
Lecture 5 Investment and Capital Accumulation

Macroeconomics EC2B1

Benjamin Moll

Investment over the business cycle

Investment consists of three main components: nonresidential fixed investment, which includes equipment and structures purchased by businesses as well as intellectual property products; residential investment (housing); and the change in inventories held by businesses.

Source: Jones, Macroeconomics

Plan

- 1. Investment and capital accumulation in partial equilibrium
- 2. Dynamic general equilibrium with capital accumulation
- 3. Half-way mark for this course: taking stock and looking ahead

Readings and supplementary materials

- 1. Supplement on moodle: write-up of model including all the derivations
 - I will provide such write-ups going forward, partly so we can skip the derivations during lectures
- 2. Chapters 8 and 9 of Kurlat
 - general equilibrium model in his chapter 9 is similar but more complicated
 - also includes labor demand and supply which we abstract from

Investment and capital accumulation in partial equilibrium

Investment and capital accumulation in partial equilibrium

- Two time periods t = 1, 2, world ends afterwards
- Representative firm
- Firms produce using capital K_t , t = 1, 2

$$Y_t = A_t F(K_t), \quad F' > 0, F'' < 0$$

- K₁ is fixed
- K_2 can be changed through investment in period 1, I_1

$$K_2 = I_1 + (1 - d)K_1$$
, $0 < d \le 1$

where d is depreciation (same equation as in Solow model)

Firm profit maximization

Firm profits per period

$$\Pi_1 = A_1 F(K_1) - I_1, \quad \Pi_2 = A_2 F(K_2) + (1 - d)K_2$$

- Why $(1 d)K_2$ in Π_2 ?
- Firms maximize present discounted value (PDV) of profits

$$W = \Pi_1 + \frac{\Pi_2}{1 + r_1}$$

where r_1 is interest rate between t = 1 and t = 2

- Why would firms maximize this present value? Why discounted at r_1 ?
- See supplement. In a nutshell because
 - (a) firms are owned by households who can save and borrow at r_1
 - (b) also firms can save and borrow at r_1
 - (a)+(b) \Rightarrow households instruct firms to maximize $W = \Pi_1 + \frac{\Pi_2}{1+r_1}$

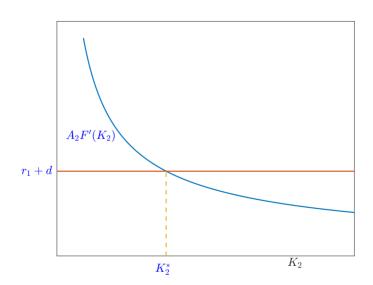
Firm profit maximization

• Combining, firm problem is

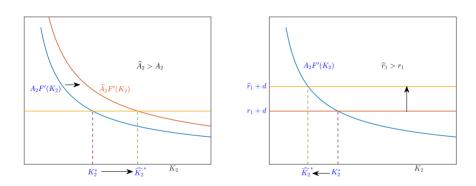
$$W = \max_{\kappa_2} \left\{ A_1 F(\kappa_1) + (1-d)\kappa_1 - \kappa_2 + \frac{A_2 F(\kappa_2) + (1-d)\kappa_2}{1+r_1} \right\}$$

Optimality condition

$$1 = \frac{A_2 F'(K_2) + 1 - d}{1 + r_1}$$


or

$$A_2F'(K_2) = r_1 + d (*)$$


• (*) pins down optimal capital K_2^* and therefore optimal investment

$$I_1^* = K_2^* - (1-d)K_1$$

Graphical representation of optimality condition

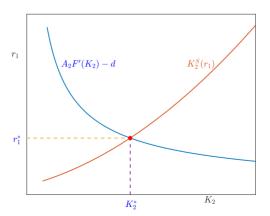
How does investment respond to changes in A_2 and r_1 ?

• What is the intuition for these comparative statics?

Capital and investment demand: parametric example

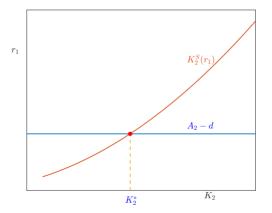
- Example: $F(K) = K^{\alpha}$ with $0 < \alpha < 1$
- Optimality condition

$$\alpha A_2 K_2^{\alpha - 1} = r_1 + d$$


→ optimal capital demand and investment

$$K_2^* = \left(\frac{\alpha A_2}{r_1 + d}\right)^{\frac{1}{1-\alpha}}$$

$$I_1^* = \left(\frac{\alpha A_2}{r_1 + d}\right)^{\frac{1}{1-\alpha}} - (1 - d)K_1$$


Warmup for part 2: equilibrium in the capital market

- Optimality condition $A_2F'(K_2) = r_1 + d$ traces out a capital demand curve
- Plot of $r_1 = A_2 F'(K_2) d$ vs K_2 is capital demand curve in (K_2, r_1) -space
- Warmup for part 2: can put this together w model of capital supply $K_2^S(r_1)$

Warmup: equilibrium with infinitely elastic capital demand

- Interesting special case: linear production $Y_2 = A_2 K_2$
- Optimality: $A_2 \ge r_1 + d \Rightarrow$ capital demand infinitely elastic at $r_1 = A_2 d$
- Equilibrium interest rate $r_1 = A_2 d$, quantity pinned down by supply

Dynamic general equilibrium with capital accumulation

Overview

- Lecture 4: household saving
- Lecture 5 so far: firm capital accumulation and production
- Now put these together in general equilibrium
- To make progress, work with special functional forms
 - no labor, linear production: $Y_t = A_t K_t$
 - full depreciation d=1
 - utility with constant intertemporal elasticity of substitution
- Later: heavy use of these in our version of New Keynesian model
- Special assumptions but should be clear: construction of equilibrium follows steps that would also be valid with more general functions

Primitives of economy with capital accumulation

Preferences: households have utility function

$$U(C_1) + \beta U(C_2)$$
 with $U(C) = \frac{C^{1-\frac{1}{\sigma}} - 1}{1 - \frac{1}{\sigma}}$

Technology: firms have production function

$$Y_t = A_t K_t$$
, $t = 1, 2$

and capital accumulates according to $K_2 = I_1 + (1 - d)K_1$ with d = 1, i.e.

$$K_2 = I_1$$

Resource constraints (feasibility):

goods in period 1:
$$C_1 + I_1 = Y_1$$

goods in period 2: $C_2 = Y_2$

Competitive equilibrium with capital accumulation

Definition: a competitive equilibrium are quantities $(C_1, C_2, I_1, K_2, Y_1, Y_2)$ and an interest rate r_1 such that

1. Utility maximization: taking as given r_1 and W, households choose (C_1, C_2) to solve

$$\max_{C_1, C_2} U(C_1) + \beta U(C_2)$$
 s.t. $C_1 + \frac{C_2}{1 + r_1} = W$

where $\ensuremath{\mathcal{W}}$ is the PDV of firm profits (because households own firms)

2. Profit maximization: firms maximize $W = \Pi_1 + \frac{\Pi_2}{1+r_1}$ or equivalently

$$W = \max_{K_2} \left\{ A_1 K_1 - I_1 + \frac{A_2 K_2}{1 + r_1} \right\}, \quad K_2 = I_1, \ Y_1 = A_1 K_1, \ Y_2 = A_2 K_2$$

3. Market clearing: demand = supply for goods

goods in period 1:
$$C_1 + I_1 = Y_1$$

goods in period 2: $C_2 = Y_2$

Comment on market clearing conditions: credit market

- There really is a third market and correponding market clearing condition
 - credit market in which households and firms borrow/lend from/to each other at interest rate r_1 (recall that's why firms maximize PDV)
 - but can drop this due to Walras' Law
- · Can write this as

$$b + B = 0$$

where

- b: household saving with b < 0 denoting borrowing
- B: firm saving with B < 0 denoting borrowing
- Typical situation b > 0 and B = -b < 0, i.e. firms borrow from households to finance their investment
- See supplement. Can forget about this from now, no future appearances.

Solving for the competitive equilibrium allocation

- What is a convenient strategy to solve for the equilibrium allocation?
- Supplement: alternative strategy

Result: competitive equilibrium allocation (see supplement)

$$C_{1} = \frac{\left(\frac{1}{\beta A_{2}}\right)^{\sigma} A_{2}}{1 + \left(\frac{1}{\beta A_{2}}\right)^{\sigma} A_{2}} A_{1} K_{1}$$

$$C_{2} = \frac{A_{2}}{1 + \left(\frac{1}{\beta A_{2}}\right)^{\sigma} A_{2}} A_{1} K_{1}$$

$$K_{2} = I_{1} = \frac{1}{1 + \left(\frac{1}{\beta A_{2}}\right)^{\sigma} A_{2}} A_{1} K_{1}$$

$$Y_{1} = A_{1} K_{1}$$

$$Y_{2} = \frac{A_{2}}{1 + \left(\frac{1}{\beta A_{2}}\right)^{\sigma} A_{2}} A_{1} K_{1}$$

$$1 + r_{1} = A_{2}$$

Derivation: see supplement (one of the derivations, there are at least two)

Investment in the competitive equilibrium

Focus on investment which is most interesting decision

$$I_1 = \frac{1}{1 + \left(\frac{1}{\beta A_2}\right)^{\sigma} A_2} A_1 K_1$$

• Note: can write this as saving rate $s(A_2)$ out of current output, Y_1 :

$$I_1 = s(A_2)Y_1$$
, $C_1 = [1 - s(A_2)]Y_1$, $s(A_2) = \frac{1}{1 + (\frac{1}{\beta A_2})^{\sigma} A_2}$

- Contrast this with Solow model: $I_t = sY_t$ where s = exogenously given
- In current model, saving rate is instead endogenous and depends on preferences (β, σ) and technology (A_2) !
- This is precisely what we mean when we say "Solow model is not microfounded but modern macro models are"

A recession due to a drop in A_1

- Assume current productivity $A_1 \downarrow$. What happens to $(C_1, C_2, I_1, Y_1, Y_2)$?
 - momentarily: what on earth is a drop in productivity?
- Recall expressions for $(C_1, C_2, I_1, Y_1, Y_2)$ a few slides ago, e.g.

$$Y_1 = A_1 K_1,$$
 $Y_2 = \frac{A_2}{1 + \left(\frac{1}{\beta A_2}\right)^{\sigma} A_2} A_1 K_1,$...

- Clearly all of $(C_1, C_2, I_1, Y_1, Y_2)$ fall when A_1 falls
- Intuition: economy is less productive, people are poorer ⇒ cut consumption in both periods as well as investment
- Also note: both C₁ and I₁ fall. Reason: total resources Y₁ available for consuming or investing fall

$$C_1 + I_1 = Y_1, \quad Y_1 = A_1 K_1$$

A recession due to a drop in A_2

- Assume future productivity $A_2 \downarrow$. What happens to $(C_1, C_2, I_1, Y_1, Y_2)$?
- Y_2 unambiguously decreases when A_2 falls

$$Y_2 = A_2 K_2 = \frac{1}{\frac{1}{A_2} + \left(\frac{1}{\beta A_2}\right)^{\sigma}} A_1 K_1 \downarrow \text{ when } A_2 \downarrow.$$

• But: effect on I_1 and C_1 is ambiguous, one falls the other rises

$$I_1 = s(A_2)Y_1$$
, $C_1 = [1 - s(A_2)]Y_1$, $s(A_2) = \frac{1}{1 + (\frac{1}{BA_2})^{\sigma} A_2}$

• What happens to I_1 and C_1 depends on $\sigma = IES$

$$\sigma < 1 \quad \Rightarrow \quad s'(A_2) < 0 \quad \Rightarrow \frac{\partial I_1}{\partial A_2} < 0, \quad \frac{\partial C_1}{\partial A_2} > 0 \quad \Rightarrow \quad I_1 \uparrow, C_1 \downarrow$$

- Why? And what is the intuition?
- \bullet From now on always assume $\sigma < 1$ (= also the empirically realistic case)

A recession due to a drop in both A_1 and A_2

Can also consider combination: both A_1 and A_2 fall at same time

• For example A_1 falls and A_2 is correlated with A_1

$$\log A_2 = \rho \log A_1 + \varepsilon_2$$

where ρ captures persistence, ε_2 the innovation at t=2

- Economic effect is combination of effects on two previous slides
- Such correlated productivity movements will be important in next lecture

Oil shocks as productivity shocks (or gas shocks)

- What on earth is a drop in productivity?
 - do we think people forget how to make stuff? Not really
 - hard to come up with sensible justifications
- One possible justification: oil shocks or energy (gas etc) shocks
- Technology: firms use oil to produce

$$\tilde{Y}_t = \tilde{A}_t K_t^{\alpha} O_t^{1-\alpha}.$$

• Firms maximize output net of oil expenditure

$$Y_t = \max_{O_t} \tilde{A}_t K_t^{\alpha} O_t^{1-\alpha} - p_t O_t$$
 where $p_t = \text{oil price}$

$$\Rightarrow Y_t = A_t K_t \text{ where } A_t = \text{effective productivity} = \alpha \tilde{A}_t^{1/\alpha} \left(\frac{1-\alpha}{p_t}\right)^{(1-\alpha)/\alpha}$$

so an increase in p_t causes a drop in effective productivity

24

Half-way mark for this course: taking stock and looking ahead

What we have done in first half of course

- Learned the basics of modern macroeconomics
- What is a model? "The map is not the territory" and so on
- Reminded ourselves of basic microeconomics
 - intratemporal choice, e.g. labor supply
 - intertemporal choice, e.g. consumption, saving, investment
- Learned the following key concepts
 - 1. Competitive equilibrium
 - 2. Pareto effiency
 - 3. Welfare theorems

What we have done in first half of course

- Worked with some key parameters, corresponding functional forms
 - elasticity of substitution in production
 - intertemporal elasticity of substitution
- Reminded ourselves that income and substitution effects are everywhere!
- Applied these tools to think about some key topics
 - 1. Labor supply and labor demand, long-run trends in hours worked
 - 2. Substitution in production, e.g. in response to cut-off of Russian gas
 - 3. Consumption and saving decisions, permanent income hypothesis & its shortcomings, MPCs out of transitory & permanent income shocks
 - 4. Investment and capital accumulation

What we will do in second half of course

Put your basic training to use to think about more and more applied topics

Section 6	Business Cycle Macro and Lucas Critique
Section 7	New Keynesian Model I
Section 8	New Keynesian Model II
Section 9	The Financial Crisis, Asset Bubbles
Section 10	Unemployment (Pissarides), Inequality in Macro

 Looking for something to read during reading week? Read Mankiw and Weinzierl (2011) "An Exploration of Optimal Stabilization Policy"

```
https://www.brookings.edu/wp-content/uploads/2011/03/2011a_bpea_mankiw.pdf
```

- Two-period version of New Keynesian model I will teach is based on this paper
- Model from this lecture but with "nominal rigidities", i.e. sticky prices
- You have basic tools to read this but may still lack some vocabulary
- Read sections I-IV and IX-X (skip sections V-VIII)