paying an interest rate rt on its debt that is

below the private return δ (the convenience yield of government debt).

The only thing that remains is to show that the fiscal rule (29) satisfies the no-Ponzi

condition (30) and the present-value budget constraint (31). This follows immediately from

the fact that this rule implies that government debt converges to zero in the long run, BT → 0

as T → ∞. In particular, the no-Ponzi condition is immediately satisfied. Similarly, in (31),

the bubble-premium revenue term is bounded for any sequence of interest-rate realizations

{rt}t≥0 because (δ − rt)Bt → 0 as t→ ∞ for any {rt}t≥0.

Full General Equilibrium Analysis. Finally, we again note that our model is not a

general equilibrium model and therefore leaves out a number of considerations that may

be important in practice, in particular “Keynesian” multiplier effects of fiscal stimulus that

work by stimulating aggregate demand. Future research should explore the effects of fiscal

stimulus in full-blown general equilibrium models with present-biased households.

76The advantage of using δ > 0 rather than {rt}t≥0 when writing the no-Ponzi condition and government
budget constraint is that it sidesteps the issue that these conditions are ill-defined when rt can go negative.
For example, the standard approach of integrating the flow budget constraint while discounting at {rt}t≥0

involves the term limT→∞ e−
´ t
0
rsdsBT , which may converge to infinity for negative interest-rate realizations

(in particular, one possible history is rt = −1% for all t).
To derive (31), write the flow budget constraint (28) as

dBt − δBtdt = ((rt − δ)Bt − τt)dt+ dTt.

Multiplying by e−δt and integrating between 0 and T we have

BT e
−δT −B0 =

ˆ T

0

e−δtdTt −
ˆ T

0

e−δtτtdt+

ˆ T

0

e−δt(rt − δ)Btdt.

Taking T → ∞ and using the no-Ponzi condition (30) yields the present-value budget constraint (31).
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F.2 Fiscal Policy: Implementation Details

(a) Liquid Fiscal Transfer (b) Illiquid Fiscal Transfer

Figure 15: Liquidity of Fiscal Policy.
Notes: The left panel reproduces the benchmark fiscal policy analysis of Figure 4. The right panel plots the
IRF of aggregate consumption to a $1,000 mortgage principal reduction.
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F.3 Monetary Policy: Refinancing Dynamics

Figure 16 plots the adjustment regions following an interest rate cut from 1% to 0%. This

figure replicates the phase diagrams in Figure 1, but now for the case of rt = 0% and

rmt = 1%+ωm. Thus, Figure 16 plots the adjustment regions for households with a mortgage

rate that is above the rate they can refinance into.

As in the main text, the red regions mark where households take a cash-out refinance and

the blue regions mark where households prepay their mortgage. The gray regions indicate

where households conduct a rate refinance, defined as the household increasing its mortgage

balance by less than 5% during the refinance. Relative to the steady state adjustment

regions, the interest rate cut causes the red/gray refinancing regions to expand drastically.

In particular, households with larger LTVs are more likely to refinance, since households

with larger mortgages have more to gain by reducing their mortgage interest payments.

Table 6 presents details of the refinancing decision. The first row lists the share of

households who find themselves in a refinancing region at the time of the interest rate

cut. Conditional on refinancing, the second row lists the share of households who extract

equity when refinancing. The next four rows list the share of households who have actually

refinanced within 1 quarter, 1 year, 2 years, and 3 years following the interest rate cut. While

refinancing is instant in the Exponential Benchmark, procrastination means that refinancing

occurs slowly in the Present-Bias Benchmark.

Exponential Present Bias
Share Refi Region (On Impact) 70.6% 72.3%

(Share Cash Out) 81.2% 77.7%
1
4
Year Realized Refi 72.5% 13.2%

1 Year Realized Refi 76.9% 40.9%
2 Year Realized Refi 81.3% 61.2%
3 Year Realized Refi 84.5% 72.0%
Average Refi Amount 0.37 0.35

Table 6: Refinancing Details.
Notes: This table summarizes details of household refinancing following an interest rate cut from 1% to 0%.
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(a) Exponential Benchmark

(b) Present-Bias Benchmark

Figure 16: Rate-Cut Phase Diagrams.
Notes: This figure presents the phase diagrams for households who can refinance into a lower mortgage rate
following an interest rate cut from 1% to 0% (see Figure 1 for phase diagram details).
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F.4 Monetary Policy and Refinancing Procrastination

Figure 17: Monetary Policy Under FRMs Versus ARMs.
Notes: For the Present-Bias Benchmark calibration, this figure compares the consumption response to
monetary policy under FRMs (solid line) versus ARMs (dotted line). The interest rate is cut by 2% in
the ARM experiment, compared to 1% in the FRM experiment, since monetary policy produces larger
movements in ARM rates than long-duration FRM rates.

Figure 18: Monetary Policy with Procrastination Reduction.
Notes: This figure presents the consumption response to monetary policy in the Present-Bias Benchmark
across varying levels of refinancing procrastination. The +’s assume that policymakers are able to halve the
expected duration of procrastination at the time of the rate cut. The ∗’s make refinancing immediate at the
time of the rate cut. The baseline consumption response under FRMs (solid red line) and ARMs (dotted
red line) are presented for comparison.

88



G Discussion: Implications of Present Bias for Macroe-

conomic Policy in Fully-Fledged Macro Models

As we have already discussed, our model is set in partial equilibrium because abstracting from

general equilibrium considerations allows for a richer, and more straightforward, investigation

of the household problem. We also omit a number of model elements that could be important

in principle, such as modeling residential investment. Finally, our calibration focuses on a

specific subset of the population, namely homeowners. This raises the question of how present

bias would affect the transmission of monetary and fiscal policy in a full general equilibrium

analysis that relaxes these assumptions and models the entire population including non-

homeowners.

G.1 Omissions from the Analysis and Restriction to Homeowners

We start by discussing certain omissions from the analysis other than general equilibrium

effects. In many cases, while filling these gaps would clearly affect our monetary and fiscal

policy results, it is less clear as to how doing so would affect our main results about present

bias amplifying the impact of these policies (i.e., the comparison of the Exponential and

Present-Bias Benchmarks). In others, the omission may materially affect our main results.

Residential Investment. As discussed in Section 2.1, we assume that each household is

endowed with a home of fixed value h. That is, the housing size is completely fixed and

cannot be adjusted (in contrast, housing equity can be adjusted via mortgage balances).

The omission of residential investment means that our model provides an incomplete

picture of the effects of monetary policy, particularly as it relates to the spending response

to cash-outs. While households often report using extracted home equity for residential

investment (e.g., Greenspan and Kennedy, 2008), this channel is broadly missing from our

model with fixed housing h. This channel could interact with present bias, thus affecting

our main results.77

Yet another possibility that we assume away with our fixed-h assumption is that present-

biased agents would buy different-sized houses in the first place. On the one hand, present-

biased households may struggle to accumulate the liquid wealth required to make a down

77That said, the reduced-form MPX tool from Laibson et al. (2022) that we used in Section 4 does
capture household spending on home improvements (which differs from residential investment as we explain
momentarily). Specifically, we calibrate our mapping from MPCs to MPXs such that the MPX includes
consumer spending on “furnishings and durable household equipment” like furniture, household appliances,
and gardening equipment. In other words, while our MPX measure excludes residential investment, it does
include other types of home improvements (like a new washing machine) that are included as Personal
Consumption Expenditures by the BEA.
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payment and hence will hold less housing. On the other hand, (partial) sophistication

of the type modeled in Appendix D.5 in combination with binding financial constraints

may lead present-biased households to buy an illiquid asset like housing as a commitment

device (Laibson, 1997; Maxted, 2023), and may hence result in them buying larger houses.

If present-biased and exponential households make different housing choices, they may of

course also respond differently to monetary policy.

Supply Side of the Credit Card Market. While we calibrate the credit card wedge ωcc

to 10.3% in order to match the data on the commercial bank interest rate charged on credit

cards, we do not actually model the supply side of the credit card market. An important

question for future research is why such high interest rates arise in equilibrium. Default risk

is certainly part of the story, though Dempsey and Ionescu (2023) suggest that interest rate

spreads far exceed the risk of default. While default levels alone may not explain credit card

interest rates, it also seems likely that issuers’ profits covary positively with the business

cycle, since loan loss provisions will generally peak during downturns. This suggests that

credit cards are a “high-beta” product for credit card issuers, which would provide a risk-

premium explanation for why credit card debt commands an elevated interest rate.

In light of this discussion, another simplification of our model is that it abstracts from

credit card default. It is likely that a model with present-biased households will feature a

different level of defaults, and perhaps also a different covariance of defaults with the business

cycle, than a model with exponential households. Given that this will affect the equilibrium

interest rates and borrowing limits that households face, it is again likely that modeling such

considerations explicitly will affect our main results.

Supply Side of the Mortgage Market. We also abstract from the supply side of the

mortgage market, though many of the questions above still apply. Indeed, we have already

shown that present bias affects households’ mortgage choices, so it is likely that present bias

also influences both the product menus and equilibrium mortgage rates that households face.

Restriction to Homeowners. The subpopulation of homeowners that we calibrated our

model to – and hence the individuals that populate our model – differs from the full U.S.

population in a number of ways. Perhaps most importantly, our model population overrepre-

sents debtors. More precisely, while our model does feature some households with substantial

liquid savings (e.g., $100,000), the number of such households is relatively small (see Ap-

pendix Figure 14 and recall that we normalized average income of $95,718 to 1). Instead,

most households in our model have substantial mortgage debt, credit card debt, or both.

As a result of these modeling and calibration choices, our results paint only a partial

picture of the transmission of monetary and fiscal policy, and of how present bias affects this
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transmission. That is, we leave out a number of offsetting or amplifying effects of such policy

changes. For example, given that our model is mostly populated by borrowers, our discussion

of monetary policy in Section 5.2 shows primarily the effects on this subgroup of the popu-

lation. This likely matters because the consumption of borrowers may respond more to such

interest rate cuts than that of lenders due to standard income effects (similarly, borrowers

may benefit more in welfare terms). A more fully-fledged macro analysis would also model

the other side of the mortgage and credit card markets, in particular the households who

lend as well as the financial institutions that facilitate this lending. While fully modeling the

entire population would therefore clearly affect the economy’s overall consumption response

to monetary policy, it is again less clear as to how doing so would affect our main results

about the impact of present bias on policy transmission.

G.2 General Equilibrium Effects

We next turn to the question of how present bias would affect the transmission of monetary

and fiscal policy in a full general equilibrium analysis. Here we briefly discuss this question

through the lens of the literature on Heterogeneous Agent New Keynesian (HANK) models.

That is, we ask what the effect of present bias would be on the consumption response

to monetary and fiscal policy in a general equilibrium version of the model with nominal

rigidities (i.e., as before we focus on the comparison between the Exponential and Present-

Bias Benchmarks, but now take into account general equilibrium considerations).78

In HANK models, macroeconomic stabilization policy can trigger a number of different

indirect general equilibrium effects, particularly effects working through household labor

income, asset prices, and returns (see e.g. Werning, 2015; Kaplan et al., 2018; Auclert, 2019;

Alves et al., 2020; Slacalek et al., 2020). The size of these indirect effects depends on the

size of these variables’ movements as well as households’ responsiveness to these changes,

e.g. MPCs (and MPXs) out of labor income and asset price changes. In heterogeneous-agent

models with idiosyncratic income risk and borrowing constraints of the type analyzed here

these indirect effects can be important because such models often generate sizable MPCs

(e.g., Kaplan et al., 2018).

As we have shown above, present bias increases both households’ average MPC and the

direct consumption effect of an interest rate cut. The likely implications for the transmission

78One could also imagine studying the impact of present bias on the consumption response to macroe-
conomic policy in models without nominal rigidities, and this may overturn our result that present bias
amplifies this response. For example, in a model with a classical dichotomy, changes in nominal interest
rates would have no effect on real consumer spending regardless of whether the economy features present
bias. Similarly, one may be able to construct a general equilibrium version of our model in which an ex-
treme form of Ricardian equivalence holds so that fiscal stimulus has no effect on consumer spending, again
regardless of present bias. We view such exercises as less interesting and instead discuss environments in
which policy affects consumer spending also in the absence of present bias.
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of monetary and fiscal policy in a full general equilibrium analysis are as follows.

Fiscal Policy. We conjecture that, also in a general equilibrium HANK version of our

model, present bias would continue to amplify households’ spending response to fiscal policy.

This follows from a simple “Keynesian cross” logic which takes as its starting point that

the most potent general equilibrium effect triggered by fiscal policy is likely the one working

through households’ labor incomes: a fiscal transfer increases aggregate consumption demand

(the impulse or direct effect); in equilibrium, firms hire more which increases households’

labor incomes and leads to additional spending (the multiplier or indirect effect).79 The key

ingredient determining the size of both this impulse and multiplier are households’ MPCs,

which increase with present bias. Present bias therefore likely amplifies not only the direct

effects but also the indirect general equilibrium effects of fiscal policy.

Monetary Policy. We conjecture that the situation is similar for monetary policy, namely

that present bias would increase not only direct but also indirect effects and therefore the

overall consumption response. Just like fiscal policy, monetary policy triggers indirect ef-

fects working through labor income and present bias would amplify these via higher MPCs.

Monetary policy can also trigger indirect effects working through asset prices and returns

(Gornemann et al., 2016; Kaplan et al., 2018; Alves et al., 2020; Slacalek et al., 2020).80

However, since present bias does not significantly affect MPCs out of liquid wealth for high-

liquidity households (see Figure 3), nor MPCs out of illiquid wealth (see Figure 15), it is

natural to conjecture that present bias does little to impact the indirect effects working

through asset prices and returns. Taken together, this discussion suggests that, in a HANK-

version of our model, present bias would continue to amplify the effects of monetary policy

once general equilibrium effects are taken into account.

Fully evaluating the impact of present bias on the economy’s response to monetary and

fiscal policy in a general equilibrium model is an important task for future work.

79For modern macro versions of this mechanism, see for example Auclert et al. (2018) and Wolf (2023).
80Since we study the effect of monetary policy on consumption at relatively high frequencies, we are mostly

interested in asset price changes at those same frequencies. In this regard, empirical evidence usually points
to interest rate cuts as increasing stock prices (e.g., Bernanke and Kuttner, 2005; Gürkaynak et al., 2005).
There is also evidence that loose monetary policy increases house prices (e.g., Jordà et al., 2015), but this
mechanism seems to operate at a lower frequency than we study.
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