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Abstract
Mean Field Game (MFG) models implicitly assume “rational expectations”, meaning

that the heterogeneous agents being modeled correctly know all relevant transition prob-
abilities for the complex system they inhabit. When there is common noise, it becomes
necessary to solve the “Master equation” (a.k.a. “Monster equation”), a Hamilton-Jacobi-
Bellman equation in which the infinite-dimensional density of agents is a state variable.
The rational expectations assumption and the implication that agents solve Master equa-
tions is unrealistic in many applications. We show how to instead formulate MFGs with
non-rational expectations. Departing from rational expectations is particularly relevant
in “MFGs with a low-dimensional coupling”, i.e. MFGs in which agents’ running re-
ward function depends on the density only through low-dimensional functionals of this
density. This happens, for example, in most macroeconomics MFGs in which these low-
dimensional functionals have the interpretation of “equilibrium prices.” In MFGs with
a low-dimensional coupling, departing from rational expectations allows for completely
sidestepping the Master equation and for instead solving much simpler finite-dimensional
HJB equations. We introduce an adaptive learning model as a particular example of non-
rational expectations and discuss its properties.

1 Introduction

Economists and mathematicians cast models with a large number of interacting agents as Mean
Field Games (MFGs), a coupled system of a backward-in-time Hamilton-Jacobi-Bellman (HJB)
equation for agents’ value function and a forward-in-time Fokker-Planck type equation for the
agents’ density. These equations describe the Nash equilibrium of a game played by a large
number of agents experiencing fluctuations that are independent from each other. When there
is common noise, the backward-forward stochastic coupling becomes more complicated and,
to find their optimal strategy, the model agents need to solve a Master equation, that is, an HJB
equation in which the infinite-dimensional density is a state variable. This Master equation
therefore suffers from an extreme version of the curse of dimensionality and has aptly been
nicknamed “Monster equation” due to its complexity.

An underappreciated fact is that MFGs not only impose Nash equilibrium but also as-
sume “rational expectations”, meaning that the heterogeneous agents being modeled correctly
know all relevant transition probabilities governing the complex system they inhabit. We ar-
gue that this assumption is unrealistic in many applications and show how to instead for-
mulate a more general class of MFGs with non-rational expectations. Furthermore, we show
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that departing from rational expectations can drastically simplify the complexity of agents’
optimization problems in certain applications and may allow sidestepping the unrealistically
complex infinite-dimensional Master equation altogether.

After spelling out general MFGs without rational expectations, we focus on a class of MFGs
we term “MFGs with a low-dimensional coupling.” In these MFGs, agents’ running reward
function depends on the density only through low-dimensional functionals of this density,
for example a low-dimensional vector of moments of this density. That is, model agents do
not directly “care about” the density (in the sense that their rewards do not depend on it)
and instead care only about the low-dimensional functionals. Most MFGs in macroeconomics
are examples of this class of MFGs, with these low-dimensional functionals corresponding
to “equilibrium prices.”1 We show that, in MFGs with a low-dimensional coupling, departing
from rational expectations generally results in a much simpler finite-dimensional HJB equation
in place of the infinite-dimensional Master equation.

One of this paper’s arguments is that MFGs with rational expectations and the Master
equation are unrealistically complex as models of human decision making. MFGs with a low-
dimensional coupling illustrate this clearly: under the rational expectations assumption, the
low-dimensional coupling neither simplifies the formulation of the MFG nor that of the Mas-
ter equation in any straightforward way. Indeed, to compute the low-dimensional functionals
(“prices” in macroeconomics applications) in the rational expectations regime, one needs to
compute the full density of the agents and there is no closed system that includes the “prices”
alone and not the full agents density. The agents being modeled are assumed to perform the
same computations. It is for this reason that the Master equation is an infinite-dimensional
PDE despite model agents only “caring about” much lower-dimensional “prices.” The present
paper criticizes the use of the Master equation in MFGs with a low-dimensional coupling and
calls for developing alternative low-dimensional approximations that take advantage of these
models’ special structure. This part of the paper is a “mathematics translation” using the lan-
guage of partial differential equations of an economics paper (Moll, 2024) which criticizes the
use of the rational expectations assumption in macroeconomics MFGs.2

Our main results are contained in Section 5 which formulates MFGs without rational ex-
pectations. The preceding Sections 2 to 4 contain background material and building blocks
that are useful for understanding such MFGs. In particular, before considering the full MFG
case, Section 4 introduces the idea of departing from rational expectations in the simpler case
of a single agent solving a stochastic control problem.

As we explain in Section 5, the key feature of MFGs without rational expectations is that
each agent uses a perceived trajectory of the future empirical density of the other agents that
does not necessarily coincide with the density’s actual equilibrium trajectory. This results in
a model that, formally, still has the backward-forward feature of the MFG but, for a specified
perceived trajectory of the density, at any given time, the agents’ strategy can be computed
solely by using the backward-in-time HJB equation, without resorting to the forward in time
density equation. This system is the analogue of what economists call a “temporary equilib-
rium” (Hicks, 1939; Lindahl, 1939; Grandmont, 1977, 1989). After spelling out this more general
system we show that, as expected, we recover the familiar backward-forward MFG system in
the special case of rational expectations, i.e. when agents’ perceived trajectory of the density of
the other agents coincides with density’s actual equilibrium trajectory. Analogously, we show
how to formulate MFGs without rational expectations in the case with common noise and that
we recover the Master equation in the special case with rational expectations.

1In economics, these MFGs with coupling via low-dimensional equilibrium prices are known as “heteroge-
neous agent models.”

2In macroeconomics MFGs, forward-looking decision makers are assumed to forecast equilibrium prices by
forecasting functionals of infinite-dimensional densities. But it seems self-evident that real-world households and
firms do not forecast prices in this way and instead solve simpler approximate problems.
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In Section 6 we consider non-rational expectations in MFGs with a low-dimensional cou-
pling. Each agent now uses a perceived trajectory of the future vector of “prices” that does not
necessarily coincide with the actual trajectory of equilibrium prices. The result is again a sys-
tem in which, for a specified perceived trajectory of these prices, at any given time, the agents’
strategy can be computed from the HJB equation without resorting to the Fokker-Planck equa-
tion. Importantly, in the case with common noise, for a specified perceived law of motion of
future prices that imposes the Markov property, agents solve a simple finite-dimensional HJB
equation. That is, departing from rational expectations can completely sidestep the infinite-
dimensional Master equation.

Sections 5 and 6 considered MFGs in which agents hold beliefs about future evolution or
future prices that are specified outside the model (the “temporary equilibrium” idea). In Sec-
tion 7 we instead explain how such beliefs may be determined “inside the model” via some
form of learning. Specifically, we introduce an adaptive learning model that has the same key
property as the models with exogenously-specified beliefs we just discussed: at any given time,
and given the current prices, the agents strategy can be computed solely from the backward-
in-time HJB equation, without resorting to the forward in time density equation. However,
in contrast to the models with exogenous beliefs, with adaptive learning, agents update their
beliefs in the face of new information so that, over time, their perceived trajectory of equi-
librium prices may approximate the corresponding actual trajectory. Finally, we also discuss
some other promising directions, in particular reinforcement learning and other stochastic ap-
proximation algorithms.

In Section 8, for the sake of exposition and completeness, we explain how the arguments of
this paper can be adapted to the discrete-time case. Section 9 concludes.

2 Background: Mean Field Games and Rational Expectations

In this section, we briefly review the basics of MFGs. Lasry and Lions (2007), Cardaliaguet
(2013), Ryzhik (2018), Carmona and Delarue (2018a,b), Cardaliaguet and Porretta (2020) and
Cardaliaguet et al. (2019) provide more complete treatments. We use the standard formulation
in the MFG literature with small modifications explained below. We then briefly explain the
rational expectations assumption.

2.1 Backward-forward MFG system

Let us recall the setup of mean-field games. Consider a system of N ≫ 1 individual agents
(players) at positions (states) Xi,t ∈ Rn, i = 1, . . . , N, with 0 ≤ t ≤ T, where T is a fixed
terminal time that is sometimes taken as T = +∞.

Given t ≥ 0 and x ∈ Rn, each agent’s state evolves according to the stochastic differential
equation (SDE)

dXi,s = αi,sds +
√

2νdBi,s, Xi,t = x, t ≤ s ≤ T. (2.1)

Here αi,s ∈ A ⊂ Rn is a control which is optimally chosen by each agent (in a way prescribed
below), Bi,s is a standard n-dimensional Brownian motion, and ν ≥ 0 is a parameter mea-
suring the strength of the fluctuations affecting individual agents. The individual Brownian
motions Bi,s, i = 1, . . . , N, are independent and capture idiosyncratic risk. The intuition is
that this risk averages to a deterministic effective mean-field effect when N ≫ 1, as far as the
evolution of the agents’ density is concerned.

To choose the control αi,s in (2.1), each agent solves an optimization problem for the value
function uN : Rn × [0, T] → R defined by

uN(x, t) = max
αi∈A

E

[∫ T

t
e−ρtR(Xi,s, αi,s, mN(s, ·))ds + e−ρ(T−t)V(Xi,T, mN(T, ·))

]
(2.2)
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subject to Xi,s solving (2.1). Here,

mN(t, x) =
N

∑
i=1

δ(x − Xi,t), x ∈ Rn, (2.3)

is the empirical measure of the collection of agents, ρ ≥ 0 is a discount rate, R(x, α, m) is
a running reward function that depends on the state Xi,s, the control αi,s and the empirical
density mN(s, ·), and V(x, m) is a prescribed terminal value at time T. The expectation in (2.2)
is taken with respect to the idiosyncratic noises Bi,s, 1 ≤ i ≤ N.

In this setting, the dynamics of all agents are identical except that they experience different
realizations of Bi,t. That is, they are ex-ante identical (the functions R, V, and so on are identical
for all agents) but ex-post heterogeneous in Xi,t because of the different realizations of idiosyn-
cratic risk Bi,t. One small modification to the standard formulation in the MFG literature is that
here the agents maximize their objectives rather than minimize them.

Note that each agent’s running reward R depends on the overall system’s state, the empir-
ical density mN . Agents optimally choose the control α taking the future evolution of mN as
given. We denote the optimal policies, that is, the optimally chosen α in (2.2), by π (see (2.6)
below). Because R depends on mN , so do the optimal policies π and the value function uN . In
turn, the evolution of the empirical density mN depends on each agent’s optimal policy that
appears in (2.1). We are thus considering the Nash equilibrium of a game between a large
number of statistically identical players.

The backward-forward MFG system arises in the limit N → +∞ of a large number of
agents and is a coupled system of a Hamilton-Jacobi-Bellman equation for the limit u(x, t) of
the value functions uN(x, t) and a Fokker-Planck equation for the limiting empirical density of
the agents m(x, t):

ρu − ∂tu = H(x,∇u, m) + ν∆u, in Rn × (0, T),
∂tm = −div(∇λH(x,∇u, m) m) + ν∆m, in Rn × (0, T),

m(0) = m0, u(x, T) = V(x, m(T)), in Rn.
(2.4)

Here, H is the Hamiltonian3

H(x, λ, m) := max
α∈A

{R(x, α, m) + λ · α} , λ ∈ Rn, (2.5)

and the policy function (optimal control) of each agent, defined as

π(x, t) ≡ arg max
α∈A

{R(x, α, m) + α · ∇u(x, t)} , (2.6)

is given by
π(x, t) = ∇λH(x,∇u(x, t), m(t)). (2.7)

2.2 Master equation with common noise

We next introduce common noise (in MFG terminology) or aggregate uncertainty (in macroe-
conomics terminology). Typically, as, for example, in Cardaliaguet et al. (2019); Ahuja (2016);
Ahuja et al. (2019), this is done by directly adding an additional noise to the dynamics of indi-
vidual agents in (2.1)

dXi,t = αi,tdt +
√

2νdBi,t +
√

2βdWt, Xi,0 = x. (2.8)

3We use λ instead of the more standard p to denote the dual ”momentum” variable because p will denote the
price vector below.
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Here, the extra noise Wt is identical for all agents. In this formulation, the agents density mt
satisfies a stochastic Fokker-Planck equation

dmt = [−div(∇λH(x,∇xut, mt) mt) + (ν + β)∆xmt] dt − div(mt
√

2βdWt), (2.9)

rather than the standard Fokker-Planck equation that appears in (2.4).
For the sake of simplicity of the presentation, we will discuss now a slightly different

model, where the common noise does not directly affect the evolution of the individual agents
themselves. Instead, in this model, the common noise directly affects the running reward func-
tion. This will affect the optimal policy π and thus the evolution of the individual agents as
well. Bertucci and Meynard (2024a,b) use a similar approach.

Specifically, we introduce an additional state variable Zt ∈ Rk (“the aggregate state”), with
some k ≪ N, that evolves according to an SDE:

dZt = µz(Zt)dt +
√

2βdWt, Z0 = z, (2.10)

with some drift µz(z) and β ≥ 0. Here, Wt is a standard k-dimensional common Brownian
motion that – in contrast to the idiosyncratic Brownian motions Bi,t – affects all agents simul-
taneously via Zt.

The main assumption is that the running reward function R in (2.2) now depends on the
aggregate state Zt:

uN(x, t) = max
αi∈A

E

[∫ T

t
e−ρtR(Xi,s, Zs, αi,s, mN(s, ·))ds + e−ρ(T−t)V(Xi,T, ZT, mN(T, ·))

]
. (2.11)

As usual in the common noise setting, the admissible controls αi,s in (2.11), need to be Fs-
measurable: they can not depend on the future. This, of course, is also true for the optimal
control π(Xi,t, Zt, mt, t).

If the reward function R is non-separable between Zt and αi,t (which is the relevant as-
sumption in macroeconomics applications), the optimal policy π will depend on the aggregate
state Zt and therefore so will the dynamics of Xi,t:

dXi,t = π(Xi,t, Zt, mt, t)dt +
√

2νdBi,t,

dZt = µz(Zt)dt +
√

2βdWt.
(2.12)

Let us comment that this setting is a special case of the standard common noise formulation
in (2.8) but with a degenerate diffusion. To see this, introduce X̃i,t ∈ Rd, with d = n + k, with
the two components

X̃i,t =

[
Xi,t
Zt

]
.

Note that the second component is identical for all agents. Then (2.12) is the special case
of (2.8) in which the first component Xi,t is only affected by the idiosyncratic noise but not by
the common noise, and the second component Zt is only affected by the common noise but not
by the idiosyncratic noise. Furthermore, the second component is not controlled: αZ,t ≡ 0.

The state of the system (“the economy”) is now a pair (mt, Zt) which evolves as:

dmt = [−divx(∇λH(x, Zt,∇xut, mt) mt) + ν∆xmt] dt, (2.13)

dZt = µz(Zt)dt +
√

2βdWt. (2.14)

In contrast to the standard MFG formulation with a common noise (2.9), the Fokker-Planck
equation (2.13) for mt is not a stochastic partial differential equation (SPDE) but a partial dif-
ferential equation (PDE). Nevertheless, the solution to the system (2.13)-(2.14) is, formally, an
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infinite-dimensional (hypoelliptic) diffusion, and mt itself is a stochastic object as it depends
on the diffusion Zt. Because mt is stochastic, it is now necessary to include it as a state variable
in the agents’ value function

U(x, z, m, t).

Note that m ∈ P(Rn), the space of probability measures on with support in Rn, which is an
infinite-dimensional space. Hence, the Master equation is a Hamilton-Jacobi-Bellman equation
for the value function U set in infinite-dimensional space:

ρU − ∂tU =H(x, z,∇xU, m) + ν∆xU + β∆zU

+
∫

Rn
[∇mU](y)

[
−divy(∇λH(y, z,∇yU, m) m) + ν∆ym

]
(y)︸ ︷︷ ︸

drift of probability measure m at point y from (2.13)

dm(y)

in Rn × Rk ×P(Rn)× (0, T)

U(x, z, m, T) =V(x, z, m) in Rn × Rk ×P(Rn)

(2.15)

Here ∇mU denotes the derivative of U with respect to the measure m – see Cardaliaguet et al.
(2019) for a precise definition – and [∇mU](y) denotes the derivative of U with respect to m at
point y. Also note that we set the drift of the aggregate state µz(z) ≡ 0 for notational simplicity
and we will continue to do so going forward.

The stochastic Fokker-Planck equation (2.9) that comes from the standard common noise
MFG formulation (2.8) further complicates the Master equation (2.15) with additional second-
order derivatives in m (Cardaliaguet et al., 2019). The formulation in this section results in a
simpler first-order Master equation and nests all typical macroeconomics applications.

2.3 Rational expectations

Rational expectations is a modeling assumption introduced by Muth (1961) and popularized
in the 1970s by Bob Lucas, Ed Prescott, Tom Sargent and others. It has since been the standard
assumption for modeling expectations in macroeconomics. See Moll (2024) for key references
and a brief historical discussion. The macroeconomics definition of rational expectations is
as follows: Agents have rational expectations if they form expectations over outcomes using
the correct objective probability distributions of those outcomes. Hence, subjective probability
distributions equal objective probability distributions.

The rational expectations assumption is best thought of as a consistency requirement be-
tween expectations and model reality. Arguably a better name for the assumption is “model-
consistent expectations.”

In the context of MFGs, the rational expectations assumption is about the expectation op-
erator E that appears in the optimization procedure for the objective functions (2.2) and (2.11).
If this expectation operator uses objective, model-consistent probability distributions for the
behavior of all other agents as well as the idiosyncratic and common noise, then the MFG
assumes rational expectations.

One key takeaway is that, as we explain in more detail in the next sections, all existing Mean
Field Games models in the mathematics literature implicitly assume rational expectations.

3 Mean Field Games with a Low-dimensional Coupling

In Section 2, the running reward function R(x, z, α, m) that appears in the optimization prob-
lem (2.11) depends on the empirical measure m(t) in a general, unrestricted fashion. However,
in many applications, in particular in macroeconomics, this dependence is simpler: the run-
ning reward function depends on the empirical measure m(t) only through a low-dimensional
vector pt ∈ Rℓ, with some fixed ℓ ≪ N, that is a functional of mt.
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That is, the running reward and the terminal condition in (2.11) are given by R̃(x, z, α, p)
and Ṽ(x, z, p), so that agents optimize

uN(x, t) = max
αi∈A

E

[∫ T

t
e−ρtR̃(Xi,s, Zs, αi,s, ps)ds + e−ρ(T−t)Ṽ(Xi,T, ZT, pT)

]
, (3.1)

subject to Xi,s solving (2.1) and where

pt = P∗(mt, Zt), (3.2)

for a fixed functional
P∗ : P(Rn)× Rk → Rℓ. (3.3)

We refer to such MFGs as MFGs with a low-dimensional coupling. Note that in MFGs with a
low-dimensional coupling, model agents do not directly “care about” the infinite-dimensional
density mt in the sense that it does not enter their running reward functions or terminal condi-
tions. Instead, they only “care about” the much lower-dimensional vector pt.

The next two subsections present applications from macroeconomics that take this form.
Other examples are dynamic games with a large number of players in which the running re-
ward depends only on particular moments of the distribution, say, the first moments

X j(m) =
∫

xjdm(x, t), j = 1, ..., n.

Of course, an MFG with a low-dimensional coupling is just a special case of the general
MFGs discussed in Section 2 with the running reward and terminal value of the form

R(x, z, α, m) = R̃(x, z, α, P∗(m, z)), V(x, z, m) = Ṽ(x, z, P∗(m, z)). (3.4)

Therefore, under the rational expectations assumption, this low-dimensional coupling does
not really simplify the analysis and the backward-forward MFG and Master equation still take
the same form. However, as we will show below, low-dimensional coupling can drastically
simplify the model’s complexity when agents have non-rational expectations.

3.1 Macroeconomics MFGs: low-dimensional coupling through prices

Typical macroeconomics MFGs, known as “heterogeneous agent models,” are MFGs with a
low-dimensional coupling. Usually, the running reward function R(x, z, α, m) depends on the
empirical measure m(t) only through a low-dimensional price vector pt ∈ Rℓ, with some fixed
ℓ ≪ N. The prices may represent the actual prices of goods, or correspond to wages or interest
rates, that is, prices of other variables like labor and capital. The underlying macroeconomic
assumption is that the system stays in what is known as a competitive equilibrium. In that
case, the prices are set by the intersection of demand and supply (“market clearing”) and are
determined by the empirical measure of the agents via a set of ℓ “market clearing” conditions
(demand equals supply for each of ℓ goods):

M(pt, mt, Zt) = 0, (3.5)

with a given relation M : Rℓ × P(Rn) × Rk → Rℓ. Under the assumption that (3.5) can be
inverted, this gives rise to a unique mapping which takes the form in (3.2) and which we will
refer to as the equilibrium price function.

To summarize, the reward function depends on the measure mt only through the (low-
dimensional) price vector pt that determines the optimal strategy in (2.2). In a competitive
equilibrium, the price vector is directly related to mt either explicitly by (3.2) or implicitly
by (3.5).
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3.2 Example of a macroeconomics MFG

A typical example of a macroeconomics MFG that has this structure is the model described in
Achdou et al. (2014, Section 5) which is a continuous-time version of the Krusell and Smith
(1998) model. The corresponding model without common noise is described in Achdou et al.
(2014, Section 2) and Achdou et al. (2021) which is a continuous-time version of the Aiyagari-
Bewley-Huggett model (Aiyagari, 1994; Bewley, 1986; Huggett, 1993).

In this model, the state of the agents is characterized by their income and wealth, so that the
agents’ positions are parametrized by x = (x1, x2) ∈ R2. Here, x1 is wealth and x2 is income,
and n = 2 in the setting of Section 2. Furthermore, there are ℓ = 2 prices pt = (p1,t, p2,t) ∈ R2

where p1,t is the interest rate and p2,t the wage. There is k = 1 aggregate state Zt ∈ R which
has the interpretation of the (logarithm of) productivity of a so-called “representative firm”
(see below).

Wealth and income evolve according to a system of SDE

dX1,i,t = (P∗
1 (mt, Zt)X1,i,t + P∗

2 (mt, Zt)X2,i,t − Ci,t)dt,

dX2,i,t = µ(X2,i,t)dt + (2ν)1/2dBi,t.
(3.6)

Here, Ci,t is the i-th agent’s consumption that serves as a control in this setting and µ is a
drift coefficient. The price functionals P∗

1 and P∗
2 are the (scalar) interest rate and wage which

depend on the measure m via an equilibrium condition explained below. Agents choose their
consumption to maximize a utility function

E

∫ T

0
e−ρtU(Ci,t)dt where U(c) =

c1−γ

1 − γ
, γ > 0 (3.7)

subject to (3.6) and a state constraint X1,i,t ≥ 0.
The Hamiltonian (2.5) is then

H(x, z, λ, m) = max
c

{u(c) + λ1(P∗
1 (m, z)x1 + P∗

2 (m, z)x2 − c) + λ2µ(x2)} .

The Hamiltonian H is non-linear and non-separable between x, z, λ and m. At the same time,
it depends on m only through the two-dimensional prices P∗(m, z) : P(R2)× R → R2.

The price functionals (equilibrium wage and interest rate) are given in this model by

P∗
1 (m, z) = ∂X1

F(X1(m), X2(m), z), P∗
2 (m, z) = ∂X2

F(X1(m), X2(m), z)

where

F(X1, X2, z) = ez
√

X1X2, X1(m) =
∫

x1dm(x, t), X2(m) =
∫

x2dm(x, t). (3.8)

The function F has the interpretation of the production function of a so-called “representative”
firm, z that of (the logarithm of) the firm’s productivity, and the derivatives ∂X1

F and ∂X2
F

those of “marginal products”. The dependence of the prices merely on the first moments of m,
that is, on X1(m) and X2(m), is special to this particular application. Other macroeconomics
applications feature (considerably) more complicated price functionals.

3.3 The case without common noise

For future references it will also be useful to spell out MFGs with a low-dimensional coupling
but without common noise. This is simply the case in which neither the running reward R
nor the low-dimensional functional p depend on the aggregate state z, i.e. this functional is
simply given by pt = P∗(mt) with P∗ : P(Rn) → Rℓ. Equivalently, the case without common
noise sets Zt = 0 for all t. In the macroeconomics MFG of Sections 3.1 and 3.2, the underlying
assumption is that neither the running reward R nor the market clearing condition M depend
on the aggregate state Z. The particular example in Section 3.2 is the Aiyagari-Bewley-Huggett
model analyzed in Achdou et al. (2014, 2021).
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3.4 Backward-forward system and Master equation for MFGs with low-dimensional
coupling

The corresponding backward-forward MFG system in the case of a low-dimensional cou-
pling takes exactly the same form (2.4) but with R(x, α, m) = R̃(x, α, P∗(m)) in the Hamil-
tonian (2.5) and terminal value V(x, m) = Ṽ(x, P∗(m)). The same is true for the Master equa-
tion for the value function U(x, z, m, t) which takes the form (2.15) but with R(x, z, α, m) =
R̃(x, z, α, P∗(m, z)) in the Hamiltonian and terminal value V(x, z, m) = Ṽ(x, z, P∗(m, z)).

Note that the special structure of MFGs with a low-dimensional coupling neither simplifies
the backward-forward MFG system nor the Master equation in any straightforward way. In
particular the infinite-dimensional measure m ∈ P(Rn) is still a state variable in the Master
equation. What is noteworthy about this is that the Master equation is an infinite-dimensional
PDE despite model agents only “caring about” much lower-dimensional “prices.” As we ex-
plain in the following, the root cause of this feature is the rational expectations assumption.

4 Non-rational Expectations in Simple Control Problems

Before specifying what rational expectations – and departures from such expectations – mean
in the context of large systems of heterogeneous agents (i.e. MFGs) let us first consider the sim-
pler case of a single agent solving a stochastic control problem. We turn to MFGs in Section 5.

4.1 A simple stochastic control problem in an evolving environment

Consider a single agent solving a stochastic control problem in a prescribed time-dependent
environment:

u(x, t) = max
α∈A

E
[ ∫ T

t
e−ρ(τ−t)R(Xτ, ατ, βτ)dτ + e−ρ(T−t)V(XT)

]
, (4.1)

subject to Xτ solving a stochastic differential equation

dXτ = ατdτ +
√

2νdBτ, Xt = x, t ≤ τ ≤ T. (4.2)

Here, ατ is the control used on the time interval t ≤ τ ≤ T, and βτ represents a time-dependent
environment that the agent cannot control.

For future purposes, it will be useful to write the HJB equation for the value function u
in terms of the infinitesimal generator which summarizes the transition probabilities of the
process for Xt:

Aπ := π · ∇+ ν∆, (4.3)

where π(x, t) is the agent’s policy. The HJB equation is then

ρu − ∂tu = max
α∈A

{R(x, α, βt) +Aαu} , in Rn × (0, T), (4.4)

with the terminal condition
u(x, T) = V(x), in Rn, (4.5)

The associated optimal policy function is

π(x, t) ≡ arg max
α∈A

{R(x, α, βt) + α · ∇u(x, t)} . (4.6)

To explain what rational expectations mean in this setting, it is useful to spell out what
this optimal control problem and the associated HJB equation look like without imposing the
rational expectations assumption. In this model, expectations may be non-rational in two re-
spects: first, the agent may have incorrect beliefs about its own dynamics for a given control αt.
Second, she may have incorrect beliefs about the environment βt in the future. We consider
these two cases separately below.
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4.2 Expectations about the evolution of the agent’s state

Let us fix a terminal time T and for the moment fix some time t ∈ (0, T). For simplicity of
notation, we will consider in this sub-section a time-independent environment, so that

βτ ≡ const all τ. (4.7)

As just discussed, the agent has rational expectations about the process for Xτ for τ > t if
she forms expectations about Xτ using the correct objective transition probabilities. These
transition probabilities are summarized via the infinitesimal generator. Rational expectations
means that the agent’s beliefs are summarized by the correct generator Aπ defined in (4.3) that
determines the evolution of the actual state Xt in accordance with (4.2).

Non-rational expectations means that the agent has some other subjective beliefs about the
future evolution of Xτ for τ > t summarized by a different generator Âπ. For example, the
agent may believe that the state follows an alternative diffusion process

dX̂τ = µ̂(X̂τ, ατ, τ)dτ +
√

2ν̂(X̂τ, ατ, τ)dBτ, τ ≥ t, (4.8)

X̂t = x (4.9)

instead of the process (4.2) in which case the generator is

Âπ := µ̂(x, π, t) · ∇+ ν̂(x, π, t)∆. (4.10)

In particular, it may be the case that either µ̂(x, α, τ) ̸= α or ν̂(x, α, τ) ̸= ν. This happens,
for example, if the agent does not have the full information about the idiosyncratic noise, or
presumes the existence of an additional drift in the problem.

Agents’ policies π(x, t) are now determined from the optimization problem

û(x, t) = max
α∈A

Ê
[ ∫ T

t
e−ρ(τ−t)R(X̂τ, ατ)dτ + e−ρ(T−t)V(X̂T)

]
, (4.11)

supplemented by (4.8)-(4.9) for the evolution of X̂τ on the same time interval t ≤ τ ≤ T. We
denote the expectations operator by Ê to highlight that these subjective expectations are, in
general, different from the objective (rational) expectations operator E. That is, E refers to the
expectation with respect to the trajectories generated by the evolution (4.2), and Ê to those
generated by the perceived evolution (4.8).

The HJB equation with non-rational expectations is therefore

ρû − ∂sû = max
α∈A

{
R(x, α) + Âαû

}
, in Rn × (t, T) (4.12)

û(x, T) = V(x), in Rn. (4.13)

The associated policy with non-rational expectations is

π(x, t) = arg max
α∈A

{R(x, α) + α · ∇xû(x, t)} , (4.14)

rather than by (4.6). Note the difference between the two value functions that appear in (4.6)
and (4.14).

Let us comment that the actual probability density ρ(x, t) of the agent who follows the
strategy π(x, t) defined by (4.14) is

∂tρ = A∗
πρ. (4.15)

Note the difference between the operator Âπ that appears in the Hamilton-Jacobi-Bellman
equation (4.12) and the operator Aπ whose adjoint appears in (4.15).
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The special case of rational expectations of the evolution of Xt. Rational expectations mean
that the generator Âπ that appears in the HJB equation (4.12) coincides with the actual gener-
ator Aπ. In other words, the perceived evolution (4.8) coincides with the actual evolution (4.2)
for any given control ατ,t. With this assumption, the HJB equation (4.12) becomes

ρu − ∂tu = max
α∈A

{R(x, α) +Aαu} , in Rn × (0, T),

u(x, T) = V(x), in Rn.
(4.16)

which is the same as (4.4) for the case of constant βt. Hence, for the special case of rational
expectations, we have recovered the standard HJB equation.

4.3 Expectations about the evolution of the environment

Let us now consider the same optimization problem but reintroduce the time-dependent envi-
ronment βt. At a time t ∈ (0, T) the agent has access to the past trajectory

β≤t = {β(t′) : 0 ≤ t′ ≤ t}. (4.17)

She uses this information to make a prediction

β̂s,t = Θ(s, t; β≤t), s > t, (4.18)

with some given function Θ that depends on the running time s, the starting time t and the
path β≤t that was observed prior to the time t. Non-rational expectations in this context mean
that

β̂s,t ̸= βs, for s > t, (4.19)

i.e. that the agent’s perceived trajectory of her external environment does not coincide with
the environment’s actual trajectory.

Let us assume for simplicity of notation that, while the environment may be predicted
incorrectly, as in (4.19), the perceived law of motion of the state Xt is correct and the agent
assumes that her trajectory is given by (4.2):

dXτ,t = ατ,tdτ +
√

2νdBτ, Xt,t = x, t ≤ τ ≤ T. (4.20)

In other words, we have both µ̂ = α and ν̂ = ν in (4.8). Then, the agent is solving the optimiza-
tion problem

u(x, t) = max
α∈A

E
[ ∫ T

t
e−ρ(τ−t)R(Xτ,t, ατ,t, β̂τ,t)dτ + e−ρ(T−t)V(XT,t)

]
(4.21)

subject to (4.20) and (4.18). As the environment β̂τ,t now depends both on the running time τ
and on the starting time t, in order to formulate the corresponding Hamilton-Jacobi-Bellman
equation, it is convenient to fix t ∈ (0, T) and introduce an auxiliary optimization problem

û(x, s; t) = max
α∈A

E
[ ∫ T

s
e−ρ(τ−s)R(Xτ,s, ατ,s, β̂τ,t)dτ + e−ρ(T−s)V(XT,t)

]
, t < s < T, (4.22)

subject to (4.20) and (4.18). Note that the prediction of the future environment β̂τ,t is made at
the time t and does not depend on the intermediate times s. Then, the perceived future optimal
policy of the agent is, similarly to (4.6), given by

π̂(x, s; t) = arg max
α∈A

{
R(x, α, β̂s,t) + α · ∇xû(x, s; t)

}
, t ≤ s ≤ T. (4.23)
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In particular, at the time s = t we have

π(x, t) = arg max
α∈A

{
R(x, α, β̂t,t) + α · ∇xû(x, t; t)

}
= arg max

α∈A
{R(x, α, βt) + α · ∇xu(x, t)} ,

(4.24)
with

u(x, t) = û(x, t; t), (4.25)

being the optimal value defined by (4.21). This is the actual policy that the agents are following.
As a result of this optimization problem, an agent’s state evolves as a diffusion

dXt = π(Xt, t)dt +
√

2νdBt, (4.26)

with the policy π(x, t) given by (4.24).
To find the function u(x, t) one needs to solve a backward-in-time Hamilton-Jacobi-Bellman

equation for the value function û(x, s; t). It takes the form

ρû(x, s; t)− ∂sû(x, s; t) = max
α∈A

{
R(x, α, β̂s,t) +Aαû(x, s; t)

}
, in Rn × (t, T),

û(x, T; t) = V(x), in Rn.
(4.27)

Once the function û(x, s; t) is found, one defines u(x, t) by (4.25), which, in turn, gives the
policy (4.24) that appears in the actual dynamics (4.26).

The special case of rational expectations for the evolution of the environment. Rational
expectations on the evolution of the environment mean that

β̂s,t ≡ βs, for all s > t. (4.28)

Note that, for deterministic variables like the one considered here, rational expectations simply
means that agents have perfect foresight about the evolution of these variables. If that is the
case, then the function û(x, s; t) that solves (4.27) does not depend on the starting time t and
neither does the policy π(x, s; t) that also appears in (4.27). Under the assumption (4.28), the
HJB equation (4.27) therefore becomes the standard HJB equation (4.4) with

û(x, s; t) = u(x, s). (4.29)

5 Mean Field Games without Rational Expectations

As already noted, all existing Mean Field Games models in the mathematics literature im-
plicitly assume rational expectations. We now explain this in more detail and show how to
formulate Mean Field Games without rational expectations. We first consider the case without
common noise, that is, the backward-forward MFG system (2.4), and then cover the Master
equation (2.15).

5.1 Non-rational expectations in the backward-forward MFG system

We now show how to formulate a generalization of the backward-forward MFG system of
Section 2.1 without making the rational expectations assumption. We focus on the more in-
teresting case of non-rational expectations about the evolution of the agent’s external environ-
ment, in this case the evolution of the density m. The case of non-rational expectations about
agents’ own states Xi,t is analogous to the treatment in Section 4.2. As in the preceding sec-
tion, after spelling out the model with general (not necessarily rational) expectations, we show
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that we recover the standard backward-forward MFG system in the special case with rational
expectations.

Let us fix a terminal time T and for the moment fix some time t ∈ (0, T). We assume that to
predict the future empirical density of the other agents, an individual agent uses a perceived
law of motion

∂sm̂(x, s; t) = B∗m̂(x, s; t), s ≥ t, (5.1)
m̂(x, t; t) = m(x, t) (5.2)

Here, m̂(x, s; t) is a prediction for the empirical measure of other agents for s ≥ t, and B is the
generator of a Markov process that an agent believes the other agents are following. The initial
condition in (5.2) at s = t comes from the actual observed density m(x, t) at the time t. Note
that the agents are constantly updating their prediction m̂(x, s; t) for a given future time s, by
changing the initial condition in (5.2) as t grows. In other words, m̂(x, s; t) and m̂(x, s; t′) are,
in general, different if s > t > t′. Going forward, we sometimes write m̂s,t for conciseness.

Note that this setup is exactly analogous to the case of non-rational expectations about the
evolution of the environment in Section 4.3. Therefore, so is the remainder of the discussion.
Similarly to (4.22), agents’ policies π(x, t) are determined from the perceived optimization
problem

û(x, s; t) = max
αi∈A

E
[ ∫ T

s
e−ρ(τ−s)R(Xi,τ, ατ,s, m̂τ,t)dτ + e−ρ(T−s)V(Xi,T,s, m̂T,t)

]
, t ≤ s ≤ T,

(5.3)

subject to (2.1) for the evolution of Xi,t and (5.1)-(5.2) for the evolution of m̂s,t on the time
interval t ≤ s ≤ T. As a result, the perceived future optimal policy of the agent is, similarly to
(4.23), given by

π̂(x, s; t) = arg max
α∈A

{R(x, α, m̂s,t) + α · ∇xû(x, s; t)} , t ≤ s ≤ T. (5.4)

At the time s = t we have

π(x, t) = π̂(x, t; t) = arg max
α∈A

{R(x, α, mt) + α · ∇xũ(x, t)} . (5.5)

with ũ(x, t) = û(x, t; t). This is the actual policy that the agents are following.
As a result of this optimization problem, an idiosyncratic state evolves as a diffusion

dXi,t = π(Xi,t, t)dt +
√

2νdBi,t. (5.6)

To summarize, agents believe that for all s > t the distribution of the other agents will evolve
according to (5.1)-(5.2), and this is what shows up in the continuation values for s ≥ t in the
definition (5.3) of the perceived value function û(x, s; t). However, when they choose their
actual policy π(x, t) at time t, given by (5.5), they use the actual realized density mt (which
will generally differ from any previous estimates of m̂t,t′ with t′ < t) and the perceived value
function ũ(x, t).

Agents’ actual policies π(x, t) defined in (5.5) give rise to the generator

Aπ := π · ∇+ ν∆. (5.7)

that determines the evolution of the actual density m(x, t) in accordance with (5.6):

∂tm = A∗
πm, (5.8)

which is different from the evolution (5.1)-(5.2) for the perceived future density unless B = Aπ.
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Now, the backward-foward system of equations for the value function û(s, x; t), the per-
ceived density m̂(x, s; t) and the actual density m(x, t) becomes:

ρû(x, s; t)− ∂sû(x, s; t) = max
α∈A

{R(x, α, m̂s,t) +Aαû(x, s; t)} , in Rn × (t, T),

∂sm̂(x, s; t) = B∗m̂(x, s; t), in Rn × (t, T),
π(x, t) = arg max

α∈A
{R(x, α, m(t)) + α · ∇xû(x, t; t)} ,

∂tm = A∗
πm, in Rn × (0, T),

m(x, 0) = m0(x), m̂(x, t; t) = m(x, t), û(x, T; t) = V(x, m̂T,t) in Rn.

(5.9)

The system (5.9) is the analogue of what economists call a “temporary equilibrium”.
Definition: Temporary equilibrium at a particular time t is defined as allocations and poli-

cies such that (i) agents optimize given expectations of future variables (including the density)
that are specified in the model but that are not necessarily rational, (ii) the economy is in Nash
equilibrium at time t.

This idea was originally developed contemporaneously by Hicks (1939) and Lindahl (1939),
and has been further developed by Grandmont (1977, 1989)

Remark: connection to the Master equation. Note that the system (5.9) could also be written
in terms of a Master equation, with the measure m as a state variable. However, this would
defeat the purpose of this approach: the advantage of (5.9) is exactly that we do not have to
compute the dynamics in the infinite-dimensional space of probability measures but rather
only find the solutions to (5.9) for the measures mt that one encounters in the course of actual
evolution.

Rational expectations in the Backward-Forward MFG System. Rational expectations in the
context of the model we have discussed above mean that the generator B that appears in the
equations (5.1) and (5.9) for the perceived density m̂(x, s; t) coincides with the actual genera-
tor Aπ that appears in the evolution equation (5.7) for the actual density m(x, t):

B = Aπ. (5.10)

Let us now show that with this assumption, the system (5.9) reduces to the familiar MFG
system (2.4) that we write in the form

ρu − ∂tu = max
α∈A

{R(x, α, m(t)) +Aαu} , in Rn × (0, T),

π(x, t) = arg max
α∈A

{R(x, α, m(t)) + α · ∇u(x, t)} ,

∂tm = A∗
πm, in Rn × (0, T),

m(0) = m0, u(x, T) = V(x, m(T)), in Rn.

(5.11)

Indeed, if (5.10) holds, we deduce from the second and fourth equations in (5.9), together with
the initial condition m̂(x, t; t) = m(x, t) that

m̂(x, s; t) = m(x, s), for all t ∈ [0, T] and s ∈ [t, T], (5.12)

so that the perceived future density m̂(x, s; t) does not depend on the starting time t and coin-
cides with the actual density m(x, s). The perceived value function û(x, s; t) is then indepen-
dent of t as well, so that we have

û(x, s; t) = û(x, s; s) = ũ(x, s). (5.13)
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The perceived policies π̂(x, s; t) are also independent of t because we can use (5.12) and (5.13)
to write

π̂(x, s; t) = arg max
α∈A

{R(x, α, m̂s,t) + α · ∇xû(x, s; t)}

= arg max
α∈A

{R(x, α, m(s)) + α · ∇xû(x, s; s)} = π(x, s).
(5.14)

It follows from the above and the first equation in (5.9) that the value function ũ(s, x) satisfies
the backward HJB equation

ρũ(x, s)− ∂sũ(x, s) = R(x, π(x, s), m(s)) +Aπ ũ(x, s) in Rn × (s, T). (5.15)

Together with the forward Fokker-Planck equation

∂tm = A∗
πm in Rn × (0, T) (5.16)

we have recovered the MFG system (5.11) or, equivalently, (2.4).
This shows clearly that the backward-forward MFG system (2.4) implicitly assumes that

agents have rational expectations about the process Xi,t for all agents i = 1, ..., N, and hence
for the evolution of the density m(x, t).

Remark: non-rational expectations about agents’ own states. As already noted, one could
also allow for non-rational expectations about agents’ own states Xi,t. Analogous to the treat-
ment in Section 4.2, this simply involves replacing the generator Aα in the first equation in (5.9)
by some other generator Âα capturing each agent’s beliefs about the evolution of her own state,
i.e. a perceived law of motion like (4.8) and (4.9).

Remark: heterogeneous beliefs. It is reasonable to expect that different agents may have dif-
ferent beliefs about the evolution of the density of the other agents. In fact, substantial belief
heterogeneity is one of the most prevalent empirical findings in the macroeconomics litera-
ture on household and firm expectations, see the discussion and references in Moll (2024) (the
finding is often summarized under the terminology “disagreement”). In our context, different
individual agents may use different forms of the operator B, that appears in (5.1) to predict the
future evolution of the density of the other agents. This will, in turn, affect the actual gener-
ator Aπ governing the evolution of the actual density m(t) of the agents. We will revisit this
issue below in the discussion of adaptive learning in Section 7.1.

Remark: the unrealism of rational expectations. Rational expectations imposes that agents
know the correct objective transition probabilities not only for their own individual states but
also for the evolution of every other agents’ states, i.e. for the entire complex system they
inhabit as a whole. Specifically, the implicit assumption is that each agent knows all other
agents’ optimal policies π(y, ·) for all y ∈ Rn and uses these to (correctly) forecast the evolution
of everyone else’s state and hence the measure m! For these reasons, the rational expectations
assumption is arguably a stretch in complex environments like MFG models.

Remark: the evolution of the density with heterogeneous agents. It is also worth point-
ing out that rational expectations assumption (5.10) is the reason why the operator A∗

π in the
Fokker-Planck equation in (5.11) is the adjoint of the operator Aπ in the HJB equation in (5.11).
Without rational expectations this would not be the case: while the Fokker-Planck equation
for the actual density m(x, t) in (5.9) necessarily features (the adjoint of) the correct genera-
tor Aπ because it reflects the actual realized dynamics of Xi,t and the associated evolution of
the measure m, the HJB equation for the perceived value function û(s, x; t) in (5.9) features Aπ

only under the rational expectations assumption (5.10). Otherwise it is driven by the perceived
strategy π̂.
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The rational expectations assumption (5.10) may seem to superficially simplify a “com-
plicated” system (5.9) to a “simpler” (and, definitely, shorter) system (5.11). However, while
the latter may produce a higher value function for the agents, it comes at a high computational
cost. If the operator B that appears in the evolution equation for the perceived density m̂(x, s; t)
in (5.9) is independent from the perceived value function û(x, s; t) then (5.9) may be solved in
a single pass for a fixed t < T. First, one solves the forward in time equation

∂sm̂(x, s; t) = B∗m̂(x, s; t), in Rn × (t, T),
m̂(x, t; t) = m(x, t),

(5.17)

to find the perceived future density of the agents. This is followed by solving the backward-
in-time Hamilton-Jacobi-Bellman equation

ρû(x, s; t)− ∂sû(x, s; t) = max
α∈A

{R(x, α, m̂s,t) +Aαû(x, s; t)} , in Rn × (t, T),

û(x, T; t) = V(x, m̂(T, t)),
(5.18)

to find the perceived value function û(x, s; t). This requires no iterations that are normally
used to solve the forward-backward MFG problems. With û(x, t; t) in hand, one can compute
the actual policy π(x, t) given by (5.5), and continue the evolution of the actual agents density
m(x, t) forward in time. Thus, from the computational cost point of view, dropping the rational
expectations assumption may end up being beneficial.

5.2 Non-rational expectations in Mean Field Games with common noise

We now repeat the exercise for the case with common noise and show how to formulate
MFGs without rational expectations in this case. To this end, recall that the evolution of the
states (Xi,t, Zt) is given by (2.12) where π(Xi,t, Zt, mt, t) is the optimal policy with common
noise.

Analogous to (5.1) and (5.2), with non-rational expectations, the agent incorrectly believes
that the density and aggregate state evolve according to

dm̂s,t = B∗
Ẑs

m̂s,tds, s ≥ t

dẐs,t =
√

2β̂(Ẑs,t, τ)dWs, s ≥ t,
(5.19)

with m̂t,t = mt and Ẑt,t = Zt, instead of the correct evolution (2.13) and (2.14). For simplicity,
we set the drift vZ(z) = 0 in (2.12). Note that, in general, the perceived generator BẐs

may
depend on the perceived aggregate state Ẑs.

This leads to the following infinite-dimensional Master equation:

ρÛ − ∂tÛ = max
α∈A

{
R(x, z, α, m) +Aα,zÛ

}
+ β̂(z, t)∆zÛ +

∫
Rn
[∇mÛ](y)[B∗

z m](y)dm(y)

in Rn × Rk ×P(Rn)× (0, T)

Û(x, z, m, T) = V(x, z, m) in Rn × Rk ×P(Rn)

(5.20)

As before, Aπ,z in the term Aπ,zÛ summarizes agents’ beliefs about the evolution of the indi-
vidual state Xi,t. In contrast, [B∗

z m](y) summarizes their beliefs about evolution of measure m
at point y which may, in general, differ from the actual evolution.

After solving for the optimal policies π(x, z, m, t), the evolution of the actual density of the
agents can be found from the coupled system of SDE

dmt = A∗
π,Zt

mtdt, dZt =
√

2βdWt. (5.21)

with
Aπ,z = π(x, z, m, t)∇x + ν∆x.
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Rational expectations. Exactly as in Section 5.1, rational expectations mean that the gener-
ator B that appears in the equations (5.19) and (5.20) for the perceived density m̂s,t and the
perceived value function Û coincides with the actual generator Aπ,z that appears in the evolu-
tion equation (5.21) for the actual density m(x, t):

Bz = Aπ,z, (5.22)

and, in addition, that the perceived diffusivity for the aggregate state Zt equals the actual
diffusivity, β̂(z, t) = β. In that case, (5.20) becomes

ρU − ∂tU = max
α∈A

{R(x, z, α, m) +AαU}+ β∆zU +
∫

Rn
[∇mU](y)[A∗

π,zm](y)dm(y)

in Rn × Rk ×P(Rn)× (0, T)

U(x, z, m, T) = V(x, z, m) in Rn × Rk ×P(Rn)

Aπ,z = π∇x + ν∆x,
π(x, z, m, t) = arg max

α∈A
{R(x, z, α, m) +Aα,zU} .

(5.23)

Importantly, analogously to the discussion in the preceding subsection, the implicit assump-
tion underlying rational expectations is that each agent knows not only the correct stochastic
process for their own individual state Xi,t but also that of the state of all other agents, i.e. their
optimal policies in the future.

Remark: Nash equilibrium, “common knowledge”, and the computational complexity of
the Master equation. MFGs impose Nash equilibrium, i.e. that each agent plays a best re-
sponse to their prediction of every other agents’ strategy. With rational expectations, each
agent knows the other agents’ strategies and then solves the infinite-dimensional Master equa-
tion to compute this best response. In fact, the Master equation not only imposes that all agents
know each other’s strategies, but they also know that they all know, and so on, ad infinitum.
This assumption is called “common knowledge” in the economics literature. In that sense,
the policies coming from the solution to the Master equation are optimal for a given individ-
ual agent only if the other agents also have rational expectations and if everyone knows that
they do. Without that social compact in which everyone predicts an identical future, solv-
ing the infinite-dimensional Master equation is suboptimal and may even be harmful. While
requiring such “common knowledge” is a common issue for Nash equilibria, the setting of
the infinite-dimensional Master equation is somewhat special because computing the Nash
equilibrium requires a huge computational cost that may not be accessible to all agents in the
system.

6 Non-rational expectations in MFGs with low-dimensional coupling

In this section, we consider MFGs that have the special structure in Section 3: agents’ rewards
depend on the measure m only through a low-dimensional functional.

6.1 The case without common noise

The case without common noise is analogous to Section 5.1 and we therefore cover it only
briefly. As in Section 3, the running reward and terminal value are given by R̃(Xi,t, αi,s, pt)
and Ṽ(Xi,t, pt) for a low-dimensional vector pt ∈ Rℓ with pt = P∗(mt). Going forward we
drop the tildes from R̃ and Ṽ for notational simplicity.

With rational expectations, agents understand the dependence of pt on mt and therefore use
the functional P∗ together with the correct evolution for mt to predict future values of pt. That
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is, agents have perfect foresight over the future trajectory of pt. With non-rational expectations,
agents instead perceive some other trajectory

p̂s,t = Θ(s, t; p≤t), s > t, with pt,t = p(t).

In particular note that agents’ perceived trajectory of future “prices” p̂s,t, s > t generally de-
pends on past realizations p≤t which model agents have already observed by the time t.

Benchmark with rational expectations. We first spell out the backward-forward MFG sys-
tem with rational expectations using the generator notation introduced in the preceding Sec-
tion. We will refer back to this benchmark system at various future points of the paper. The
system is:

ρu − ∂tu = max
α∈A

{R(x, α, p(t)) +Aαu} in Rn × (0, T)

π(x, t) = arg max
α∈A

{R(x, α, p(t)) + α∇u(x, t)} ,

∂tm = A∗
πm in Rn × (0, T),

p(t) = P∗(m(t)) in (0, T)
m(0) = m0, u(x, T) = V(x, P∗(mT)) in Rn.

(6.1)

Non-rational expectations. Analogously to Section 5.1, the backward-forward MFG system
without rational expectations is

ρû(x, s; t)− ∂sû(x, s; t) = max
α∈A

{R(x, α, p̂s,t) +Aαû(x, s; t)} , in Rn × (t, T),

p̂s,t = Θ(s, t; p≤t), in (t, T),
π(x, t) = arg max

α∈A
{R(x, α, p(t)) + α · ∇xû(x, t; t)} ,

∂tm = A∗
πm, in Rn × (0, T),

p(t) = P∗(m(t)), in (0, T)
m(0, x) = m0(x), û(x, T; t) = V(x, p̂T,t), in Rn.

(6.2)

6.2 Common noise: sidestepping the Master equation in MFGs with a low-dimensional
coupling

In the presence of a common noise Zt, as in Section 3, the running reward is R(Xi,t, Zt, αi,s, pt)
for a low-dimensional vector pt = P∗(mt, Zt) ∈ Rℓ. With rational expectations, agents under-
stand the dependence of pt on mt and Zt and therefore use the functional P∗ together with the
correct stochastic processes for mt and Zt to predict future values of pt. This leads to the Master
equation (6.5), with essentially no simplifications despite the low-dimensional coupling.

With non-rational expectations agents instead perceive some other stochastic process for
the pair (pt, Zt). In the simplest case, they simply perceive pt to evolve according to a com-
pletely exogenous stochastic process

dp̂s,t = µ̂p( p̂s,t)ds + σ̂p( p̂s,t)dWt, s ≥ t p̂t,t = pt (6.3)

In more complicated cases, agents perceive a joint stochastic process for pt, Zt and other vari-
ables (which could, in principle, include mt).

In the case of agents perceiving the simple process (6.3), instead of writing a Master equa-
tion, we can write a much simpler, standard finite-dimensional HJB equation for a value func-
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tion Û(x, z, p, t). Denoting the generator corresponding to (6.3) by Âp we have

ρÛ − ∂tÛ = max
α∈A

{
R(x, z, α, p) +AαÛ

}
+ β∆zÛ + ÂpÛ in Rn × Rk × Rℓ × (0, T),

U(x, z, p, T) = V(x, z, p) in Rn × Rk × Rℓ,
Aα = α∇x + ν∆x.

(6.4)

Therefore, in MFGs with a low-dimensional coupling, departing from rational expectations
can completely sidestep the Master equation. Of course, the case considered here is just an
illustrative example. In particular, note that the perceived law of motion (6.3) is specified
completely “outside the model” which leaves open the question of where this perceived law
of motion “comes from” in the first place.

6.3 The trouble with the Master equation in MFGs with a low-dimensional cou-
pling

The corresponding Master equation for the value function U(x, z, m, t) is instead

ρU − ∂tU = max
α∈A

{R(x, z, α, P∗(m, z)) +AαU}+ β∆zU +
∫

Rn
[∇mU](y)[A∗

π,zm](y)dm(y)

in Rn × Rk ×P(Rn)× (0, T)

U(x, z, m, T) = V(x, z, m) in Rn × Rk ×P(Rn)

Aπ,z = π∇x + ν∆x

π(x, z, m, t) = arg max
α∈A

{R(x, z, α, P∗(m, z)) + α · ∇xU(x, z, m, t)}

.

(6.5)

This is the same Master equation as described in Section 3.4 but using the generator notation
used in the present section. As already noted there, special structure of MFGs with a low-
dimensional coupling does not simplify the Master equation in any straightforward way. In
particular the infinite-dimensional measure m ∈ P(Rn) is still a state variable in agents’ value
function.

The reason this happens is the rational expectations assumption. Intuitively, because agents
are forward-looking, they need to forecast future prices pt, a low- dimensional object. But they
understand that pt depends on the infinite-dimensional measure mt via the functional (3.2).
Therefore, agents forecast the measure mt in order to forecast prices pt. Furthermore, as before,
they forecast mt using their knowledge of all other agents’ policies π(y). Note that all of this
happens despite agents not even directly “caring about” the distribution mt.

Related, note that actual equilibrium prices pt do not follow a Markov process (if they did,
one could, write a finite-dimensional HJB equation with prices p as the state variables also
in the rational expectations case); instead only (mt, Zt) has the Markov property and prices
are instead a complicated non-linear functional of this Markov state. Agents with rational
expectations therefore (unrealistically) forecast the Markov state (mt, Zt) in order to forecast
the non-Markovian prices pt.

Considering the case of macroeconomics MFGs Moll (2024) argues that we should not make
our lives so hard. It seems self-evident that real-world households and firms do not forecast
prices by forecasting cross-sectional distributions and instead solve simpler problems. Instead
of solving “Monster equations” we should replace the rational expectations assumption and
solve the simpler equations corresponding to households’ and firms’ actual price-forecasting
behavior.
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7 A way forward: learning in MFGs

As we have argued, MFGs with rational expectations and the Master equation are unrealisti-
cally complex as models of human decision making. We have also seen that departing from
rational expectations may hold the promise of sidestepping the infinite-dimensional Master
equation altogether. However, in the MFGs with non-rational expectations we have consid-
ered thus far, agents held beliefs about future evolution or future prices that were specified
outside the model (the “temporary equilibrium” idea). Therefore, these specified beliefs may
end up being completely disconnected from the actual evolution of these equilibrium objects,
i.e. there may be a disconnect between beliefs and “model reality” and agents’ expectations
may be systematically disappointed. A related issue is that a model with exogenously speci-
fied beliefs is subject to a version of the so-called “ Lucas critique” (Lucas, 1976): when there
is a change in economic policy (which would typically correspond to a change in a model pa-
rameter), one should expect agents’ beliefs to change as well and this belief updating needs to
be modeled.

How can we model non-rational expectations that are endogenous to the actual equilib-
rium prices but that, nevertheless, sidestep the Master equation and allow for computing
standard finite-dimensional HJB equations for agents’ value functions? Put differently: how
can we formulate, in a systematic way, models of agents’ behavior in situations with a low-
dimensional coupling that lead to equations that (i) approximate agents’ real-world behavior,
and (ii) sidestep computing the solutions to a Master equation with the infinite-dimensional
state m ∈ P(Rn) and the associated curse of dimensionality? This is the challenge posed by
Moll (2024).

A natural answer is to add some form of learning to the model. That is, instead of imposing
– as the rational expectations assumption does – that agents know the correct (and extremely
complex) transition probabilities of equilibrium prices, we instead impose that agents learn
about these transition probabilities over time. This approach has a long tradition in the eco-
nomics literature, typically in the form of “least-squares learning” (Bray, 1982; Marcet and
Sargent, 1989; Evans and Honkapohja, 2001), and has recently been applied in the MFG liter-
ature to the case without common noise (Laurière et al., 2022, 2024; Xu et al., 2023; Bertucci,
2023), mostly in the form of reinforcement learning.

Before proceeding to describing this way forward, let us also note that one promise of mod-
eling learning in this way is to “kill two birds with one stone”: to develop variants of MFGs
with a low-dimensional coupling that are easier to compute and analyze, while, at the same
time, making these models more realistic and more likely to generate interesting macroeco-
nomic phenomena.

7.1 Adaptive learning without common noise

Adaptive learning is a special case of the non-rational beliefs about the future we have dis-
cussed in Sections 5 and 6 above. More specifically, this is a special form of the future prices
predictor Θ(s, t; p≤t) that appears in the system (6.2). One simple version of adaptive learning
is least-squares learning (Bray, 1982; Marcet and Sargent, 1989; Evans and Honkapohja, 2001).
Jacobson (2025) implements such an approach in a heterogeneous-agent model.

In the simplest version of least-squares learning, at any time t, agents simply expect prices
to remain constant at some value p̄, i.e. ps = p̄ for all s > t. However, they update their
estimate of this constant value over time as they collect new data on actual realized prices
and we denote agents’ time-t estimate of p̄ by p̂t. Specifically, agents compute p̂t as a simple
backward-looking average:

p̂t =
1
t

∫ t

0
psds.
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Differentiating, we have
˙̂pt =

1
t
(pt − p̂t) . (7.1)

Other forms of learning besides least-squares learning are possible as well, such as, for exam-
ple, an ordinary differential equation of the form

˙̂pt = L(pt, p̂t). (7.2)

For example, the ODE
˙̂pt = α (pt − p̂t) ,

with a constant α > 0 rather than the factor of 1/t, as in (7.1), is what is called “adaptive
expectations” (Cagan, 1956). Note that expected prices will generally differ from actual prices,
i.e. there is no longer perfect foresight.

In more complicated versions of least-squares learning, agents have a parametric “per-
ceived law of motion” (PLM) of prices

ṗt = µp(pt, θ) (7.3)

where θ ∈ Rd is a parameter vector which parameterizes their beliefs about the evolution of pt.
For example the PLM function µp could be linear:

ṗt = θ0 + θ1 pt.

Agents then update their estimate θ̂t ∈ Rd of the parameter vector θ recursively over time

˙̂θt = L(pt, θ̂t), θ̂0 given, (7.4)

which plays a similar role to the ODE (7.2). For example, if G is linear, θ̂t could be a backward-
looking least-squares estimator. Note that pt that appear in (7.4) are the actual observed prices
at the time t.

Agents’ policies π(x, t) are determined from the following optimization problem that is
analogous to (5.3). We fix t ∈ [0, T] and for each s ∈ [t, T] consider the perceived value function

û(x, s; t) = max
αi∈A

E

[∫ T

s
e−ρ(τ−s)R(Xi,τ, αi,τ, p̂τ;t)dτ + e−ρ(T−s)V(Xi,T, p̂T,t)

]
. (7.5)

subject to (2.1) for the evolution of Xi,t and where p̂τ;t are the perceived future prices that
evolve according to

dp̂τ;t

dτ
= µp( p̂τ;t, θ̂t), t ≤ τ ≤ T,

p̂t;t = pt.
(7.6)

Here, pt are the actual observed prices at the time t, and θ̂t is the solution to (7.4). We emphasize
that the parameter θ̂t in (7.6) is fixed for t ≤ τ ≤ T and does not depend on τ. That is, from
the point of view of an agent at time t, θ̂t is just a fixed parameter vector that parameterizes the
perceived law of motion µp of future prices p̂τ;t, with τ ≥ t. Note that the dependence of the
perceived value function û(x, s; t) on the time t is solely through the parameter θt that appears
in the perceived evolution (7.6) of the future prices.

The optimization problem (7.5) gives rise to the perceived future policy

π̂(x, s; t) = arg max
α∈A

{R(x, α, p̂s;t) + α · ∇xû(x, s; t)} . (7.7)

The actual policy that the agents are following is, on the other hand,

π(x, t) = π̂(x, t; t) = arg max
α∈A

{R(x, α, pt) + α · ∇xû(x, t; t)} . (7.8)
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As above, the interpretation is that agents believe that for all s > t prices will evolve according
to (7.6) and this is what shows up in their continuation values. However, when they choose
their policy at time t, they see the actual realized prices pt (which will generally differ from
any previous estimates of pt).

Going forward we drop the hat from θ̂t for notational simplicity but keep in mind that this
is really a time-varying estimate of the parameter θ in (7.3). With this notation in hand, the
backward-foward MFG system with adaptive learning becomes the following version of (6.2)

ρû(x, s; t)− ∂sû(x, s; t) = max
α∈A

{R(x, α, p̂s;t) +Aαû(x, s; t)} , in Rn × (t, T),

dp̂s;t

ds
= µp( p̂s;t, θt), in (t, T),

p̂t;t = pt,
π(x, t) = arg max

α∈A
{R(x, α, pt) + α · ∇xû(x, t; t)} ,

∂tm = A∗
πm, in Rn × (0, T),

θ̇t = L(pt, θt), θ0 given, in (0, T),
pt = P∗(m(t)), in (0, T),

m(0, x) = m0(x), û(x, T; t) = V(x, p̂T,t), in Rn.

(7.9)

Here, in the context of adaptive learning, the low dimensionality of the coupling is crucial:
instead of a highly complex infinite-dimensional analog of the Master equation, we get a
finite-dimensional system (7.9). The forward in time equation for m(t, x) in the system (7.9)
is coupled to the backward in time equation for the perceived value function û(x, s; t) solely
via the actual price pt that appears in the strategy π(x, t) and in the parameter θt that ap-
pears in the Hamilton-Jacobi-Bellman equation for û(x, s; t). This coupling is not as severe as
in MFGs with rational expectations since, as we have mentioned previously, solution to (7.9)
does not require any iterations. It does require, however, to solve, for each t ∈ [0, T] a separate
Hamilton-Jacobi-Bellman equation on time interval t ≤ s ≤ T.

The Hamilton-Jacobi-Bellman equation in the price space. An alternative way of writing
(7.9) is to introduce the perceived value function Û(x, p, s; θ) defined for all prices p ∈ Rℓ and
parameters θ ∈ Rd:

Û(x, p, s; θ) = max
αi∈A

E

[∫ T

s
e−ρ(τ−s)R(Xi,τ,s, αi,τ,s, p̂τ,s)dτ + e−ρ(T−s)V(Xi,T,s, p̂T,s)

]
, (7.10)

defined for s ≤ T. Note that the perceived value function no longer depends on the time t at
which the parameter θt is fixed for s > t. As we have mentioned, the only dependence in (7.5)
on t comes from the parameter θt that is fixed for s > t. Here, the agents are allowed to take
various values of θ, which, in turn, allows us to get rid of the dependence on t. The perceived
future prices p̂τ,s evolve according to a generalization of (7.6)

dp̂τ,s

dτ
= µp( p̂τ,s, θ), s ≤ τ ≤ T,

p̂s,s = p,
(7.11)

but now with the parameter θ set to the value that appears in the argument of û(x, p, θ, s)
in (7.10).

The perceived value function Û(x, p, s; θ) defined in (7.10) solves a single HJB equation

ρÛ(x, p, s; θ)− ∂sÛ(x, p, s; θ) = H(x, p,∇xÛ) + ν∆xÛ(x, p, s; θ) + µp(p, θ) · ∇pÛ(x, p, s; θ),
H(x, p, λ) = max

α∈A
{R(x, α, p) + α · λ} ,

(7.12)
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with (x, p, s) ∈ Rn × Rℓ × (0, T) and θ ∈ Rd.
Note that the arguments of the value function include not only the low-dimensional prices

p ∈ Rℓ but also the ”fairly high-dimensional” parameter vector θ ∈ Rd. While including
p comes at a low computational cost, including θ comes at a significantly higher additional
computational cost. However, note that equations (7.12) for different θ are decoupled from
each other. As we will remark below, this is something one can exploit to reduce computational
costs.

The HJB equation (7.12) for the perceived value function gives rise to the perceived policy

π̂(x, p, s; θ) = arg max
α∈A

{
R(x, α, p) + α · ∇xÛ(x, p, s; θ)

}
. (7.13)

Analogously to above, the actual time-t policy is then given by the perceived policy evaluated
at the time-t price pt and parameter θt:

π(x, t) = π̂(x, pt, t; θt). (7.14)

The prices pt in the right side of (7.14) are given by

pt = P∗(m(t)). (7.15)

The measure m(x, t) and the parameter θt, in turn, solve the forward-in-time problems

∂tm(x, t) = A∗
πm(x, t),

θ̇t = L(pt, θt),
(7.16)

with the policy π given by (7.14) and with initial conditions m0(x) and θ0. The system (7.14)-
(7.16) is driven by the solution to (7.12) via the policy π̂ that appears in (7.14) .

Remark on computational cost of (7.12) The price for solving a single standard HJB equation
for Û is the need to solve (7.12) for all θ in the region of interest. Thus, the computational
complexity of this formulation is controlled by the dimension d of the parameter space θ ∈ Rd

which may be considerably higher than in (7.9). However, one can take advantage of the fact
that the HJB equations (7.12) are decoupled for different θ here. In particular, this means that
one can solve (7.12) only for the θ’s one actually encounters. Specifically, starting from an initial
condition θ0, solve the HJB equation (7.12) for θ = θ0; then update θ according to (7.16), solve
the HJB equation again for this new θ, and so on.

Belief heterogeneity. In the system (7.9), the parameter θt, that couples its forward and back-
ward in time components, summarizes agents’ beliefs about the evolution of the future prices.
Although these beliefs vary over time, and θt evolves in (7.9) according to a differential equa-
tion, the assumption leading to (7.9) is that all agents share the same beliefs θt. As remarked in
Section 5.1, it is natural to allow for heterogeneity in beliefs which is an important feature of
real-world data on empirical measures of such beliefs.

A convenient feature of the formulation (7.12) in which θ is a state variable is that it is easy
to extend to the case of belief heterogeneity which we model as follows. Beliefs θ differ across
the population and there is an initial joint density of states and beliefs m0(x, θ). Starting from
time t = 0, beliefs evolve according to the following generalization of (7.4) which allows for
learning to depend on the individual state Xi,t as well:

θ̇i,t = L(pt, Xi,t, θi,t), θi,0 ∼ m0(x, θ). (7.17)

The value function of an agent with beliefs θ still satisfies the same HJB equation (7.12). The
actual policy of that agent is then given by

π(x, θ, t) = π̂(x, pt, t; θ) = arg max
α∈A

{R(x, α, pt) + α · ∇xû(x, pt, t; θ)} , (7.18)
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meaning that their trajectories are

dXi,t = π(x, θ, t)dτ +
√

2νdBi,τ.

The prices pt on the right side of (7.18) are still given by

pt = P∗(m(t)). (7.19)

The measure m(x, θ, t), in turn, solves the forward in time problem

∂tm(x, θ, t) = A∗
πm(x, θ, t)− divθ(L(pt, x, θ)m(x, θ, t)), (7.20)

with the policy π given by (7.18).
It is worth contrasting the system (7.18)-(7.20) with belief heterogeneity with its counterpart

(7.14)-(7.16) for the case of homogeneous beliefs. The structure of the two systems is exactly
the same, except that (7.18)-(7.20) tracks a joint distribution for (x, θ) rather than a marginal
distribution for x.

7.2 Adaptive learning with common noise: sidestepping the Master equation

Starting from the second formulation in the preceding section with (p, θ) as state variables, the
generalization to the case of common noise is straightforward. The key point of this section will
be that, modeling adaptive learning in MFGs with a low-dimensional coupling and common
noise, allows for sidestepping the infinite-dimensional Master equation.

Agents’ perceived law of motion for prices is

dp̂s,t = µp( p̂s,t, Zs, θ)ds + σp( p̂s,t, Zs, θ)dBs (7.21)

where θ ∈ Rd is a parameter vector. The agents’ estimate of θ are still updated according to
the learning rule (7.4).

Denoting the generator corresponding to (7.21) by Ap(z, θ), we have the following HJB
equation for the perceived value function Û(x, z, p, t; θ) which is similar to (7.12):

ρÛ − ∂sÛ = H(x, z, p,∇xÛ) + ν∆xÛ +Ap(z, θ)Û + β∆zÛ,
H(x, z, p, λ) = max

α∈A
{R(x, z, α, p) + α · λ} , (7.22)

with (x, z, p, t) ∈ Rn × Rk × Rℓ × (0, T), θ ∈ Rd, and with corresponding policy

π̂(x, z, p, t; θ) = arg max
α∈A

{
R(x, z, α, p) + α · ∇xÛ(x, z, p, t; θ)

}
. (7.23)

The important observation is that (7.22) is a standard finite-dimensional HJB equation rather
than an infinite-dimensional Master equation.

To solve for the evolution of the density mt, equilibrium prices pt, and the learned param-
eter estimates θt, one can then proceed in the same fashion as in the case without common
noise. First, define

π(x, Zt, t) = π̂(x, Zt, pt, t; θt) (7.24)

where the price pt is given by
pt = P∗(mt, Zt). (7.25)

Then solve the following forward-in-time system:

dmt = A∗
πt,Zt

mtdt,

dZt =
√

2βdBt

θ̇t = L(pt, θt)

(7.26)

with the policy π given by (7.24) and with initial condition (m0, Z0, θ0).
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Remark on computational cost of (7.22). The same remark as in the case without common
noise applies: one does not actually have to solve (7.22) for all values of θ ∈ Rd. This is because
the equations for different θ are decoupled from each other. Starting from θ0, and simulating
(7.26) forward in time, it is therefore sufficient to solve (7.22) only for the θ’s one actually
encounters.

Either way, this computational cost should be compared to the cost of computing the
infinite-dimensional Master equation with rational expectations. The former is clearly lower
regardless of the exact computational strategy for (7.22).

7.3 Other Directions: Reinforcement Learning and other Stochastic Approxima-
tion Methods

One potentially promising approach for sidestepping the Master equation is to approximate
the value function in Section 6.3 using ideas from the literature on reinforcement learning
(Sutton and Barto, 2018). Reinforcement learning (RL) means learning value functions of
incompletely-known Markov decision processes from experience. RL is typically formulated
in discrete time but there exist continuous-time formulations (Doya, 2000; Wang et al., 2020; Jia
and Zhou, 2023). Also see Laurière et al. (2022) and Xu et al. (2023) for related applications to
discrete-time MFGs without common noise. Ongoing work by Moll et al. (2025) explores the
idea of using variants of recurrent RL (Hausknecht and Stone, 2017; Ni et al., 2022) for solving
MFGs with a low-dimensional coupling in the case with common noise.

More generally, a promising approach could be to approximate these value functions using
a “stochastic approximation algorithm” (e.g. Robbins and Monro, 1951; Ljung, 1977) of which
reinforcement learning is a special case (Jaakkola et al., 1993; Tsitsiklis, 1994).

8 Discrete Time

There is also a literature on discrete-time MFGs (e.g. Gomes et al., 2010, 2013) and this formula-
tion may be useful for the application of some promising approaches to the challenge posed in
this paper such as reinforcement learning. We therefore briefly repeat our paper’s arguments
in discrete time. For brevity we skip the case without common noise and focus directly on the
more challenging case with common noise. For simplicity, we also focus on the case with finite
state and action spaces, though this simplification is not essential.

8.1 Setup: Discrete-Time MFGs with Common Noise

Everything is analogous to the continuous-time setup in Section 2. Consider a system of N ≫ 1
individual agents (players) at positions (states) Xi,t ∈ X ⊂ Rn, i = 1, . . . , N, where X is a finite
state space, i.e. Xi,t can take only finitely many possible values. Time is discrete, t = 0, 1, .., T,
where T is a fixed terminal time that is sometimes taken as T = +∞. As above, we consider
the limit N → +∞ of a large number of agents. Anticipating this limit we here write equations
directly in terms of the limiting density which we denote by mt(x) ∈ P(X ), the space of
probability measures with support in X . Given x can take only finitely many values, this
density is simply a high- but finite-dimensional vector (essentially a “histogram”). The setup
and notation are close to Laurière et al. (2022) with the difference that we consider the case
with common noise.

Agents receive a period reward R(Xi,t, Zt, αi,t, mt) and their state evolves according to a
Markov process

Xi,t+1 ∼ Tx(·|Xi,t, Zt, αi,t, mt). (8.1)

As above, αi,t ∈ A ⊂ Rn is a control (but with A a finite action space) and Zt ∈ Z ⊂ Rk is
the aggregate state (common noise) that affects all agents and which evolves according to an
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exogenous Markov process:
Zt+1 ∼ Tz(·|Zt). (8.2)

Agents maximize the cumulative discounted reward:

ui,0 = max
αi∈A

E

[
T

∑
t=0

γtR(Xi,t, Zt, αi,t, mt) + γTV(Xi,T, ZT, mT)

]
(8.3)

subject to (8.1) and (8.2) and where V is a terminal value and 0 < γ ≤ 1 a discount factor.
As above, the optimal policy induces the density mt to evolve over time. This evolution

is easiest to spell out for a slight generalization of the problem (8.3) in which we allow for
stochastic policies of the form:

αi,t ∼ πt(·|Xi,t, Zt, mt) (8.4)

where πt is the probability distribution over actions αi,t conditional on the states (Xi,t, Zt, mt).
Given the optimal policy πt, the density mt then evolves according to a Chapman-Kolmogorov
equation (the discrete-time analogue of a Fokker-Planck equation)

mt+1(x) = ∑̃
x,α̃

mt(x̃)πt(α̃|x̃, Zt, mt)Tx(x|x̃, α̃, Zt, mt) (8.5)

which we can also write
mt+1 = AT

πt,Zt
mt, (8.6)

where Aπt,Zt is the transition matrix of x induced by the optimal policy πt. This equation is the
discrete-time counterpart to the Fokker-Planck equation (5.21), with the transition matrix Aπt,Zt

being the counterpart to the generator Aπ,Zt (and the matrix transpose that to the operator
adjoint). Note that, because Zt evolves according to the Markov process (8.2), the density mt+1
is itself a stochastic process.

Mean Field Games with a low-dimensional coupling. As in Section 3, we pay special atten-
tion to the class of “MFGs with a low-dimensional coupling” which arise naturally in many
applications, particularly in macroeconomics. In such MFGs, the running reward function
and transition probabilities depend on the density mt only through a low-dimensional vector
pt ∈ Rℓ, with some fixed ℓ ≪ N, that is a functional of mt.

That is, the running reward and terminal value in (8.3) are given by R̃(x, z, α, p) and Ṽ(x, z, p)
so that agents choose policies π to maximize

ui,0 = max
αi∈A

E

[
T

∑
t=0

γtR̃(Xi,t, Zt, αi,t, pt) + γTṼ(Xi,T, ZT, pT)

]
(8.7)

subject to
Xi,t+1 ∼ Tx(·|Xi,t, Zt, αi,t, pt), (8.8)

and (8.2) where
pt = P∗(mt, Zt), (8.9)

for a fixed functional P∗ : P(X ) × Z → Rℓ. Again note that in such MFGs with a low-
dimensional coupling, model agents do not directly “care about” the density mt in the sense
that it does not enter their running reward functions; instead they only “care about” the much
lower-dimensional vector pt.

As discussed in Sections 3.1 and 3.2 such MFGs arise naturally in macroeconomics where
they are known as “heterogeneous agent models” (e.g. Krusell and Smith, 1998; Den Haan,
1996). In this case, the vector pt has the interpretation of “equilibrium prices” that are deter-
mined from some “market clearing” conditions analogous to (3.5).

As also discussed in Section 3 these MFGs are, of course, just the special case of general
MFGs with the running reward and terminal value of the form

R(x, z, α, m) = R̃(x, z, α, P∗(m, z)), V(x, z, m) = R̃(x, z, P∗(m, z)). (8.10)
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Rational expectations. As above, standard formulations of this MFG impose rational expec-
tations, meaning that agents form expectations over outcomes using the correct objective prob-
ability distributions of those outcomes. Concretely this means that agents know not only the
correct transition probabilities Tx and Tz but also the high-dimensional transition matrix Aπt,Zt

which governs the evolution of the complex system they inhabit.

Master equation in discrete-time MFGs. In both general MFGs and MFGs with a low-dimensional
coupling, under rational expectations, the agents’ optimization problem gives rise to the Mas-
ter equation (i.e. Bellman equation on the space of probability measures):

Ut(x, z, m) = max
α

R(x, z, α, m) + γEx′,z′ [Ut+1(x′, z′, m′)|x, z, m] subject to

x′ ∼ Tx(·|x, z, α, m),
z′ ∼ Tz(·|z),

m′ = AT
πt,zm,

UT(x, z, m) = V(x, z, m).

(8.11)

This equation is the exact discrete-time counterpart to (5.23) and it similarly features the state
variable m ∈ P(X ), the space of probability measures with support in X . It therefore suffers
from an extreme version of the curse of dimensionality.

The trouble with the Master equation in MFGs with a low-dimensional coupling. Like in
Section 3, note that the special structure of MFGs with a low-dimensional coupling does not
simplify the Master equation in any straightforward way. In particular the high-dimensional
density m ∈ P(X ) is still a state variable in the Master equation.

The reason this happens is the rational expectations assumption. Intuitively, because agents
are forward-looking, they need to forecast future prices pt, a low-dimensional object. But they
understand that pt depends on the high-dimensional density mt via (8.9). Agents therefore
forecast the density mt in order to forecast prices pt. Furthermore, as before, they forecast mt
using their knowledge of all other agents’ policies π (i.e. the policies of agents at other points
in the state space y ̸= x, y ∈ X ). Note that all of this happens despite agents not even directly
“caring about” the density mt. It is also the source of severe computational difficulties when
solving macroeconomics MFGs with common noise.

8.2 Discrete-Time MFGs without Rational Expectations

General MFGs without rational expectations. As above, we assume that agents have ratio-
nal expectations about the evolution of their own individual state Xi,t, i.e. that they know the
correct transition probabilities Tx. However, like in Section 5.2, we allow for the possibility
that they may have non-rational expectations about the evolution of the density mt and the
aggregate state Zt. In particular, agents believe that the density and aggregate state evolve
according to the perceived laws of motion

m̂s+1,t = BT
Ẑt

m̂s,t, s ≥ t

Ẑs+1,t ∼ T̂z(·|Ẑs,t), s ≥ t,
(8.12)

with m̂t,t = mt and Ẑt,t = Zt rather than (8.2) and (8.6). Under this assumption, agents’
optimization problem gives rise to a Master equation that is just like (8.11) but with Tz replaced
by T̂z and Aπ,z replaced by Bẑ. Rational expectations imposes that

Bz = Aπ,z and T̂z = Tz

so that, in the special case of rational expectations, we recover the usual Master equation (8.11).
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Sidestepping the Master equation in MFGs with a low-dimensional coupling. It is again
most interesting to consider non-rational expectations in MFGs with a low-dimensional cou-
pling because this holds the promise of sidestepping the Master equation altogether.

With rational expectations, agents understand the dependence of pt on mt and Zt and there-
fore use the function P∗ together with the correct stochastic processes for mt and Zt to predict
future values of pt. This leads to the Master equation (8.11), with essentially no simplifications
despite the low-dimensional coupling.

With non-rational expectations, agents instead perceive some other stochastic process for
the pair (pt, Zt). Like in Section 6.2, they could simply perceive pt to evolve according to an
exogenous Markov process

p̂s+1,t ∼ T̂p(·| p̂s,t), s ≥ t, p̂t,t = pt. (8.13)

In more complicated cases, agents may perceive a joint stochastic process for pt, Zt and other
variables.

In the case of agents perceiving the simple process (8.13), instead of writing a Master equa-
tion, we can write a much simpler, standard finite-dimensional Bellman equation (as above,
going forward, we drop the tildes from R̃ and Ṽ for notational simplicity):

Ût(x, z, p) = max
α

R(x, z, α, p) + γEx′,z′,p′ [Ut+1(x′, z′, p′)|x, z, p] subject to

x′ ∼ Tx(·|x, z, α, p),
z′ ∼ Tz(·|z),
p′ ∼ T̂p(·|p),

ÛT(x, z, p) = V(x, z, p).

(8.14)

Therefore, in MFGs with a low-dimensional coupling, departing from rational expectations
can completely sidestep the Master equation. Of course, the case considered here is just an
illustrative example. In particular, note that the perceived law of motion (6.3) is specified
completely “outside the model” which leaves open the question where this perceived law of
motion “comes from” in the first place.

8.3 The Challenge and a Markov Reward Process

As discussed in Section 7 and Moll (2024), the challenge is: how can we formulate, in a sys-
tematic way, models of agents’ behavior in situations with a low-dimensional coupling that
lead to equations that (i) approximate agents’ real-world behavior, and (ii) sidestep comput-
ing the solutions to a Master equation with the infinite-dimensional state m ∈ P(X ) and the
associated curse of dimensionality?

A Markov Reward Process with all the difficulty. To understand the key difficulty, it is use-
ful to consider a simplified version of the model with no actions α, i.e. a Markov Reward
Process (MRP) rather than a Markov Decision Process (MDP). This material is adapted from
ongoing work by Moll et al. (2025).

To this end, eliminate actions α and assume that the state Xi,t evolves exogenously accord-
ing to a transition matrix AZt that depends on the aggregate state Zt, implying that (mt, Zt)
evolve as

mt+1 = AT
Zt

mt, Zt+1 ∼ Tz(·|Zt). (8.15)

Similarly, replace the running reward and terminal value in (8.7) by a reward R(p) and termi-
nal value V(p) that depend only on the low-dimensional price vector pt ∈ Rℓ. As before, the
vector pt is still determined by (8.9).
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The simplified problem is to compute the value of a MRP: given pt evolving according to
(8.9) and (mt, Zt) according to (8.15), compute the expected presented discounted value (PDV)
of rewards:

u0 = E

[
T

∑
t=0

γtR(pt) + γTV(pT)

]
. (8.16)

This problem contains all the difficulty of the more complicated problem in MFGs with a low-
dimensional coupling.

The “correct” way – in the rational expectations sense – of computing the value of this MRP
is to solve a Master equation for the value function Ut(z, m):

Ut(z, m) = R(P∗(m, z)) + γEz′ [Ut+1(z′, m′)|z, m] subject to
z′ ∼ Tz(·|z),

m′ = AT
z m

UT(z, m) = V(P∗(m, z))

(8.17)

This Master equation illustrates the trouble with the rational expectations assumption: even
though the reward function is only a function of a low-dimensional vector pt ∈ Rℓ, computing
the PDV in (8.16) requires solving a Bellman equation on the space of probability measures
P(X ).

The difficulty: prices pt are not Markov. As discussed in Section 6, the key difficulty is that
the vector pt does not follow a Markov process; instead only (mt, Zt) has the Markov property
and pt is instead a complicated non-linear functional of this Markov state. Agents with rational
expectations therefore (unrealistically) forecast the Markov state (mt, Zt) in order to forecast
the non-Markovian pt.

8.4 Adaptive Learning in Discrete Time

Finally, we show how to write the adaptive learning model of Section 7 in discrete time. The
economics literature typically formulates such models in discrete time (Bray, 1982; Marcet and
Sargent, 1989; Evans and Honkapohja, 2001; Jacobson, 2025). The key assumption is that, to
forecast prices, agents use a perceived law of motion in the form of a Markov process:

p̂s+1,t ∼ T̂p(·| p̂s,t, Zs, θ), s ≥ t, p̂t,t = pt, (8.18)

where θ ∈ Rd is a parameter vector. The key difference to the Markov process (8.13) in Section
8.2 is that the process is endogenous to the model because agents learn the parameter vector θ

over time from past observations of pt. Specifically, they form an estimate θ̂t of θ which they
update using the learning rule

θ̂t+1 = L(pt, θ̂t). (8.19)

For example, (8.18) could be a vector autoregressive (VAR) process for the vector of prices and
(8.19) a recursive least-squares estimator for the parameters of this VAR.

Dropping the hat subscripts from θ̂t for notational simplicity (but keeping in mind that this
is really a time-varying estimate of the parameter θ), agents’ optimization problem given a
current estimate θ is:

Ût(x, z, p; θ) = max
αi∈A

E

[
T

∑
s=t

γs−tR(Xi,s, Zt, αi,s, p̂s,t) + γT−tV(Xi,T, ZT, p̂T,t)

]
(8.20)
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subject to

p̂s+1,t ∼ T̂p(·| p̂s,t, Zs, θ), s ≥ t, (8.21)
p̂t,t = p (8.22)

and subject to (8.2) and (8.8).
The corresponding Bellman equation is:

Ût(x, z, p; θ) = max
α

R(x, z, α, p) + γEx′,z′,p′ [Ut+1(x′, z′, p′; θ)|x, z, p] subject to

x′ ∼ Tx(·|x, z, α, p),
z′ ∼ Tz(·|z),
p′ ∼ T̂p(·|p, z, θ),

ÛT(x, z, p; θ) = V(x, z, p),

(8.23)

with corresponding optimal policy π̂t(x, z, p, θ). The key observation is that this is a standard
finite-dimensional Bellman equation rather than an infinite-dimensional Master equation.

With the solution in hand, the evolution of the density mt and equilibrium prices pt are
found as follows. First, define

πt(x, Zt) = π̂t(x, Zt, pt; θt) (8.24)

where the price pt is given by
pt = P∗(mt, Zt). (8.25)

Then solve the following forward-in-time system:

mt+1 = AT
πt,Zt

mt

Zt+1 ∼ Tz(·|Zt)

θt+1 = L(pt, θt)

(8.26)

with the policy πt given by (8.24) and with initial condition (m0, Z0, θ0). A similar problem is
solved by Jacobson (2025).

Remark on computational cost of (8.23). As noted in Section 7, one does not actually have to
solve (8.23) for all values of θ ∈ Rd. This is because the equations for different θ are decoupled
from each other. Starting from θ0, and simulating (8.26) forward in time, it is therefore sufficient
to solve (8.23) only for the θ’s one actually encounters.

Remark on relation to Krusell and Smith (1998) algorithm. There is a link between this
adaptive learning approach (specifically, the variant with least-squares learning) and the algo-
rithm of Krusell and Smith (1998). In both approaches, decision makers use a perceived law of
motion like (8.18) and estimate its coefficients via least squares. A difference is that adaptive
learning updates the coefficient estimate θt+1 from θt recursively over time so that solving for
the MFG equilibrium and belief updating are done “in one sweep” via solving (8.26) forward
in time.

9 Conclusion

This paper has shown how to formulate MFGs without rational expectations, i.e. without the
assumption that agents know all relevant transition probabilities for the complex system they
inhabit. Instead of using the correct transition probabilities, agents instead use some other
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“non-rational” transition probabilities when solving their optimization problems. We show
how to write the corresponding equations describing the Nash equilibrium of the MFG, both
for the case with and without common noise. In the special case of rational expectations we
recover the standard backward-forward MFG system and MFG Master equation.

Departing from rational expectations is particularly relevant when there is common noise
in “MFGs with a low-dimensional coupling”, i.e. MFGs in which agents’ running reward func-
tion depends on the density only through low-dimensional functionals and which are typical
in macroeconomics. In MFGs with a low-dimensional coupling, departing from rational expec-
tations allows for completely sidestepping the Master equation and for instead solving much
simpler finite-dimensional HJB equations. We introduced an adaptive learning model as a
particular example of non-rational expectations and discussed its properties.
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https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf 2013.

and Alessio Porretta, “An introduction to mean field game theory,” in “Mean field games,” Vol. 2281
of Lecture Notes in Math., Springer, Cham, 2020, pp. 1–158.

, François Delarue, Jean-Michel Lasry, and Pierre-Louis Lions, The Master Equation and the Conver-
gence Problem in Mean Field Games, Vol. 201 of Annals of Mathematics Studies, Princeton University
Press, 2019.

31

https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf
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