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A Proofs

A.1 Proof of Proposition 1

Part 1: From the sequence problem, one can show that c1 and c2 are non-decreasing in a,

c′1(a), c′2(a) ≥ 0 with c1(a), c2(a) → ∞ as a → ∞ and c′1(a), c′2(a) < ∞ for a > a. Further

c2(a) ≥ c1(a) and s2(a) ≥ s1(a) for all a. A sketch of the proof that c′j(a) ≥ 0 is as follows: the

value function vj(a), j = 1, 2 is the value of the sequence problem of maximizing (1) subject

to (2), (3) when initial wealth a0 = a and initial income y0 = yj. This is a maximization

problem with a concave objective function and convex constraint set and it therefore has

a weakly concave value function (this follows from an appropriate version of the maximum

theorem). Optimal consumption cj solves the first-order condition u′(cj(a)) = v′j(a) for all

a. Since vj is weakly concave, v′j is weakly decreasing and therefore cj is weakly increasing.

To prove that s1(a) = 0 but s1(a) < 0 all a > a, consider the “Euler equation” (18) for

type j = 1. Rearranging

u′′(c1(a))

u′(c1(a))
c′1(a)s1(a) = ρ− r − λ1

(
u′(c2(a))

u′(c1(a))
− 1

)
(50)

We have c2(a) ≥ c1(a) and hence u′(c2(a)) ≤ u′(c1(a)) and hence the right-hand side of (50)

is strictly positive. Since u′′ < 0, u′ > 0 and c′1 ≥ 0, s1(a) ≤ 0 for all a. First consider a > a:

since c′1(a) < ∞, we need s1(a) < 0 for a > a. Next consider a = a. Since wealth a needs

to obey the state constraint (3), s1(a) ≤ 0 for all a implies that saving must be zero at the

constraint: s1(a) = 0.47

Part 2: Consider the “Euler equation” (18) for the low income type j = 1. Using s′1(a) =

r − c′1(a), and rearranging gives

(s′1(a)− r)s1(a) =
(r − ρ)u′(c1(a)) + λ1(u′(c2(a))− u′(c1(a)))

u′′(c1(a))
(51)

As a → a, we have that s1(a) → 0, c1(a) → c1 := y1 + ra > 0, c2(a) → c2 > 0 and, by

Assumption 1, −u′(c1(a))/u′′(c1(a))→ 1/R > 0. Therefore

s1(a)s′1(a)→ ν1 with ν1 :=
(r − ρ)u′(c1) + λ1(u′(c2)− u′(c1))

u′′(c1)
> 0 (52)

47The second part of the Proposition below shows that c′1(a)→∞ as a→ a so that there is no contradiction
with (50) holding.
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as defined in (21). We have

lim
a→a

(s1(a))2

a− a
= lim

a→a
2s1(a)s′1(a) = 2ν1

where the first equality follows from l’Hôpital’s rule and the second equality uses (52). Hence

(s1(a))2 ∼ 2ν1(a− a).

Taking the square root yields (19). The approximation to ν1 in the second line of (21)

uses the Taylor series approximation u′(c2) ≈ u′(c1) + u′′(c1)(c2 − c1) to substitute out

u′(c1)− u′(c2) ≈ −u′′(c1)(c2 − c1) in the first line.�

Proposition 1’ (MPCs and Saving at Borrowing Constraint) Assume that r <

ρ, y1 < y2 and that Assumption 1 is violated, i.e. R = ∞. Then the solution to the HJB

equation (7) and the corresponding saving policy function (9) have the following properties:

1. s1(a) = 0 but s1(a) < 0 all a > a. That is only individuals exactly at the borrowing

constraint are constrained, whereas those with wealth a > a are unconstrained and

decumulate assets.

2. as a → a, the saving and consumption policy function of the low income type and the

corresponding instantaneous marginal propensity to consume satisfy

s1(a) ∼ −η1(a− a), (53)

c1(a) ∼ y1 + ra+ η1(a− a), (54)

c′1(a) ∼ r + η1, (55)

η1 :=
ρ− r + λ1(1− ξ)

γ
, γ := − lim

a→a

u′′(c1(a))c1(a)

u′(c1(a))
, ξ := lim

a→a

u′(c2(a))

u′(c1(a))
(56)

where cj = cj(a), j = 1, 2 is consumption of the two types at the borrowing constraint

and where ξ is zero if u satisfies the Inada condition u′(c)→∞ as c→ 0. This implies

that the derivatives of c1 and s1 are bounded at the borrowing constraint, c′1(a) < ∞
and |s′1(a)| <∞.

3. With CRRA utility (5) we have γ = γ and ξ = 0 so that (56) is η1 = (ρ− r + λ1)/γ.

Proof: The proof of the first part is the same as that of Proposition 1. For the second part,

recall from the discussion in the main text that Assumption 1 not being satisfied means that

both (i) the borrowing constraint equals the natural borrowing constraint a = −y1/r so that

c1(a) = 0 and (ii) absolute risk aversionR(c) := −u′′(c)/u′(c)→∞ as c→ 0. Next, note that
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(51) in the proof of Proposition 1 still holds. However, we now have−u′(c1(a))/u′′(c1(a))→ 0

as a → a, and similarly −u′(c2(a))/u′′(c1(a)) = −u′(c2(a))
u′(c1(a))

u′(c1(a))
u′′(c1(a))

→ 0 as a → a. Therefore

when Assumption 1 does not hold s′1(a)s1(a)→ 0 as a→ a. We therefore pursue a slightly

different strategy. Rearranging (18) for type j = 1:

(r − ρ− λ1)c1(a) = γ(c1(a))c′1(a)s1(a)− λ1c1(a)
u′(c2(a))

u′(c1(a))
, γ(c) := −u

′′(c)c

u′(c)

Differentiate with respect to a

(r − ρ− λ1)c′1 =
d

da
[γ(c1)c′1] s1 + γ(c1)c′1(r − c′1)− λ1c

′
1

u′(c2)

u′(c1)
− λ1c1

d

da

(
u′(c2)

u′(c1)

)
Evaluating at a so that s1(a) = c1(a) = 0 we have

r − ρ− λ1 + λ1ξ = γ(r − c′1(a))

where γ and ξ are defined in (56). Finally, defining η1 := −s′1(a) = −(r − c′1(a)) we have

(56).�

A.2 Proof of Proposition 2

Part 1, existence of amax: We have already proven in Proposition 1 that the low income

type always decumulates s1(a) < 0 for a > a. Hence to prove that there is an amax such that

s1(a), s2(a) < 0 for a > amax we need to only consider the high income type. Rearranging

(18) for j = 2
u′′(c2(a))

u′(c2(a))
c′2(a)s2(a) = ρ− r − λ2

(
u′(c1(a))

u′(c2(a))
− 1

)
(57)

In contrast to the expression for type j = 1, (50), the sign of the right-hand side of (57)

is ambiguous (in particular it may be negative). The economic intuition is that the term

λ2

(
u′(c1(a))
u′(c2(a))

− 1
)
≥ 0 captures the precautionary saving motif. The proof strategy is to argue

that this term becomes small for large a and that therefore the right-hand side of (57) is

positive for large a.

To this end, recall the assumption that relative risk aversion is bounded above, γ(c) =

−cu′′(c)/u′(c) ≤ γ̄ for all c. Using this, we have

u′(c1(a))

u′(c2(a))
≤
(
c2(a)

c1(a)

)γ̄
. (58)

Further

c2(a)− c1(a) = y2 − y1 − (s2(a)− s1(a)) = (y2 − y1)(1− θ(a)),
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where θ(a) = (s2(a) − s1(a))/(y2 − y1) ≥ 0. Also note that c2(a) ≥ c1(a) implies that

θ(a) ≤ 1. Hence
u′(c1(a))

u′(c2(a))
≤
(

1 +
(y2 − y1)(1− θ(a))

c1(a)

)γ̄
.

Since c1 →∞ as a→∞, we have

lim
a→∞

u′(c1(a))

u′(c2(a))
= 1.

Hence the right-hand side of (57) is strictly positive for a large enough. Since u′′ < 0, u′ >

0, c′2 ≥ 0, we have s2(a) ≤ 0 for a large enough. Denoting the (largest) root of s2 by amax,

we obtain the first part of the Lemma.

Remark: note that the economically interesting case is the one in which the right-hand

side of (57), ρ−r−λ2

(
u′(c1(a))
u′(c2(a))

− 1
)

is strictly positive for large a, strictly negative for small

a (close to a), and zero at amax. In such cases amax > a, and s2(a) > 0 for some a ≤ a < amax,

i.e. some high-income types accumulate wealth. If instead, the right-hand side of (57) is

strictly positive for all a > a, then amax = a and s2(a) < 0 for all a > a, i.e. all high-income

types decumulate wealth (just like the low income types).

Part 1, behavior of s2 close to amax: Before laying out the proof we start with observa-

tion that some readers may find useful: to understand the behavior of s2 at amax, one may

be tempted to follow analogous steps to those in part 2 of Proposition 1. This is, however,

not the right strategy given that the right-hand side of (57) equals zero by the definition of

amax. We therefore pursue a strategy more akin to that in Proposition A.1.

Consider (18) for type j = 2:

(ρ− r + λ2)u′(c2(a)) = u′′(c2(a))c′2(a)s2(a) + λ2u
′(c1(a)).

Differentiate with respect to a

(ρ− r + λ2)u′′(c2)c′2 =
d

da
[u′′(c2)c′2]s2 + u′′(c2)c′2(r − c′2) + λ2u

′′(c1)c′1.

Evaluating at amax so that s2(amax) = 0

(ρ− r + λ2)c′2(amax) = c′2(amax)(r − c′2(amax)) + λ2
u′′(c1(amax))

u′′(c2(amax))
c′1(amax).

Define

ξ := c′2(amax), χ := λ2
u′′(c1(amax))

u′′(c2(amax))
c′1(amax) > 0.

55



Using these definitions and rearranging

ξ2 + (ρ− 2r + λ2)ξ − χ = 0.

Since χ > 0, this quadratic has two real roots, one positive and one negative. Therefore ξ is

the positive root and given by

c′2(amax) = ξ =
−(ρ− 2r + λ2) +

√
(ρ− 2r + λ2)2 + 4χ

2
.

Also note that c′2(amax) = ξ <∞. Finally we have

ζ2 := −s′2(amax) = c′2(amax)− r =
−(ρ+ λ2) +

√
(ρ− 2r + λ2)2 + 4χ

2
.

Hence s2(a) ∼ ζ2(amax − a) as a→ amax.�

Remark: note that the behavior of s2 at amax is symmetric to that of s1 near a in the

case in which Assumption 1 is violated (see Proposition A.1). Suppose instead that there

was a state constraint a ≤ ā with ā tight (i.e. low) enough. Then, the behavior s2 would

instead satisfy s′2(a)→ −∞ as a→ ā, i.e. the behavior of s2 would be symmetric to that of

s1 under Assumption 1 (see Proposition 1).

Part 2 of Proposition 2: Asymptotic Behavior with CRRA Utility Before proceed-

ing to the proof of the result, we derive two auxiliary Lemmas. The first Lemma considers an

auxiliary problem without labor income, y1 = y2 = 0, and shows that optimal policy func-

tions are linear in wealth. The second Lemma shows that the problem with labor income

and a borrowing constraint (7) satisfies a certain homogeneity property.

Lemma 3 Consider the problem

ρv(a) = max
c

u(c) + v′(a)(ra− c) (59)

where the utility function is given by (5). The optimal policy functions that solve (59) are

linear in wealth and given by

c(a) =
ρ− (1− γ)r

γ
a, s(a) =

r − ρ
γ

a. (60)

Proof of Lemma 3: Use a guess-and-verify strategy. Guess v(a) = B a1−γ

1−γ which implies

v′(a) = Ba−γ (61)

c(a) = v′(a)−1/γ = B−1/γa (62)
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Substituting into (59) and dividing by a1−γ

ρB
1

1− γ
=

1

1− γ
B−(1−γ)/γ +Br −BB−1/γ

Dividing by B and collecting terms we have B−1/γ = ρ−r
γ

+ r and hence from (62) we have

(60).�

Lemma 4 Consider problem (7). For any ξ > 0,

vj(ξa) = ξ1−γvξ,j(a) (63)

where vξ,j solves

ρvξ,j(a) = max
c

u(c) + v′ξ,j(a)(yj/ξ + ra− c) + λj(vξ,−j(a)− vξ,j(a)) (64)

Proof of Lemma 4: Write (7) as

ρvj(a) = H(v′j(a)) + v′j(a)(yj + ra) + λj(v−j(a)− vj(a)) (65)

H(p) = max
c
{u(c)− pc} =

γ

1− γ
p
γ−1
γ

From (63), vj(a) = ξ1−γvξ,j(a/ξ), v
′
j(a) = ξ−γv′ξ,j(a/ξ). ThereforeH(v′j(a)) = H(v′ξ,j(a/ξ))ξ

1−γ.

Substituting into (65) and dividing by ξ1−γ yields (64).�

Conclusion of Proof of Part 2 of Proposition 2: With these two Lemmas in hand we

are ready to prove Part 2 of Proposition 2. Consider first the asymptotic behavior of the

consumption policy function cj(a). From (63), vj(a) = ξ1−γvξ,j(a/ξ), v
′
j(a) = ξ−γv′ξ,j(a/ξ)

and therefore

cj(a) = (v′j(a))−1/γ = ξ(v′ξ,j(a/ξ))
−1/γ = ξcξ,j(a/ξ)

In particular with ξ = a we have

cj(a) = aca,j(1)

Hence

lim
a→∞

cj(a)

a
= lim

ξ→∞
cξ,j(1) = c(1) =

ρ− (1− γ)r

γ
,

where the second equality uses that problem (64) converges to that with no labor income

(59) as ξ →∞ and therefore also cξ,j(a)→ c(a) for all a as ξ →∞. The asymptotic behavior

of sj(a) can be proved in an analogous fashion.�
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A.3 Proof of Corollary 2

The marginal propensity to save (MPS) is simply the derivative of (29) with respect to

starting wealth a:

MPS1,τ (a) ∼
(

1− τ
√

ν1

2(a− a)

)+

. (66)

To find the marginal propensity to consume (MPC) in (30) proceed as follows. Integrating

the budget constraint ȧ(t) + c(t) = y + ra(t) between t = 0 and t = τ and using a0 = a as

well as the definitions of Sτ (a) and Cτ (a), we have48

Sτ (a) + Cτ (a) = a+

ˆ τ

0

(y + ra(t))dt ≈ a+ τ(y + ra).

Differentiating with respect to starting wealth a, we have MPSτ (a) + MPCτ (a) = 1 + τr.

Using (66) we obtain (30).�

A.4 Proof of Proposition 3

Integrating (31), we have

log gj(a) = κj − log sj(a)−
ˆ a

a

(
λj
sj(x)

+
λ−j
s−j(x)

)
dx, j = 1, 2

or equivalently (33). Since s1(a)g1(a)+s2(a)g2(a) = 0 for all a as discussed in the main text,

we need κ1 + κ2 = 0. The level of κ1 and κ2 is as explained in Appendix A.4.4 below.

A.4.1 Part 1: Close to the borrowing constraint

Now consider the behavior of g1 near the borrowing constraint a = a. The argument for

Part 2, i.e. the behavior of g2 near a = amax, is exactly symmetric and will be presented

afterwards. The proof that g1 features a Dirac point mass at a = a has already been stated

in the text, right after the Proposition.

Consider our analytic expression for g1 in (33), and its behavior near a = a. The key is

to understand

lim
a→a

−1

s1(a)
exp

(
−
ˆ a

a0

λ1

s1(x)
dx

)
.

We will show that this limit equals either 0 or ∞ and since s2 is bounded as a → a, the

behavior of g1 in (33) will be identical to the behavior of this limit. Assume that the leading

48We can also proceed without the approximation
´ τ

0
ra(t)dt ≈ ra0 and compute the term exactly using

our closed-form solution in (22). But this adds only minor corrective terms.
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term of s1 around a is −ϑ(a− a)α for constants ϑ > 0, α > 0. Denote

L(λ1, ϑ, α) := lim
a→a

1

ϑ(a− a)α
exp

(ˆ a

a0

λ1

ϑ(x− a)α
dx

)
.

Then there are three different cases for the value of L(λ1, ϑ, α).

1. 0 < α < 1.

L(λ1, ϑ, α) = lim
a→a

1

ϑ(a− a)α
exp

(
λ1

ϑ

1

1− α
(
(a− a)1−α − (a0 − a)1−α)) = +∞

2. α > 1

L(λ1, ϑ, α) = lim
a→a

1

ϑ(a− a)α
exp

(
λ1

ϑ

1

1− α
(
(a− a)1−α − (a0 − a)1−α)) = 0

3. α = 1.

L(λ1, ϑ, α) = lim
a→a

1

ϑ(a− a)
exp

(
λ1

ϑ
(log(a− a)− log(a0 − a))

)
= lim

a→a

(a− a)λ1/ϑ−1

ϑ(a0 − a)λ1/ϑ

(a) If λ1 > ϑ, then L(λ1, ϑ, 1) = 0.

(b) If λ1 = ϑ, then L(λ1, ϑ, 1) ∝ 1/ϑ.

(c) If λ1 < ϑ, then L(λ1, ϑ, 1) = +∞.

Now we come back to our problem of understanding the behavior of g1 at a. There are two

cases.

(i) If Assumption 1 holds, we know from Proposition 1 that the leading term of s1 at a

is −(2ν1(a− a))1/2. Therefore, we are in the case α < 1 and we have g1(a)→ +∞ as

a→ a.

(ii) If Assumption 1 does not hold, we know from Proposition 1’ in Appendix A.1 that the

leading term of s1 at a is −η1(a−a). Therefore we are in the case α = 1 and g1(a) = 0

if λ1 > η1 and g1(a)→∞ as a→ a if λ1 < η1.

A.4.2 Part 2: In the right tail

Next, consider the behavior of g2 at amax. The argument is exactly symmetric to Part 1 and

we need to understand

lim
a→amax

−1

s2(a)
exp

(
−
ˆ a

a0

λ2

s2(x)
dx

)
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Analogous to before denote the leading term of s2 by ϑ(amax − a)α with ϑ > 0, α > 0 and

L(λ2, ϑ, α) = lim
a→amax

1

ϑ(a− amax)α
exp

(ˆ a

a0

λ2

ϑ(x− amax)α
dx

)
There are again three cases depending on whether α ≷ 1. From Proposition 2, we know that

the leading term of s2 is ζ2(amax − a), i.e. we are in the case α = 1. Therefore

L(λ2, ϑ, α) = lim
a→amax

(a− amax)λ2/ϑ−1

ϑ(a0 − amax)λ2/ϑ

and further using ϑ = ζ2, we have

g2(a) ∼ ξ(amax − a)λ2/ζ2−1 as a→ amax

for a constant ξ. Since g1(amax) = 0 and g(a) = g1(a) + g2(a) we obtain (72).

A.4.3 Part 3: Smoothness

That g1 and g2 are continuous and differentiable for all a > a follows directly from the

analytic solution (33) and the fact that s1, s2 are continuous and differentiable.

A.4.4 Constants of Integration for Stationary Distribution (33)

In all cases of Proposition 3 we can express g1, g2 as functions of (s1, s2, λ1, λ2) only by using

the normalization condition (32), i.e. we can pin down the constants of integration (κ1, κ2)

in (33). In the case with the Dirac mass (if Assumption 1 holds), this condition is

m1 + lim
ε→0

ˆ amax

a+ε

g1(a)da =
λ2

λ1 + λ2

,

ˆ amax

a

g2(a)da =
λ1

λ1 + λ2

(67)

The following auxiliary Lemma is useful:

Lemma 5 Under Assumption 1, we have the following relationship between the density at

a = a and the Dirac mass m1:

0 = − lim
ε→0

s1(a+ ε)g1(a+ ε)− λ1m1 (68)

The Lemma states that the inflow of type 1 individuals into the borrowing constraint equals

the outflow out of the constraint.
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Proof: Integrating the stationary KF equation (8) between a+ ε and amax yields

0 = s1(a+ ε)g1(a+ ε)− λ1

ˆ amax

a+ε

g1(a)da+ λ2

ˆ amax

a+ε

g2(a)da

Combining with (67), we have (68).�

Equation (68) can be used as a boundary condition for (33). From (33) for type j = 1,

we have limε→0 s1(a+ε)g1(a+ε) = κ1 and hence κ1 = −λ1m1. Since κ1 +κ2 = 0, κ2 = λ1m1.

Therefore

g1(a) = −λ1m1

s1(a)
exp

(
−
ˆ a

a

(
λ1

s1(x)
+

λ2

s2(x)

)
dx

)
, (69)

g2(a) = +
λ1m1

s2(a)
exp

(
−
ˆ a

a

(
λ1

s1(x)
+

λ2

s2(x)

)
dx

)
. (70)

Substituting (70) into (67) we have

λ1m1

ˆ amax

a

{
1

s2(a)
exp

(
−
ˆ a

a

(
λ1

s1(x)
+

λ2

s2(x)

)
dx

)}
da =

λ1

λ1 + λ2

Rearranging, we have m1 as a function of (s1, s2, λ1, λ2) only:

m1 =
λ2

λ1 + λ2

m̃1,
1

m̃1

= λ2

ˆ amax

a

{
1

s2(a)
exp

(
−
ˆ a

a

(
λ1

s1(x)
+

λ2

s2(x)

)
dx

)}
da. (71)

Given m1, we also know g1 and g2 as functions of (s1, s2, λ1, λ2) only. In the case without

the Dirac mass (if Assumption 1 does not hold) we have (67) with m1 = 0 and these two

equations pin down the constants of integration in (33).

A.5 Additional Characterizations of the Stationary Wealth Dis-

tribution that Follow from Proposition 3

The following corollary to Proposition 3 summarizes some additional properties of the sta-

tionary wealth distribution for the special case with two income types.

Corollary 3 The stationary wealth distribution in the special case with two income types

(33) has the following properties in addition to those already listed in Proposition 3:

1. (In the right tail) At its upper bound amax, the wealth distribution g(a) := g1(a) + g2(a)

satisfies

g(a) ∼ ξ(amax − a)λ2/ζ2−1 as a→ amax (72)
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where ζ2 = |s′2(amax)| and ξ is a constant. Therefore g(amax) = 0 for large λ2 (so that

λ2 > ζ2). In contrast, g2(a)→∞ as a→ amax for small λ2. In neither case is there a

Dirac mass.

2. (Shape of the wealth distribution) The exact shape of g1 and g2 is ambiguous. How-

ever, both g1 and g2 are ratios of well-understood functions, in particular gj(a) =

κjf(a)/sj(a), j = 1, 2 where f(a) := exp
(
−
´ a
a

(
λ1
s1(x)

+ λ2
s2(x)

)
dx
)

and κ1 < 0, κ2 > 0.

The function f is strictly log-concave and single-peaked with f ′(a)/f(a)→∞ as a ↓ a
and f ′(a)/f(a)→ −∞ as a ↑ amax.

3. (Joint distribution of labor income and wealth) For any given wealth level a, the fraction

of individuals that have the high income y2, Pr(y2|a) := g2(a)
g1(a)+g2(a)

satisfies Pr(y2|a) =
1

1−s2(a)/s1(a)
and similarly Pr(y1|a) = 1− Pr(y2|a) = 1

1−s1(a)/s2(a)
.

Proof of Corollary 3

1. (In the right tail) This was already proven when proving Part 2 in Proposition 3.

2. (Shape of the wealth distribution) Consider f(a) := exp
(
−
´ a
a

(
λ1
s1(x)

+ λ2
s2(x)

)
dx
)

. We

have

d log f(a)

da
= −

(
λ1

s1(a)
+

λ2

s2(a)

)
Further, since s1(a) and s2(a) are strictly decreasing, we have that

d2 log f(a)

da2
=

λ1

(s1(a))2
s′1(a) +

λ2

(s2(a))2
s′2(a) < 0,

i.e. d log f(a)/da is strictly decreasing or, equivalently, f(a) is strictly log-concave.

Since s1(a) < 0 for all a ∈ (a, amax) and s1(a) = 0, we have 1/s1(a) → −∞ as a ↓ a.

Similarly 1/s2(a)→ +∞ as a ↑ amax. Therefore

lim
a↓a

d log f(a)

da
=∞, lim

a↑amax

d log f(a)

da
= −∞.

Since d log f(a)/da is strictly decreasing, there is a critical point a∗ such that f ′(a) > 0

for a < a∗ and f ′(a) < 0 for a > a∗. Summarizing f is single-peaked and strictly

log-concave.

3. (Joint distribution of labor income and wealth) As discussed in the main text, s1(a)g1(a)+

s2(a)g2(a) = 0 for all a. Therefore g1(a) = −g2(a)s2(a)/s1(a) and so

Pr(y2|a) :=
g2(a)

g1(a) + g2(a)
=

1

1− s2(a)/s1(a)
.�
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Discussion of Corollary 3. Part 1 of Corollary 3 provides a more complete characteriza-

tion of the wealth distribution’s tail in the vicinity of its upper bound. From (72) top wealth

inequality is high (g declines towards zero at amax only slowly) if individuals face a high

likelihood of dropping out of the high income state (λ2 is high) and if high-income types ac-

cumulate wealth only slowly (ζ2 is low). Intuitively, wealth accumulation requires both time

and luck (consecutive high income draws). And under the circumstances just mentioned,

only a few individuals obtain sufficiently long enough high income spells to accumulate large

riches. Hence, wealth inequality is high.

Part 2 characterizes the wealth distribution for intermediate wealth levels. It shows

that the shapes of g1 and g2 in Figure 6 are not simply due to a particular numerical

example. Instead both density functions are simple ratios of well-understood functions

gj(a) = κjf(a)/sj(a) where f is defined in the Proposition and hump-shaped. For instance

consider g1 as a increases: as in Figure 6, g1 tends to be first decreasing, then increasing again

and finally decreasing. Similarly, consider g2 as a increases: it tends to be first increasing

and then decreasing (hump-shaped), again as in the Figure.

Part 3 characterizes the joint distribution of income and wealth. The fraction of high

income types conditional on wealth Pr(y2|a) depends only on the saving rates s1 and s2 but,

perhaps surprisingly and in contrast to the fraction of high income types in the population

Pr(y2) = λ1
λ1+λ2

, it does not depend directly on the intensities λ1 and λ2.

A.6 Supplement to Proposition 3: Dirac or No Dirac?

We here briefly return to part 1 of Proposition 3 and illustrate in more detail when and, if

so, why the wealth distribution features a Dirac mass at the borrowing constraint. To this

end, consider again the two special cases without income risk from Section 3.2. In the first

special case with exponential utility s(a) = −
√

2νa. in the second special case with CRRA

utility s(a) = −ηa. To obtain a stationary wealth distribution in the absence of income risk,

assume that individuals die at rate λ. When an individual dies, she is replaced by a newborn

with starting wealth amax.49 Because r < ρ so that everyone decumulates wealth, amax is

also the upper bound of the wealth distribution (hence the notation).

It turns out to be convenient to work with the cumulative distribution function G(a)

which satisfies50

0 = −s(a)G′(a)− λG(a), 0 < a < amax (73)

with boundary condition G(amax) = 1. This equation can be solved easily: integrating

49Alternatively, we could assume that newborns draw their starting wealth from some distribution Ψ with
support [0, amax]. In this case, (73) below is identical but with an additional term +λΨ(a).

50The KF equation is 0 = −(s(a)g(a))′−λg(a) for 0 < a < amax. Integrating and using G(a) =
´ a

0
g(x)dx

yields (73). Working with the CDF is only more convenient in this special case. In the case with two income
types above, it is instead more convenient to work with the densities.
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G′(a)/G(a) = −λ/s(a) with G(amax) = 1 we have

G(a) = exp

(ˆ amax

a

λ

s(x)
dx

)
. (74)

In the first special case with s(a) = −
√

2νa, the CDF in (74) becomes

G(a) = exp
(
λ
√

2a/ν − λ
√

2amax/ν
)
. (75)

Note in particular that m := G(0) = exp
(
−λ
√

2amax/ν
)
> 0, i.e. there is a Dirac mass

at the borrowing constraint a = 0. In contrast, in the second special case s(a) = −ηa, (74)

becomes

G(a) =

(
a

amax

)λ/η
. (76)

Therefore G(0) = 0 i.e. there are no individuals at the borrowing constraint. As can be

seen clearly in their derivations, the difference between (75) and (76) is solely due to the

saving behavior (linearity versus unbounded derivative at a = 0) which determines whether

individuals hit the borrowing constraint in finite time (see Section 3.2).

The special case with exponential utility and no income risk also yields some instructive

comparative statics that carry over to numerical solutions of the more general case. Death

risk at rate λ results in a higher effective discount rate ρ+ λ and hence the natural formula

for the parameter governing the speed at which individuals hit the constraint is ν = (ρ −
r + λ)/θ. Using this, the number of individuals at the borrowing constraint is m = G(0) =

exp
(
−λ
√

2θamax

ρ−r+λ

)
. This quantity is decreasing in the coefficient of absolute risk aversion θ,

increasing in the gap ρ − r and decreasing in the Poisson rate λ.51 Numerical experiments

in the model with a two-state Poisson process for income show that the same comparative

static holds with respect to λ1, the Poisson rate of leaving the low income state.

A.7 Proof of Proposition 4

As mentioned in Section 3.6, our uniqueness result not only applies to the two-state income

process analyzed in Sections 1 and 3 but also to much more general stationary Markovian

income processes, e.g. the diffusion process of Appendix G.1. To treat the general case, we

51An increase in λ has two offsetting effects: on one hand, individuals approach the borrowing constraint
faster (ν), thereby increasing m; on the other hand, individuals are more likely to die before they reach the
constraint, thereby decreasing m. Differentiation of the expression for m shows that the latter effect always
dominates.
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write the HJB and KF equations as

ρv = max
c

u(c) + (y + ra− c)∂av +Av, (77)

0 = −∂a(s(a, y)g) +A∗g, (78)

with a state constraint a ≥ a. Here A is the infinitesimal generator (“infinite-dimensional

transition matrix”) of the stochastic process for income yt and A∗ is its adjoint. For instance,

if yt follows a two-state Poisson process as in Section 1, then (Av)(a, yj) = λj(v(a, y−j) −
v(a, yj)). Or if yt is a continuous diffusion as in Appendix G.1, thenAv = µ(y)∂yv+ σ2(y)

2
∂yyv.

In all cases we assume that the income process is such that yt is bounded above and below

y ≤ yt ≤ ȳ for some positive and finite y and ȳ > y (e.g. there is a finite number of income

states or there are reflecting barriers at y and ȳ). For readers who are not familiar with

infinitesimal generators and so on, Appendix A.7.1 contains the proof for the special case

with two income states.

The proof of the Proposition makes use of the following Lemma that is the natural

generalization of Lemma 1 and which derives the Euler equation corresponding to the HJB

equation (77).

Lemma 6 The consumption and saving policy functions c(a, y) and s(a, y) corresponding to

the HJB equation (77) satisfy

(ρ− r)u′(c) = u′′(c)(∂ac)s+Au′(c), s = y + ra− c.

Proof: Differentiate the HJB equation (77) with respect to a (envelope condition) and use

that ∂av(a, y) = u′(c(a, y)) and hence ∂aav = u′′(c)∂ac.�

In the proofs below it will be useful to rearrange this equation as

u′′(c)(∂ac)s = (ρ− r)u′(c)−Au′(c). (79)

Saving Behavior as r ↓ −∞. Consider the Euler equation (79). We have that u′(c) > 0

and Au′(c) <∞ for all (a, y) and therefore, as r ↓ −∞, the right-hand side of (79) is strictly

positive for all income types y ≤ y ≤ ȳ (in fact it converges to +∞). Since −∞ < u′′(c) < 0

and 0 ≤ ∂ac(a, y) < ∞ for all a > a and all y ≤ y ≤ ȳ it follows from (79) that s(a, y) < 0

for all a > a and all y ≤ y ≤ ȳ. Therefore, all individuals decumulate wealth and hence

aggregate saving in any stationary distribution (its first moment) must satisfy

lim
r↓−∞

S(r) = a. (80)

65



Saving Behavior as r ↑ ρ. Consider the Euler equation (79). We claim that if r = ρ the

right-hand side of (79) is strictly negative for the highest income type ȳ. To see this, note

that by the definition of the infinitesimal generator:

Au′(c(a, y)) = lim
∆t→0

E[u′(c(a, y∆t))]− u′(c(a, y0))

∆t
with y0 = y.

That is Au′(c) denotes the expected instantaneous change in marginal utility due to in-

come fluctuations over an infinitesimal time interval. At the upper bound ȳ, income cannot

increase whereas it might decrease with strictly positive probability. Hence consumption

decreases and marginal utility increases with strictly positive probability, i.e. the expected

instantaneous change in marginal utility is strictly positive: Au′(c(a, ȳ)) > 0 for all a. On

the other hand, u′′(c) < 0 and u′(c) > 0 for all c while ∂ac ≥ 0 for all (a, y). Consequently,

the highest income type always accumulates wealth regardless of her current wealth level,

s(a, ȳ) > 0 for all a, and hence

lim
r↑ρ

S(r) =∞. (81)

Continuity of S. First note that the optimal saving policy function s(a, y; r) is continuous

in r because it is the policy function of the HJB equation (77) which depends on r in a

continuous fashion. We next show that this implies that the stationary wealth distribution

is continuous in r. For a given trajectory of income realizations Y = {yt}t≥0, denote by aYt (r)

the solution to ȧt = s(at, yt; r) for a fixed initial condition a0. Given that the saving policy

function s is continuous in r, then so is the wealth trajectory aYt (r) for any given income

trajectory Y and at all times t ≥ 0. Denote by G(a, y; r) the CDF of the stationary joint

distribution of income and wealth. Further denote by G(a; r) the unconditional stationary

CDF of wealth (in particular G(a; r) =
´
G(a, y; r)dy if y is continuous and G(a; r) :=∑

y G(a, y; r) if y is discrete). By its definition, the stationary wealth distribution is the

stationary distribution of the process aYt (r). Because aYt is continuous in r for all Y and

t so is G. Finally, given that the stationary wealth distribution G is continuous in r so is

aggregate saving S(r) in the stationary distribution (the first moment of that distribution).

Conclusion of proof. Given that S is continuous in r and satisfies (80) and (81), it must

intersect zero at least once, proving the existence of a stationary equilibrium.�

A.7.1 Proof of Proposition 4 for Special Case with Two-State Poisson Process

For readers who are not familiar with the apparatus employed above (especially infinitesimal

generators) we here sketch the proof of Proposition 4 for the special case with a two-state

Poisson process as in the baseline Huggett model covered in the main text.
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First note that S(r) defined in (11) is continuous in r. This is because individual saving

policy functions sj(a; r), j = 1, 2, i.e. the optimal controls in (7), are continuous as functions

of r. From (33) therefore also the stationary densities gj(a; r), j = 1, 2 are continuous in r

and hence so is S(r) in (11).

Now consider individual saving behavior s1(a; r) and s2(a; r) which is characterized by

(50) and (57) in the proofs of Propositions 1 and 2. First, consider the case r ↓ −∞. As

argued in the proof of Proposition 1, s1(a; r) < 0 for all a > a for all r < ρ. Next, consider

s2(a; r) in (57). As r ↓ −∞, the right-hand side of(57) becomes strictly positive for all a > a

and hence limr↓−∞ s2(a; r) < 0, a > a. Therefore, all individuals decumulate wealth and

hence we have (80).

Next, consider the case r ↑ ρ. Since c1(a) < c2(a) and hence u′(c1(a)) > u′(c2(a))

for all a < ∞, the right-hand side of (57) becomes strictly negative as r ↑ ρ. Therefore

limr↑ρ s2(a; r) > 0, a <∞. Hence, high income types always accumulate assets and one can

show using (33) that (81) holds.

Given that S is continuous in r and satisfies (80) and (81), it must intersect zero at least

once, proving the existence of a stationary equilibrium.�

A.8 Proof of Proposition 5

As mentioned in Section 3.6, our uniqueness result not only applies to the two-state income

process analyzed in Sections 1 and 3 but also to much more general stationary Markovian

income processes, e.g. the diffusion process of Appendix G.1. To treat the general case, we

consider the environment with a general income process we already analyzed in the proof

of Proposition 4 (existence of a stationary equilibrium) in Appendix A.7 and in particular

consider the HJB and KF equations in (77) and (78). Readers who are not familiar with

the apparatus employed there (in particular infinitesimal generators), can easily follow the

proof strategy of Parts 1 and 2 (consumption decreasing in r and saving increasing in r) by

setting all terms involving the generator A equal zero. This corresponds to the case without

income uncertainty.

The solutions to the HJB and KF equations v and g as well as the corresponding policy

functions c and s depend on r – for example, consumption is c(a, y; r). Even though it

is precisely this dependence we are interested in, we suppress it throughout the proof for

notational convenience. Hence ∂c(a, y)/∂r should be understood to mean ∂c(a, y; r)/∂r and

so on.

A.8.1 Proof of Proposition 5, Part 1: Consumption is decreasing in r

We first prove that c(a, y) is strictly decreasing in r for all (a, y) if (35) holds. The proof

combines two Lemmas. The first Lemma is due to Olivi (2017).
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Lemma 7 (Olivi, 2017) Consider the HJB equation (77). The corresponding consumption

policy function satisfies

∂c(a, y)

∂r
=

1

u′′(c0)
E0

ˆ T

0

e−
´ t
0 ξsds{u′(ct) + u′′(ct)(∂act)at}dt (82)

with ξt := ρ − r + ∂act > 0 and where T := inf{t ≥ 0|at = 0} is the stopping time at which

wealth reaches the borrowing constraint a = 0. Here the expectations are over sample paths

of (at, yt) starting from (a0, y0) = (a, y) and ∂act is short-hand notation for the instantaneous

MPC, ∂act = ∂ac(at, yt).

Proof of Lemma 7: Define η(a, y) := ∂av(a, y). Differentiating (77) we have the envelope

condition

(ρ− r)η = ∂aη(y + ra− c(η)) +Aη

on the interior of the state space and where c(η) = (u′)−1(η). Differentiating with respect

to r we have

−η + (ρ− r)∂rη = ∂a[∂rη]s+ ∂aηa− ∂aηc′(η)∂rη +A∂rη,

where we have used that s = y+ ra− c. Since ∂ac = c′(η)∂aη, we have ∂aηc
′(η)∂rη = ∂rη∂ac

and hence

(ρ− r + ∂ac)∂rη = η + a∂aη + ∂a[∂rη]s+A∂rη. (83)

We next evaluate ∂rη in (83) along a particular sample path (at, yt)t≥0 (“along the character-

istic (at, yt)t≥0”) and integrate with respect to time. To this end note that by the appropriate

variant of Ito’s Formula52

Et[d(∂rηt)] = [∂a(∂rη(at, yt))s(at, yt) +A∂rη(at, yt)] dt. (84)

and hence (83) is

ξt∂rηt = ηt + at∂aηt +
1

dt
Et[d(∂rηt)], ξt := ρ− r + ∂act > 0. (85)

where we use the short-hand notation ηt = η(at, yt), ct = c(at, yt) and so on. For any sample

path (at, yt) starting from (a0, y0) = (a, y), denote by T := inf{t ≥ 0|at = 0} the first time

the process at hits the borrowing constraint a = 0. Note that T is a stopping time and itself

52First consider the case when yt follows a diffusion process (114). The sample path (at, yt)t≥0 is deter-
mined by dat = s(at, yt)dt, dyt = µ(yt)dt+ σ(yt)dWt. By Ito’s Formula ∂rηt = ∂rη(at, yt) then follows

d(∂rηt) = [∂a(∂rη(at, yt))s(at, yt) +A∂rη(at, yt)] dt+ σ(yt)∂y(∂rη(at, yt))dWt

Because the expected increment of a Wiener process is zero, Et[dWt] = 0, we have (84). If yt does not follow
a diffusion process, the second term in the equation in this footnote is more complicated (e.g. it will feature
jumps). However it still has an expectation of zero and hence (84) still holds.
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a random variable. Integrating (85), we have that for any τ < T

∂rη0 = E0

[ˆ τ

0

e−
´ t
0 ξsds{ηt + at∂aηt}dt+ e−

´ τ
0 ξsds∂rητ

]
. (86)

Now consider the limit as τ → T . First, recall that from the state constraint boundary

condition (15) we have η(aT , yT ) = u′(yT + raT ) and therefore ∂rη(aT , yT ) < ∞. On the

other hand, as τ → T , we have ∂ac(aτ , yτ ) → ∞ and therefore ξτ → ∞. Hence for any

sample path (at, yt) and corresponding stopping time T , we have

lim
τ→T

e−
´ τ
0 ξsds∂rητ = 0.

Therefore (86) implies

∂rη0 = E0

[ˆ T

0

e−
´ t
0 ξsds{ηt + at∂aηt}dt

]
and from the first-order condition ηt = u′(ct) we immediately obtain (82).�

Lemma 8 Assume that the IES is weakly greater than one, i.e. (35) holds. Then u′(c(a, y))+

u′′(c(a, y))∂ac(a, y)a > 0 for all a ≥ 0 and all y.

Proof of Lemma 8: We have

u′′(c(a, y))∂ac(a, y)a+ u′(c(a, y)) = −u′′(c(a, y))(IES(c(a, y))c(a, y)− ∂ac(a, y)a)

≥ −u′′(c(a, y))(c(a, y)− ∂ac(a, y)a)

≥ −u′′(c(a, y))c(0, y)

> 0 for all a > 0.

The equality uses that u′(c) = −IES(c)u′′(c)c from the definition of the IES in (35). The first

weak inequality uses that the IES is greater than one from (35). The second weak inequality

uses the weak concavity of the consumption function: because c is weakly concave in a, we

have c(a, y) ≥ c(0, y) + ∂ac(a, y)a for all a ≥ 0.53 The strict inequality at the end uses that

c(0, y) > 0 for all y. �

Conclusion of Proof of Proposition 5, Part 1: The proof of Part 1 concludes by

combining Lemmas 7 and 8. From Lemma 7 we see that c(a, y) is strictly decreasing in r if

(i) T > 0 so that the integral in (82) is different from zero, and if (ii) u′(ct)+u′′(ct)(∂act)at > 0

53There are two easy ways of seeing this. First, graphically. Second, from the observation that any concave
function is bounded above by its first-order Taylor-series approximation: for any fixed (a, y), c(b, y) ≤
c(a, y) + ∂ac(a, y)(b− a) for all b. Taking b = 0 we have c(0, y) ≤ c(a, y)− ∂ac(a, y)a as claimed.
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point-by-point in the integral in (82) over sample paths (at, yt)0≤t≤T . Requirement (i) that

T > 0 holds if a0 > 0. Requirement (ii) holds if u′(c(a, y)) + u′′(c(a, y))∂ac(a, y)a > 0 for all

(a, y) on the interior of the state space. But we have shown in Lemma 8 that a sufficient

condition for this is that the IES is weakly greater than one.

Finally, it is interesting to note that Part 1 of the Proposition does not require the

assumption of a strict no-borrowing constraint a ≥ 0: because u′′(c) < 0, u′(c(a, y)) +

u′′(c(a, y))∂ac(a, y)a > 0 for all a < 0, independently of Lemma 8. Hence consumption is

strictly decreasing in r even if we allow for borrowing, a < 0.�

A.8.2 Proof of Proposition 5, Part 2: Saving is increasing in r

That s(a, y) is strictly increasing in r for all a > 0 follows immediately from the budget

constraint s(a, y) = y+ra−c(a, y) and that consumption is strictly decreasing in r as shown

in Part 1:
∂s(a, y)

∂r
= a− ∂c(a, y)

∂r
> 0, a > 0.

Note that the assumption of a strict no-borrowing limit is only needed in this part of the

proof: if a < 0 we cannot sign ∂s(a, y)/∂r.

A.8.3 Proof of Proposition 5, Part 3: First-order Stochastic Dominance

We have shown thus far that wealth at evolves according to ȧt = s(at, yt; r) for some exoge-

nous stochastic process yt, and where the function s is continuous and differentiable in a and

r and satisfies ∂s/∂r > 0 for all (a, y). We next show that this implies that the stationary

wealth distribution implied by a high r first-order stochastically dominates that implied by

a low r. As in the proof of Proposition 4, denote by aYt (r) the solution to ȧt = s(at, yt; r)

for a given trajectory of income realizations Y = {yt}t≥0 and for a fixed initial condition a0.

With this notation in hand, we first state a simple Lemma.

Lemma 9 Consider two interest rates rh and r` with rh > r`. Then, for each given income

trajectory Y = {yt}t≥0, the higher interest rate implies a higher wealth trajectory, aYt (rh) >

aYt (r`) for all t > 0.

Proof of Lemma: For given Y and r, aYt (r) is the solution to a simple and well-behaved

ordinary differential equation and therefore a continuous function of time t. At t = 0 we have

aY0 (rh) = aY0 (r`) = a0 by assumption. Since also the income trajectories are assumed to be

the same we have ȧY0 (rh) = s(a0, y0; rh) > s(a0, y0; r`) = ȧY0 (r`), i.e. aYt (rh) is initially above

aYt (r`). For the Lemma to be false, there would therefore need to be a time T ∈ (0,∞)

such that the two trajectories meet again, aYT (rh) = aYT (r`), and at which the trajectory
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corresponding to r` approaches that corresponding to rh from below, ȧYT (rh) ≤ ȧYT (r`). But

this is impossible given that ȧYT (rh) = s(aT , yT ; rh) > s(aT , yT ; r`) = ȧYT (r`).�

Conclusion of Proof of Part 3: To conclude the proof, denote by G(a, y; r) the CDF

of the stationary joint distribution of income and wealth. Further denote by G(a; r) the

unconditional stationary CDF of wealth (in particular G(a; r) =
´
G(a, y; r)dy if y is contin-

uous and G(a; r) :=
∑

y G(a, y; r) if y is discrete). Similarly, denote by Gt(a; r) the wealth

distribution at a given point in time t ≥ 0, starting from a given initial wealth a0, Gt(a; r) =

Pr(aYt (r) ≤ a). If G is a stationary distribution, then limt→∞Gt(a; r) = G(a; r). Finally,

denote by Ωt(r) the set of income trajectories Y such that aYt (r) is below a scalar a at time t,

i.e. Ωt(r) := {Y such that aYt (r) ≤ a}. Since from Lemma 9 aYt (rh) > aYt (r`), t > 0 we have

Ωt(rh) ⊆ Ωt(r`). Since Pr(aYt (r) ≤ a) = Pr(Ωt(r)), we have Pr(aYt (rh) ≤ a) ≤ Pr(aYt (r`) ≤ a)

for all t > 0. Since the statement holds for all t > 0 it also holds as t → ∞ and therefore

G(a; rh) ≤ G(a; r`).

A.8.4 Proof of Proposition 5, Part 4: S(r) is increasing in r

Lemma 9 also immediately implies uniqueness of the stationary equilibrium. In particular

aggregate saving S(r) is the first moment of the stationary wealth distribution S(r) =

limt→∞ E[aYt (r)] where the expectation is taken over all possible income realizations Y . For

rh > r`, since from Lemma 9 aYt (rh) > aYt (r`), t > 0 trajectory by trajectory, then also

S(rh) > S(r`). Since S(r) is strictly increasing, there can be at most one r solving S(r) =

B.�

B Derivation of HJB and KF Equations

This Appendix shows how to derive the HJB equation with Poisson shocks (7) and that with

a diffusion process (115) as well as the Kolmogorov Forward or Fokker-Planck equation with

Poisson shocks (13) from a discrete-time environment with time periods of length ∆ and

then taking the limit as ∆→ 0.

B.1 Hamilton-Jacobi-Bellman Equation with Poisson Process

Consider the following income fluctuation problem in discrete time. Periods are of length

∆, individuals discount the future with discount factor β(∆) = e−ρ∆, and individuals with

income yj keep their income with probability pj(∆) = e−λj∆ and switch to state y−j with
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probability 1− pj(∆). The Bellman equation for this problem is:

vj(at) = max
c

u(c)∆ + β(∆) (pj(∆)vj(at+∆) + (1− pj(∆))v−j(at+∆)) s.t. (87)

at+∆ = ∆(yj + rat − c) + at (88)

at+∆ ≥ a (89)

for j = 1, 2. We will momentarily take ∆→ 0 so we can use that for ∆ small

β(∆) = e−ρ∆ ≈ 1− ρ∆, pj(∆) = e−λj∆ ≈ 1− λj∆.

Substituting these into (87) we have

vj(at) = max
c

u(c)∆ + (1− ρ∆) ((1−∆λj)vj(at+∆) + ∆λjv−j(at+∆))

subject to (91) and (89). Subtracting (1−ρ∆)vj(a) from both sides and rearranging, we get

∆ρvj(at) = max
c

u(c)∆ + (1− ρ∆) (vj(at+∆)− vj(a) + ∆λj(v−j(at+∆)− vj(at+∆)))

subject to (91) and (89). Dividing by ∆, taking ∆→ 0 and using that

lim
∆→0

vj(at+∆)− vj(a)

∆
= lim

∆→0

vj(∆(yj + rat − c) + at)− vj(at)
∆

= v′j(at)(yj + rat − c)

yields (7) where we drop the t-subscripts on at for notational simplicity. Note also that

the borrowing constraint (89) never binds in the interior of the state space because with ∆

arbitrarily small at > a implies at+∆ > a. The time-dependent case (12) can be derived in

an analogous fashion, and the derivation can be generalized to any number of income states

J > 2.

B.2 Hamilton-Jacobi-Bellman Equation with Diffusion Process

Consider a more general version of the discrete-time Bellman equation in Section B.1 but

where now yt is assumed to follow any general Markov process

v(at, yt) = max
c

u(c)∆ + β(∆)E[v(at+∆, yt+∆)] s.t. (90)

at+∆ = ∆(yt + rat − c) + at (91)

at+∆ ≥ a
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where E[·] is the appropriate expectation over yt+∆. Then, following similar steps as in

Section B.1, we get

ρv(at, yt) = max
c

u(c) +
E[dv(at, yt)]

dt
(92)

Now assume yt follows a diffusion process (114) and wealth follows (2). Then by Ito’s Lemma

dv(at, yt) =

(
∂av(at, yt)(yt + rat − ct) + ∂yv(at, yt)µ(yt) +

1

2
∂yyv(at, yt)σ

2(yt)

)
dt

+ ∂yv(at, yt)σ(yt)dWt.

Therefore, using that the expectation of the increment of a standard Brownian motion is

zero, E[dWt] = 0,

E[dv(at, yt)] =

(
∂av(at, yt)(yt + rat − ct) + ∂yv(at, yt)µ(yt) +

1

2
∂yyv(at, yt)σ

2(yt)

)
dt

Substituting into (92) yields (115). For completeness, note that the connection to the Poisson

HJB equation (7) is that with a two-state Poisson process with states yj and intensities λj

E[dvj(at)] =
(
v′j(at)(yj + rat − ct) + λj(v−j(at)− vj(at))

)
dt, j = 1, 2

and hence substituting into (90) yields (7).

B.3 Kolmogorov Forward Equation with Poisson Process

First recall the continuous-time economy. There is a continuum of individuals who are

heterogeneous in their wealth a and their income y. To avoid confusion, we here adopt the

convention that variables with tilde superscripts, ãt and ỹt, denote stochastic variables and

variables without superscripts denote the values these can take. Income takes two values

ỹt ∈ {y1, y2} and follows a two-state Poisson process with intensities λ1 and λ2. Wealth

evolves as

dãt = sj(ãt, t)dt (93)

where the optimal saving policy function sj is derived from individuals’ utility maximization

problem. The state of the economy is the density gj(a, t), j = 1, 2.

Now consider the discrete-time analogue. The timing of events over a time period of

length ∆ is as follows: individuals of type j = 1, 2 first make their saving decisions according

to the discrete-time analogue of (93)

ãt+∆ = ãt + ∆sj(ãt) (94)

where we suppress the dependence of sj on t for notational simplicity. After saving decisions
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are made, next period’s income ỹt+∆ is realized: it switches from yj to y−j with probability

∆λj.

It turns out to be easiest to work with the CDF (in the wealth dimension)

Gj(a, t) = Pr(ãt ≤ a, ỹt = yj). (95)

This is the fraction of people with income yj and wealth below a. It satisfies G1(a, t) +

G2(a, t) = 0 and lima→∞(G1(a, t)+G2(a, t)) = 1. The density gj satisfies gj(a, t) = ∂aGj(a, t).

In order to derive a law of motion for G, consider first the wealth accumulation process.

In particular, we will need an answer to the question: if a type j individual has wealth ãt+∆

at time t + ∆, then what level of wealth ãt did she have at time t? To this end, it turns

out to be convenient to work not with (94) but with another (equally correct) discrete-time

analogue of (93):54

ãt = ãt+∆ −∆sj(ãt+∆) (96)

Intuitively, if the individual dissaves such that sj < 0, her past wealth must have been larger

than her current wealth. Now consider the fraction of individuals with wealth below a at

date t+ ∆. Momentarily ignoring that some individuals’ incomes switch and assuming that

individuals decumulate wealth sj(a) ≤ 0 (the case with sj(a) > 0 is symmetric), we have

Pr(ãt+∆ ≤ a) = Pr(ãt ≤ a)︸ ︷︷ ︸
already below threshold a

+ Pr(a ≤ ãt ≤ a−∆sj(a))︸ ︷︷ ︸
cross threshold a

= Pr(ãt ≤ a−∆sj(a)).

Next also taking into account income switches, the fraction of individuals with wealth below

a evolves as follows:

Pr(ãt+∆ ≤ a, ỹt+∆ = yj) = (1−∆λj) Pr(ãt ≤ a−∆sj(a), ỹt = yj)

+∆λ−j Pr(ãt ≤ a−∆s−j(a), ỹt = y−j)
(97)

Using the definition of Gj in (95), we then have

Gj(a, t+ ∆) = (1−∆λj)Gj(a−∆sj(a), t) + ∆λ−jG−j(a−∆s−j(a), t)

Subtracting Gj(a, t) from both sides and dividing by ∆

Gj(a, t+ ∆)−Gj(a, t)

∆
=
Gj(a−∆sj(a), t)−Gj(a, t)

∆
−λjGj(a−∆sj(a), t)+λ−jG−j(a−∆s−j(a), t)

54Note that from (93) ãt+∆ =
´ t+∆

t
sj(ãτ )dτ + ãt. The integral is approximately equal to both ∆sj(ãt)

and ∆sj(ãt+∆) and therefore both (94) and (96) are meaningful discrete-time analogues. The difference is
that the former looks forward in time and the latter looks backward in time.
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Taking the limit as ∆→ 0 gives

∂tGj(a, t) = −sj(a)∂aGj(a, t)− λjGj(a, t) + λ−jG−j(a, t), (98)

where we have used that

lim
∆→0

Gj(a−∆sj(a), t)−Gj(a, t)

∆
= lim

x→0

Gj(a− x, t)−Gj(a, t)

x
sj(a) = −sj(a)∂aGj(a, t),

Differentiating with respect to a and using the definition of the density as gj(a, t) = ∂aGj(a, t),

we obtain (13).

Equation (98) is the Kolmogorov Forward equation written in terms of the CDF Gj(a, t)

and it is entirely intuitive. The first term captures inflows and outflows due to continuous

movements in wealth a, and the second and third terms capture inflows and outflows due

to jumps in income yj. To understand the first term, −sj(a)∂aGj(a, t), consider the case

where at a given point a and income yj, savings are negative sj(a) < 0. In that case, the

fraction of individuals with wealth below a and income equal to yj, Gj(a, t) = Pr(ãt ≤ a, ỹt =

yj), increases at a rate proportional to the density of individuals exactly at that point a,

gj(a, t) = ∂aGj(a, t) = Pr(ãt = a, ỹt = yj), i.e. there is an inflow of individuals into wealth

levels below a. The reverse logic applies if sj(a) > 0.

B.4 Kolmogorov Forward Equation with Diffusion Process

We are not aware of any intuitive derivations of the Kolmogorov Forward (Fokker-Planck)

equation with a diffusion process (116). One relatively accessible derivation is provided by

Kredler (2014).

C General Heterogeneous Agent Models: Mean Field

Games in n Dimensions

We here spell out the backward-forward MFG system in n dimensions which is a natural

generalization of the equations for the Aiyagari-Bewley-Huggett model. The mathematics

MFG literature typically writes this system using the language of the modern theory of

PDEs, in particular vector calculus notation. See for example Lasry and Lions (2007),

Cardaliaguet (2013), Bertucci, Lasry, and Lions (2018) and Ryzhik (2018). In order to make

this literature accessible to economists, we here make the connection between our formulation

and the standard MFG notation. For background readings on modern PDE theory, see the

short introduction by Evans (2008) as well as the book by the same author, Evans (2010).
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C.1 Preliminaries: Vector Calculus Notation

The mathematics literature usually writes Mean Field Games using vector calculus notation

and we will make this connection toward the end of this section. To this end, we define

three useful operators: the gradient ∇, the Laplacian ∆ and the divergence div. First, for a

function f : Rn → R, the gradient vector is the vector of first derivatives

∇f :=

[
∂f

∂x1

, ...,
∂f

∂xn

]T

.

Second, for a function f : Rn → R, the Laplacian is the sum of all the unmixed second

derivatives

∆f :=
n∑
i=1

∂2f

∂x2
i

.

Third, for a vector-valued function v : Rn → Rn, i.e. v(x1, ..., xn) = [v1(x1, ..., xn), ..., vn(x1, ..., xn)]T,

the divergence of v is

div(v) :=
n∑
i=1

∂vi
∂xi

.

A useful check on one’s understanding of these definitions is to verify that ∆f = div(∇f).

C.2 Backward-Forward MFG System in n Dimensions

The mathematics literature typically only considers the case where state variables follow

diffusion processes rather than processes featuring jumps. Under this assumption, a general

backward-forward MFG system in n dimensions is:

ρv = max
α
{r(x, α, g) +

n∑
i=1

αi∂iv}+
1

2

n∑
i=1

σ2
i (x)∂iiv + ∂tv in Rn × (0, T )

∂tg = −
n∑
i=1

∂i(α
∗
i (x, g)g) +

1

2

n∑
i=1

∂ii(σ
2
i (x)g) in Rn × (0, T )

g(0) = g0 and v(x, T ) = V (x, g(T )) in Rn.

Here v(x, t) is the value function, g(x, t) the density, x ∈ Rn an n-dimensional state vector,

r(x, α, g) a period return function, σ2
i (x) a diffusion coefficient, α ∈ Rn a control vector and

α∗ its optimally chosen counterpart (the policy function). The first equation is the HJB

equation, the second equation is the KF equation and the equations in the third line are

the initial condition on the density and the terminal condition on the value function. We

here purposely ignore the discussion of boundary conditions on v and g which are typically
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application-specific.55 Note that the Huggett model with a diffusion process in Appendix

G.1 is a two-dimensional special case, i.e. x ∈ R2 with x1 = a and x2 = y.

C.3 Connection to Standard Notation used in MFG Literature

The MFG literature typically assumes that σ2
i (x) = 2ν for all x and all i which implies

that the second-order terms simplify. Although this is not necessary, we will also make this

assumption from now. Furthermore, and as already discussed in footnote 18 in the main

text, it is useful to work with the Hamiltonian H(x, p, g) := maxα{r(x, α, g) +
∑n

i=1 αipi}.
Hence:

ρv = H(x,∇v, g) + ν
n∑
i=1

∂iiv + ∂tv in Rn × (0, T )

∂tg = −
n∑
i=1

∂i(∂piH(x,∇v, g) g) + ν

n∑
i=1

∂iig in Rn × (0, T )

g(0) = g0, v(x, T ) = V (x, g(T )) in Rn.

Note that the KF equation uses that, from the definition of the Hamiltonian and the envelope

theorem, the optimal drift of each state variable equals α∗i (x, g) = ∂piH(x,∇v, g). Finally,

using the Laplacian and the divergence defined in Appendix C.1, we have the standard

formulation of the backward-forward MFG system:

ρv = H(x,∇v, g) + ν∆v + ∂tv in Rn × (0, T )

∂tg = −div(∇pH(x,∇v, g) g) + ν∆g in Rn × (0, T )

g(0) = g0, v(x, T ) = V (x, g(T )) in Rn.

(99)

There are two remaining differences to the standard MFG notation: first, we have written v

and g for the value function and density whereas the MFG literature typically uses u and m;

and second the MFG literature typically sets ρ = 0 for simplicity, i.e. it ignores discounting.

See in particular equation (1) in Bertucci, Lasry, and Lions (2018) and equation (1.2) in

Ryzhik (2018) for the system (99) but using u and m in place of v and g and with ρ = 0.

C.4 MFGs with Aggregate Uncertainty – the “Master Equation”

The backward-forward MFG system (99) describes general heterogeneous agent models with-

out aggregate uncertainty. However, in many economically interesting situations it is im-

portant to allow for aggregate risk in addition to idiosyncratic risk (as in Den Haan, 1997;

55In the MFG literature the state space is often specified as the n-dimensional torus Tn (i.e. an n-
dimensional analogue of the circle for n = 1) rather than Rn. The only reason for this is to sidestep the
discussion of boundary conditions in the space dimension.

77



Krusell and Smith, 1998). Fortunately, the theory of MFGs has also studied that case, with

mathematicians referring to aggregate uncertainty as “common noise.” In the most general

case, such MFGs can be written in terms of a so-called “Master equation” (Cardaliaguet, De-

larue, Lasry, and Lions, 2019). This Master equation is an equation on the space of measures,

i.e. it is an equation that is set in infinite-dimensional space. The logic why the problem with

aggregate uncertainty becomes infinite-dimensional is the same as in discrete-time heteroge-

neous agent models in the economics literature (Den Haan, 1997; Krusell and Smith, 1998):

the cross-sectional distribution across agents becomes a state variable in agents’ dynamic

programming problems and that distribution is an infinite-dimensional object. In the case

without aggregate uncertainty, the Master equation reduces to the “backward-forward MFG

system.”

Finally, there is also a literature that treats MFGs from a probability-theoretic viewpoint

instead of the partial differential equation viewpoint taken here. In particular see the books

by Carmona and Delarue (2018a,b) which also feature a number of interesting potential

applications of MFGs.

C.5 Existence and Uniqueness Results in the Mathematics Liter-

ature

A natural question is whether the mathematics literature contains any “off-the-shelf” results

on backward-forward MFG systems that we can use to characterize the economic models we

are interested in, in particular with regard to existence and uniqueness of solutions. The

answer is “no” unfortunately. While there are several existence and uniqueness results in

the literature, none of these apply to the heterogeneous agent models we are interested in

studying.

This is because the theoretical results in the literature typically make several additional

strong assumptions on the system (99) that rule out Aiyagari-Bewley-Huggett models and

many other economically interesting models. For example, there are a number of existence

and uniqueness results for the case in which the Hamiltonian H is additively separable in

the gradient of the value function ∇v and the distribution g:

H(x,∇v, g) = H̃(x,∇v)− F (x, g). (100)

See Section 4 in Ryzhik (2018) who discusses several of these results.56 However, for the het-

erogeneous agent models we are interested in here, the Hamiltonian is typically not separable.

56These results typically make additional strong assumptions on the function F . For example, a common
assumption is that F is continuous and “monotone” with respect to g in the following sense:

´
(F (x, g1) −

F (x, g2))(g1(x)− g2(x))dx > 0 for all g1 6= g2.
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For example, in a Huggett model, the Hamiltonian is defined as

H(x,∇v, g) = max
c
{u(c) + ∂x1v × (x2 + r(g)x1 − c)}

which is clearly not additively separable between ∇v and g (instead there is a multiplicative

dependence). Similarly, the MFG systems considered in the mathematics literature typically

have not featured state constraints and the resulting Dirac point masses in the distribution

g, and this is yet another reason why the standard results in the literature are not applicable

to the heterogeneous agent models economists are interested in studying. That being said,

recent work by Cannarsa, Capuani, and Cardaliaguet (2018) does treat MFGs with state

constraints so this situation may well change in the not-too-distant future.

D Viscosity Solutions for Dummies (including Economists)

See the separate online appendix on Benjamin Moll’s website at https://benjaminmoll.com/

viscosity for dummies/.

E Measure-Valued Solutions to KF Equations, Extended

to Allow for Mass on Boundary

We here explain the notion of a measure-valued solution and how to deal with a potential

Dirac mass at the borrowing constraint. As for the discussion of viscosity solutions in

Appendix D, the discussion aims to intuitively explain key ideas rather than providing a

technically rigorous treatment. For a technical discussion of weak solutions to KF equations,

see Bogachev, Krylov, Röckner, and Shaposhnikov (2015). Also see Cannarsa, Capuani, and

Cardaliaguet (2018) for a rigorous study of MFGs with state constraints in a different setting

than ours (namely one with a separable Hamiltonian as in equation (100) in Appendix C.5).

We consider a simplified version of the KF equation (8) (or the counterpart with a

continuum of income types (116)). In particular assume that there is no income risk and

wealth simply follows ȧt = s(at) where s is a saving policy function (for the purpose of this

Appendix it is immaterial whether it comes from an optimization problem). The wealth

distribution is then simply a one-dimensional object and we denote the stationary density

by g(a) and its time-varying counterpart by g(a, t). These follow the analogues of (8) and

(13):

0 = −(s(a)g(a))′ on (a,∞), (101)

∂tg(a, t) = −∂a(s(a)g(a, t)), on (a,∞)× (0,∞) with g(a, 0) = g0(a). (102)
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Of course this model is “economically boring”: the stationary wealth distribution is either

degenerate with all mass at a = a; or it does not exist. Nevertheless, the model is sufficiently

rich to explain the appropriate solution concept for (101) and (102).

E.1 Measure-Valued Solution with No Mass on Boundary: Intu-

ition

First, assume away the possibility that g features a Dirac point mass at a. In this case we

can use the standard notion of a measure-valued solution on (a,∞). We extend this notion

to allow for mass on the boundary below.

To motivate the notion of a measure-valued solution, consider for the moment the case

where the KF equation has a classical solution g. The goal is to obtain a more general

equation that also has meaning if this is not the case so that (102) is meaningless in the

classical sense. Define the measure µt(a) by dµt(a) = g(a, t)da. Also consider a “test

function” ϕ, i.e. a “nice” function that is infinitely differentiable and assume, for now, that

ϕ vanishes at the boundaries as a→ a or ∞. Next differentiate
´∞
a
ϕ(a)dµt(a) with respect

to time, use the KF equation (102), and then integrate by parts, to get57

d

dt

ˆ ∞
a

ϕ(a)dµt(a) =

ˆ ∞
a

ϕ′(a)s(a)dµt(a). (103)

Now comes the key observation: we have shown that the KF equation (102) implies that

(103) holds for any test function ϕ. But the converse is not true, i.e. (103) is a weaker

requirement than the KF equation (102). In particular (103) still has an interpretation if

the KF equation (102) is meaningless because g does not exist or is not differentiable. All

that is required is that the distribution admits a measure µt.

Summarizing, we say that g(·, t) is a measure-valued solution to (102) if the corresponding

measure µt satisfies (103) for all test functions ϕ (that vanish at the boundaries). The

stationary counterpart is obvious: we say that g is a measure-valued solution to (101) if the

corresponding measure µ satisfies

0 =

ˆ ∞
a

ϕ′(a)s(a)dµ(a) (104)

57That is, we follow these steps:

d

dt

ˆ ∞
a

ϕ(a)dµt(a) =

ˆ ∞
a

ϕ(a)∂tg(a, t)da =

ˆ ∞
a

ϕ(a) [−∂a(s(a)g(a, t))] da

=

ˆ ∞
a

ϕ′(a)s(a)g(a, t)da =

ˆ ∞
a

ϕ′(a)s(a)dµt(a)

.
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for all test functions ϕ. This solution concept is entirely intuitive: after all, the eco-

nomic/physical object we are modeling with the KF equation is exactly a measure. As

Bogachev, Krylov, Röckner, and Shaposhnikov (2015) state on the first page of their trea-

tise on KF equations: “it is crucial to understand that a priori Fokker-Planck-Kolmogorov

equations are equations for measures, not for functions.”

E.2 Measure-Valued Solution with No Mass on Boundary: Deriva-

tion

In fact, (103) is exactly the equation that shows up in the derivation of the KF equation

from first principles (see e.g. Kredler, 2014). That is, the argument above is basically the

derivation of the KF equation in reverse and (103) is an intermediate step. We briefly go

through this derivation. Define the measure µt such that for all test functions ϕ (that vanish

at a and ∞), the expected value of ϕ(at) can be computed as

E[ϕ(at)] =

ˆ ∞
a

ϕ(a)dµt(a).

In particular for ϕ ≡ 1 we have the familiar normalization condition
´∞
a
dµt(a) = 1 for all t,

i.e. the total mass equals one. Differentiating with respect to t, we then have

d

dt

ˆ ∞
a

ϕ(a)dµt(a) =
d

dt
E[ϕ(at)] = E[ϕ′(at)s(at)] =

ˆ ∞
a

ϕ′(a)s(a)dµt(a)

which is exactly condition (103). To derive the KF equation (101) we then usually assume

that µt admits a density so that dµt(a) = g(a, t)da. Therefore

ˆ ∞
a

ϕ(a)∂tg(a, t)da =

ˆ ∞
a

ϕ′(a)s(a)g(a, t)da.

We then integrate by parts, basically following the steps in footnote 57 in reverse and using

that ϕ vanishes at the boundaries to zero out the boundary terms, to get

ˆ ∞
a

ϕ(a)[∂tg(a, t) + ∂a(s(a)g(a, t))]da = 0.

This then implies (101). The derivation of a measure-valued solution of (101) basically stops

half-way through this derivation – at (103) – and therefore does not require the assumption

that µ admits a density.

81



E.3 Measure-Valued Solution with Mass on Boundary

Next consider our solution concept for the KF equation when there can be a Dirac mass

at the boundary. The extension is straightforward. In particular the definition is exactly

identical to the one for the case without mass at the boundary except for one crucial change:

we now assume that (103) and (104) must also hold for test functions ϕ that do not vanish

at a = a, i.e. even if ϕ(a), ϕ′(a) 6= 0.

E.4 Two Applications: Dirac Mass at Boundary or in Interior

We briefly demonstrate the usefulness of this apparatus by considering two special cases that

arise in the economic problems considered in this paper.

Application 1: Dirac Mass on Boundary but Density in Interior In the Huggett

model of Sections 1 and 3, the wealth distribution typically has a Dirac point mass at

the borrowing constraint a but admits a smooth density for all a > a. Motivated by this

observation we look for a stationary measure µ as

dµ(a) = g(a)dL(a) +mδa, (105)

Here L is the Lebesgue measure on (a,∞) and g is a Lebesgue-integrable non-negative real-

valued function on (a,∞) which we call the density of wealth a. Similarly, δa is the Dirac

delta function at a = a and m is a non-negative real-valued scalar which we call the Dirac

point mass at a = a. Hence

ˆ ∞
a

ϕ(a)dµ(a) = ϕ(a)m+

ˆ ∞
a

ϕ(a)g(a)dL(a) (106)

for all ϕ and, in particular, 1 = m+
´∞
a
g(a)dL(a). Further (104) becomes

0 =

ˆ ∞
a

ϕ′(a)s(a)g(a)dL(a) + ϕ′(a)s(a)m. (107)

Integrating the first term by parts, we can again see that, in (a,∞), g is a measure-valued

solution to (101). The difference is the second term.58

Summarizing, whenever we make statements of the sort, “g is a solution to (101)”, the

precise meaning is that there is a non-negative real-valued function g and a non-negative

58Note that it is not possible to derive an explicit boundary condition for g at a = a because the term
ϕ′(a)s(a)m cannot be expressed as a term multiplying ϕ(a) (e.g. it is not possible to integrate it by parts –
in mathematics language: ϕ′(a)s(a)m cannot be expressed “as a distribution acting on ϕ(a)”).

82



real-valued scalar m that satisfy (107) for any test function ϕ, including ones that do not

vanish at a = a.

Application 2: Dirac Mass in Interior The model with soft borrowing constraints in

Appendix G.3 gives rise to an alternative scenario: there is a Dirac mass at a = 0 and a

smooth density both to the left and the right of zero. See Figure 17(b). In this case we look

for a stationary measure µ as dµ(a) = g(a)dL(a) + m0δ0 where L is the Lebesgue measure

on (a,∞) and g is a function that is integrable with respect to this Lebesgue measure; δ0

is the Dirac delta function at a = 0 and the scalar m0 is the Dirac mass at a = 0.59 The

analogue of (107) is then

0 =

ˆ ∞
a

ϕ′(a)s(a)g(a)dL(a) + ϕ′(0)s(0)m0.

E.5 Generalization to KF equations in Paper and Beyond

This solution concept generalizes in a straightforward fashion to the KF equations used in

the paper. For simplicity consider only the case with a Dirac mass at the boundary, the other

case being analogous. First consider the stationary KF equation in the Huggett model with

two income types in Section 1. The statement “gj, j = 1, 2 is a solution to (8)” means: for

any test functions (ϕ1, ϕ2) defined on [a,∞) and potentially not vanishing at a, the functions

(g1, g2) defined on (0,∞) and the scalars (m1,m2) satisfy

0 =

ˆ ∞
a

[ϕ′1(a)s1(a) + λ1(ϕ2(a)− ϕ1(a))] g1(a)dL(a) + [ϕ′1(a)s1(a) + λ1(ϕ2(a))− ϕ1(a)]m1

+

ˆ ∞
a

[ϕ′2(a)s2(a) + λ2(ϕ1(a)− ϕ2(a))] g2(a)dL(a) + [ϕ′2(a)s2(a) + λ2(ϕ1(a))− ϕ2(a)]m2.

Next consider the stationary KF equation in the Huggett model with a continuum of income

types in Appendix G.1. The statement “g is a solution to (116)” means: for any test function

ϕ defined on [a,∞)× (y, ȳ) and potentially not vanishing at a, the non-negative real-valued

function g defined on (a,∞)× (y, ȳ) and the function m defined on (y, ȳ) satisfy

0 =

ˆ
Ω

[
∂aϕ(a, y)s(a, y) + ∂yϕ(a, y)µ(y) +

1

2
∂yyv(a, y)σ2(y)

]
g(a, y)dL(a, y)

+

ˆ ȳ

y

[
∂aϕ(a, y)s(a, y) + ∂yϕ(a, y)µ(y) +

1

2
∂yyϕ(a, y)σ2(y)

]
m(y)dL(y),

where Ω := (a,∞) × (y, ȳ) is the state space. The solutions to the time-dependent KF

equations are, of course, defined in the analogous fashion.

59Note that the Lebesgue measure does not see the single point a = 0.
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Note that both of these definitions are special cases of a more general definition. Suppose

we have N state variables, x ∈ RN . Consider an open subset Ω ⊂ RN , denote its closed

counterpart by Ω̄ and its boundary by ∂Ω. Assume that there is a state constraint Xt ∈ Ω̄.

Denote the infinitesimal generator that governs the evolution of Xt by A, its adjoint by A∗.
Then the time-dependent and stationary KF equations are

∂tg = A∗g with g(·, t) = g0 and 0 = A∗g.

Assume further that the measure µ admits a density for all x ∈ Ω but there may be a Dirac

mass on the boundary ∂Ω. Then “g satisfies the stationary KF equation 0 = A∗g” means

that there are functions g defined on Ω and m defined on ∂Ω such that for any test function

ϕ defined on Ω̄

0 =

ˆ
Ω

[Aϕ(x)] g(x)dL(x) +

ˆ
∂Ω

[Aϕ(x)]m(x)dL∂Ω(x),

where LΩ is the N -dimensional Lebesgue measure on Ω and L∂Ω(x) is the Lebesgue measure

on the boundary of Ω. The definition is again analogous for the time-dependent KF equation.

F Accuracy of Finite Difference Schemes

This appendix considers various ways of assessing the accuracy of numerical solutions to

our continuous-time heterogeneous agent models computed using FD methods discussed in

Section 4. Appendix F.1 considers the numerical solution of HJB equations and makes a

comparison with discrete-time methods. Appendix F.2 considers the KF equation.

F.1 Accuracy of FD Scheme for Hamilton-Jacobi-Bellman Equa-

tion

We here conduct three exercises. Appendix F.1.1 provides the details for the exercise in

Section 4.6 in which we compared the computational speed of continuous- and discrete-time

methods for given accuracy. Appendix F.1.2 explains why standard discrete-time accuracy

metrics like Euler equation errors are not applicable for HJB equations and discusses other

candidate accuracy metrics from the mathematics literature on HJB equations. Finally, in

Appendix F.1.3, we take advantage of the closed-form solution for a special case without

income risk from Section 3.2 and use it as a benchmark to which to compare numerical

solutions.
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F.1.1 Details for Section 4.6 – Computational Speed and Accuracy: Continuous

vs Discrete Time

We compared the computational performance of a continuous- versus a discrete-time formu-

lation of the income fluctuation problem with a borrowing constraint in partial equilibrium,

i.e. with an exogenously given interest rate. Section 4.6 summarizes the results. This Ap-

pendix describes in more detail the two variants of the income fluctuation problem, their

parameterization, our computational methods for solving them as well as the construction

of Figure 9 which compares the speed-accuracy tradeoffs between the two methods.

Income fluctuation problem in continuous time. We consider an income fluctuation

with a continuum of income types as in Appendix G.1. The corresponding HJB equation

is given by (115) and we choose an Ornstein-Uhlenbeck (OU) process for the logarithm of

income:

d log yt = −θ log ytdt+ σdWt, (108)

that is the special case of (114) with µ(y) = (−θ log(y) + σ2/2)y and σ(y) = σy (from Ito’s

formula). The stationary distribution of log income is then a normal distribution with mean

zero and variance ν2 = σ2/(2θ). The autocorrelation of log income over a time period of one

year is given by % := Corr(log yt+1, log yt) = e−θ.

To compute our second accuracy metric, we also need to compute stationary aggregate

consumption which requires finding the stationary joint distribution of income and wealth.

We solve both the HJB equation and the KF equation for the stationary distribution using

the finite difference method described in the main text.

Income fluctuation problem in discrete time. The individual solves

max
{at+1}∞t=0

E0

∞∑
t=0

βtu(ct) s.t.

at+1 = yt + (1 + r)at − ct,
log yt+1 = % log yt + σεt, εt ∼ N (0, 1),

at+1 ≥ a.

where β ∈ (0, 1) is a discount factor and all other variables have the same interpretation

as in the continuous-time problem. Note that the income process is an AR(1) process

for the logarithm of income. Our continuous-time process, the OU process (108), is the

continuous-time analogue of this process. Analogous to the continuous-time variant, the

stationary distribution of log income is a normal distribution with mean zero and variance

ν2 = σ2/(1− ρ2).
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To find the optimal consumption and saving policy functions of this discrete-time income

fluctuation problem we solve the corresponding Euler equation using the endogenous grid

method (Carroll, 2006). As already noted, to compute our second accuracy metric, we also

need to compute stationary aggregate consumption which requires finding the stationary

joint distribution of income and wealth. We use a Monte-Carlo method to find this stationary

distribution: using the optimal saving policy function and the income process we simulate

50,000 individuals over 500 time periods.

Parameterization. For both variants, we assume CRRA utility (5) with γ = 2 and impose

a strict no-borrowing limit a = 0. We use a discount factor of β = 0.95 for the discrete-time

variant and a discount rate of ρ = 1/β− 1 = 0.0526 for the continuous-time one, and set the

interest rate to r = 0.03 in both cases.

Next consider the income process. We set the yearly autocorrelation of income to % =

0.95. For the OU process (108) we therefore set θ = − ln(%) = 0.0513. We set the standard

deviation of the stationary income distribution to ν = 0.2 which implies σ = ν
√

2θ = 0.064

for the OU process (108) (from ν2 = σ2/(2θ)) and σ = ν
√

1− %2 = 0.062 for the AR(1)

process (from ν2 = σ2/(1 − %2)). In both cases, we normalize the process such that the

stationary mean equals one. In both cases, we discretize the income process on a grid with 9

points. In discrete time we use the Rouwenhorst (1995) method; in continuous time we use

our finite difference method to convert the OU process (108) into a discrete-state Poisson

process (see the main text and computational appendix).

In both cases, we use a non-uniform grid for wealth: ai = a + (amax − a)xχi with χ = 2

where xi, i = 1, ..., I is a uniformly spaced grid on the interval [0, 1]. The lower bound is

a = 0 and the upper bound is amax = 50.

In both cases, we use the following convergence criterion for the value/consumption policy

function: that the difference between the function in the current iteration and the previous

one as measured by the sup-norm is below a tolerance of 10−7, e.g. ||vn − vn−1|| ≤ 10−7.

Finally, a brief comment is in order: while we have specified and parameterized the

continuous-time and discrete-time versions of our test problem to be as comparable as

possible, these are still different models. For example, while the OU process (108) is the

continuous-time analogue of the discrete-time AR(1) process and we parameterize the two

processes in an analogous fashion, these are still different stochastic processes: one pro-

cess moves continuously over time whereas the other only moves at discrete time intervals.

As a result, there are small differences in model outputs even putting aside any numeri-

cal error, and similarly for the “true” solutions computed with an extremely fine grid with

10,000 wealth grid points. For example, “true” aggregate consumption equals 1.0259 in the

continuous-time version and 1.0475 in the discrete-time version (recall that we normalized

stationary mean income to one in both cases).
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Table 1: Computational Speed and Accuracy: Continuous vs Discrete Time
(a) Policy Function

Continuous time Discrete time
(finite difference method) (endogenous grid method)

Grid Speed in Policy function Speed in Policy function
points seconds error (%) seconds error (%)

(1) (2) (3) (4) (5)
10 0.04 5.29 2.88 4.47
25 0.08 2.14 2.90 1.29
50 0.10 1.07 2.93 0.29
100 0.12 0.53 3.24 0.08

1,000 0.65 0.05 14.75 0.00
10,000 7.92 0 428.96 -

(b) Aggregate Consumption
Continuous time Discrete time

(finite difference method) (endogenous grid method)
Grid Speed in Error in aggregate Speed in Error in aggregate

points seconds consumption (%) seconds consumption (%)
(6) (7) (8) (9) (10)
10 0.05 0.12 28.64 58.76
25 0.08 0.07 29.41 7.41
50 0.10 0.04 30.36 2.03
100 0.13 0.02 32.13 0.57

1,000 0.68 0.01 49.16 0.01
10,000 8.18 0 462.21 -

Notes: The table reports speed and accuracy measures for the numerical solution of an income fluctua-

tion problem in both continuous and discrete time. The code is available at https://benjaminmoll.com/

comparison/.

Accuracy metrics and construction of Figure 9. As discussed in the main text, we

assess accuracy using one of two metrics: (i) the mean percentage error in the policy function

relative to its counterpart computed using an extremely fine grid, and (ii) the deviation of

stationary aggregate consumption from its counterpart computed using an extremely fine

grid. More precisely, the two metrics we use in Figure 9 are given by

error1 = 100× 1

I∗
1

J∗

I∗∑
i=1

J∗∑
j=1

|c̃(ai, yj)− c∗(ai, yj)|
c∗(ai, yj)

, error2 = 100× C − C∗

C∗
, (109)

where c∗ is the consumption policy function computed using the extremely fine grid with I∗

and J∗ grid points, c̃ is the consumption policy function computed using a coarser grid and

then interpolated onto the finer grid, and C and C∗ are stationary aggregate consumption

computed using the coarse and fine grid.
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To construct the speed-accuracy tradeoffs in Figure 9 we first compute the solutions to

the two test problems but with different numbers of grid points. Table 1 contains output

from a subset of the computations. First consider panel (a) of Table 9 which is the input used

to construct panel (a) of Figure 9. Column (1) shows the number of grid points used in each

experiment ranging from a very coarse discretization with 25 grid points to an extremely

fine one with 10,000 grid points (the “true” solution). Columns (2)-(3) report results for

the continuous-time FD method whereas columns (4)-(5) report those for the discrete-time

endogenous-grid method. Columns (2) and (4) report the time until the algorithm converged

measured in seconds. Columns (3) and (5) report the first accuracy metric in (109). Unsur-

prisingly, in both continuous and discrete time, the computations become slower but more

accurate as the number of grid points grows. Next consider panel (b) of Table 9 which is the

input used to construct panel (b) of Figure 9. All columns are exactly analogous to those

in panel (a) with two differences: first, the computational speed in columns (7) and (9) now

includes the time to compute the stationary distribution; second, columns (8) and (10) now

report the second accuracy metric in (109).

With the input from Table 1 in hand, the construction of Figure 9 is straightforward: in

panel (a) of the figure, the blue line with circles is column (2) in the table plotted against

column (3), the red line with crosses in the figure is column (4) plotted against column (5);

similarly, in panel (b), the blue line with circles is column (7) plotted against column (8),

the red line with crosses is column (9) plotted against column (10).

Finally, Figure 11 reports the ratios of the two computational times for given accuracy

metrics in Figure 9.
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Figure 11: Performance of continuous-time method relative to discrete-time method

Notes: in each panel, the speed gain is computed from Figure 9 as the ratio of the discrete-time speed to

the continuous-time speed, i.e. the ratio of the red line with crosses to the blue line with circles.
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Code and Computational Infrastructure. The code is available at https://benjaminmoll.

com/comparison/. There are two files to generate the “true” values: they run the code for

the superfine grid disc true.m and cont true.m and write the benchmark duration and ag-

gregate consumption to a txt/csv files disc true.txt and cont true.txt. Then there is a main

file (main.m), which runs the code first for the continuous-time variant and then for the

discrete-time one. For each variant it first checks to see whether the .txt file containing the

“true” value exists in the path/current folder or not. If it does, it reads the “true” aggregate

consumption and speed from it and loops over different grid sizes. Otherwise, it first calls

the benchmarking file and then loops over coarser grids. Finally fig tradeoff.m generates

Figures 9 and 11.

The computations which the results in Figure 9 are based on were performed on a 2018

MacBook Pro with a 2.9GHz Intel Core i9 CPU.

Additional Exercise. We also compared the numerical solution of the continuous-time to

a simpler discrete-time problem with an iid income process rather than a persistent AR(1)

process as in the exercise above. The discrete-time income fluctuation problem can then be

solved more efficiently because iid income shocks imply that one can work with one state

variable only, namely cash-on-hand. That is, the discrete-time algorithm with an iid income

process has a head start relative to the continuous time one. Nevertheless, results analogous

to those in Figure 9 (not reported here) show that, for any given number of wealth grid

points, our continuous-time code for solving the problem with a persistent income process

runs about 10 times faster than the discrete-time code for solving the problem with the iid

process while at the same time being more accurate.

F.1.2 Applicability of Euler-equation errors and continuous-time accuracy met-

rics

In the exercise in Section 4.6, we chose a pragmatic approach for assessing the accuracy of

our finite-difference method but one without a deep theoretical foundation. Why did we not

develop the continuous-time analogue of a standard accuracy metric from the discrete-time

literature like the Euler equation error? Or alternatively take an existing accuracy metric

from the continuous-time literature?

For discrete-time problems, the standard strategy for assessing the accuracy of a nu-

merical solution to a Bellman equation is to examine the associated Euler equation errors.

It turns out that the rationale for examining these does not apply to HJB equations. To

see this consider the analogous discrete-time problem in Section 4.1 with Euler equation

(37). As explained by Santos (2000), the rationale for examining the residuals in this Euler

equation is that it is the first-order condition of the maximization problem in the Bellman

equation. And by bounding the error in this first-order condition, one can bound the error
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in the policy function and more importantly the value function, i.e. the welfare loss from

suboptimal behavior due to numerical error.60 But for HJB equations like (41) and the

associated finite-difference approximation (42), there is no error in the first-order condition

(36) because it can be solved by hand. Instead, any error in the numerical solution of this

PDE stems only from the finite-difference approximation of its derivatives.

To assess this error, the mathematics literature contains a number of results on the

accuracy of numerical solutions to HJB equations. Closest in spirit to Euler-equation errors

are so-called “a posteriori error estimates” (see e.g. Albert, Cockburn, French, and Peterson,

2002; Cockburn, Merev, and Qian, 2013). In particular, they share three features with the

latter: (i) they need to be calculated after the numerical solution has been computed (hence

the “a posteriori” name), (ii) they depend solely on the approximate solution, and (iii) and

they do not depend on the particular numerical method used to compute the approximate

solution.61 Unfortunately, however, the mathematics literature has not derived any such a

posteriori estimates for problems with state constraints like ours.

The literature also contains another set of results on the accuracy of FD approxima-

tions to HJB equations, so-called “a priori error estimates.” Most of these are variants of a

classic result by Crandall and Lions (1984) which states that the distance between the finite-

difference approximation to an HJB equation and its viscosity solution scales with the square

root of the grid step in the approximation. For example, in the context of the value function

v solving the HJB equation (41) and its numerical approximation vi solving (42), we have

|vi − v(ai)| ≤ κ
√

∆a for all i = 1, ..., I where κ is a constant that depends on parameters.62

While this may seem like a useful result for judging accuracy, typically no characterization

is available for the constant κ. This means that these a priori estimates typically cannot be

used to judge the accuracy of a numerical solution (because κ may be very large); instead,

their main use is a characterization of the rate at which the error converges to zero as the

grid is refined more and more, i.e. as ∆a → 0. The introduction of Albert, Cockburn,

French, and Peterson (2002) contains an accessible discussion of the differences between a

60As Santos (2000, Lemma 2.1) explains, the result is a generalization of a simple result about optimization
problems (here stated in one dimension). Consider a twice-differentiable and sufficiently concave function
f(x) and denote by x∗ its interior optimum. If a candidate optimum x satisfies the first-order condition up
to an error ε > 0, |f ′(x)| ≤ ε, then |x− x∗| ≤ ε/η and |f(x)− f(x∗)| ≤ ε2/η for a constant η > 0.

61The literature further distinguishes between “global” and “local” a posteriori estimates. Global error
estimates bound the maximum error over the entire state space (typically the L∞-norm between the nu-
merical approximation and true solution computed over the entire state space) whereas local error estimates
bound the error in particular regions of the state space. An advantage of local estimates is therefore to give
information on where the grid should be refined in order to improve accuracy.

62For readers consulting their original paper, the following remark may be helpful. Crandall and Lions are
mostly concerned with time-dependent problems so that the discretization additionally features a time step
∆t. Their main result (their Theorem 1 and in particular equation (5)) is obtained under the assumption
that the grid steps are proportional to the time step ∆t (see their assumption that λx and λy are fixed).
On p.15 they state that the result can be extended to stationary problems and this has been confirmed by
subsequent work.
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priori and a posteriori error estimates.

Given the inapplicability of Euler equation errors and the absence of off-the-shelf continuous-

time accuracy metrics, we have therefore opted to assess accuracy pragmatically using the

two metrics discussed above: (i) the mean percentage error in the policy function relative to

its counterpart computed using an extremely fine grid, and (ii) the deviation of stationary

aggregate consumption from its counterpart computed using an extremely fine grid.

F.1.3 Accuracy of FD Scheme: Comparison with Closed-Form Solution

In Section 3.2 (“Intuition for Proposition 1 and Corollary 1: Two Useful Special Cases”)

we derived a closed-form solution for individuals’ consumption policy function under the

assumption that utility is exponential (6), that there is no income risk and that the interest

rate r = 0, namely c(a) = y +
√

2νa where ν := ρ/θ. The HJB equation corresponding to

the same problem is

ρv(a) = max
c
−e−θc/θ + v′(a)(y − c),

with a state constraint a ≥ 0. We numerically solve this HJB equation using the FD method

laid out in Section 4. The code is available at http://benjaminmoll.com/HJB accuracy1/.

We denote the consumption policy function computed in this fashion by ĉ(a). Figures 12

and 13 compare the numerically computed consumption policy function ĉ(a) to the analytic

solution c(a). Figure 12 does this for a fine grid with I = 1000 wealth grid points. Panel

(a) shows that the two consumption policy functions are virtually indistinguishable. Panel

(b) computes the percentage difference between the true and numerical solutions and shows

that the error is extremely small, on the order of 0.01%. Figure 13 repeats the exercise for a
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Figure 12: Approximation error in consumption policy function from FD method, fine grid
I = 1000 wealth grid points
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much coarser grid with I = 30 grid points. The numerical solution is still relatively accurate

with a somewhat larger approximation error of up to −0.4%.
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Figure 13: Approximation error in consumption policy function from FD method, coarse
grid I = 30 wealth grid points

F.2 Accuracy of FD Scheme for Kolmogorov Forward Equation

Readers may worry that the existence of the Dirac mass at the borrowing constraint (see

Proposition 3) may cause problems because our FD scheme explained in Section 4.4 does

not explicitly take into account its existence. This Appendix shows that this is not a valid

concern. We proceed first theoretically and then numerically.

F.2.1 Finite Differences and Dirac Masses: Theoretical Considerations

Appendix E explained how to think about solutions to the KF equation when there is a

Dirac point mass at the boundary by introducing an appropriate notion of weak solution.

We now show that the numerical scheme in Section 4.4 is consistent with this notion as

long as some care is taken when interpreting the output of the numerical algorithm. For

simplicity we make the argument in the context of the simplified model without income risk

already studied in Section E. Recall from there that we denoted the wealth density for a > a

by g(a) and the Dirac point mass at a = a by m.

Discretization: As in Section 4.4, we discretize the distribution g as gi, i = 0, ..., I on an

equi-spaced grid ai, i = 0, ..., I with step size ∆a. Our claim is that this discretization is
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consistent with the continuous problem if: (a) we view gi, i > 0 as the discrete counterpart

to the density g, and (b) we view g0∆a as the discrete counterpart to the Dirac mass m.

Intuition: The simplest way of getting intuition for this interpretation is to consider the

normalization conditions in the continuous and discrete approximation side by side:

1 = m+

ˆ ∞
a

g(a)dL(a),

1 = g0∆a+
∑
i>0

gi∆a.

Clearly, the two equations are consistent if we take m ≈ g0∆a and g(ai)dL(ai) ≈ gi∆a, i >

0. More generally, for any test function ϕ, we approximate E[ϕ(at)] =
´∞
a
ϕ(a)dµ(a) ≈∑I

i=0 ϕigi∆a, where ϕi := ϕ(ai). From (106) this is equivalent to

ϕ(a)m+

ˆ ∞
a

ϕ(a)g(a)dL(a) ≈ ϕ0g0∆a+
∑
i>0

ϕigi∆a,

and this again yields the same conclusion.

It is again important to emphasize that the only thing that is at stake in this discussion

is the interpretation of the discretized distribution gi, i ≥ 0. In particular none of it affects

how we calculate macroeconomic aggregates and other moments of the distribution. Such

moments are always approximated as E[ϕ(at)] ≈
∑I

i=0 ϕigi∆a which is the right thing to do

independent of whether there is a Dirac point mass at the boundary.

More Systematic Approach via Discrete KF Equation: A more systematic approach

is to make the connection between the numerical scheme laid out in Section 4.4 and the

discrete counterpart of the weak formulation of the KF equation (104). When discretizing

the term ϕ′(a)s(a) we upwind it as explained in Section 4.3

ϕ′(ai)s(ai) ≈
ϕi+1 − ϕi

∆a
s+
i +

ϕi − ϕi−1

∆a
s−i ,

where si := s(ai). The discrete counterpart to (104) is then

0 =
∑
i≥0

(
ϕi+1 − ϕi

∆a
s+
i +

ϕi − ϕi−1

∆a
s−i

)
gi∆a. (110)

Performing a discrete integration by parts, we have

0 =
∑
i≥0

(
−
s+
i gi − s+

i−1gi−1

∆a
−
s−i+1gi+1 − s−i gi

∆a

)
ϕi∆a,
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which, in turn, yields

0 = −
s+
i gi − s+

i−1gi−1

∆a
−
s−i+1gi+1 − s−i gi

∆a
, i = 1, ..., I. (111)

Note that this is exactly the discretization of the KF equation advocated in Section 4.4. In

particular, note that (111) can be written in matrix form as 0 = ATg with g = (g0, ..., gI)
T

and where the matrix A has the same form as in Section 4.3.

To see if the numerical scheme is consistent with the continuous problem, we only have

to check if the weak formulation of the discretized KF equation (110) is consistent with

the weak formulation of the continuous KF equation (107). The two problems are again

consistent if we interpret gi, i > 0 as the discrete version of g, and g0∆a as the discrete

version of m.

FD Scheme with Dirac Mass in Interior: Finally, consider the approximation of the

density when there is a Dirac mass at a = 0 in the interior of the state space [a,∞) as with a

soft borrowing constraint (Section G.3) and as briefly discussed in Section E.4 (Application

2). Consider a grid that places a point at a = 0, e.g. ai, i = 0, ..., I with ak = 0 for

some k > 0. Denoting by L the Lebesgue measure on (a,∞), the continuous and discrete

normalization conditions are

1 = m0 +

ˆ ∞
a

g(a)dL(a),

1 = gk∆a+
∑
i 6=k

gi∆a.

which suggests that the correct interpretation is to view gk∆a as the discrete counterpart of

the Dirac mass m0 at a = 0 and gi, i 6= k as the counterpart of the density everywhere else.

This can again be made more rigorous by following the same steps as above.

Points at which there is both positive density and a Dirac mass: In some of our

applications, at some points a there is a Dirac mass for some income types and positive but

finite density for other types. For example in Figure 17 (b), there is a Dirac mass for income

type 1 but positive, finite density for types 0 and 2. The discussion thus far implies that,

for a fixed grid, our numerical scheme cannot distinguish between the two: at that point ak,

gk∆a will be positive in both scenarios. However, we can distinguish between the two by

varying the grid spacing. In particular, a Dirac mass implies that gk ≈ m/(∆a). Hence we

can conclude that there is a Dirac mass at a point when, as ∆a→ 0, gk scales like 1/(∆a).

If instead gk converges to a positive constant as ∆a→ 0 then there is no Dirac mass.
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F.2.2 Numerical Experiments

In addition to these theoretical considerations, we take advantage of our closed-form solution

for the stationary wealth distribution from Proposition 3 to assess the accuracy of the FD

scheme for the KF equation in practice. We show that, in practice, the numerical solution

closely approximates the analytic solution.

Our closed form for the distribution in (33) involves the term −
´ a
a

(
λ1
s1(x)

+ λ2
s2(x)

)
dx

which is difficult to evaluate numerically for the optimal saving policy functions because

these satisfy s1(a) = s2(amax) = 0. Rather than evaluating (33) at the optimal saving

policy functions, we therefore make use of our expansions of these policy functions around

the points a and amax. That is, we here compute the KF equation for the case when this

characterization is exact for all a and assume that

s1(a) = −
√

2ν1

√
a− a, s2(a) = −ζ2(a− amax) (112)

for all a (and not just at a = a and a = amax). Under this assumption, we have

−
ˆ a

a

(
λ1

s1(x)
+

λ2

s2(x)

)
dx = −

ˆ a

a

(
λ1

−
√

2ν1

√
x− a

+
λ2

−ζ2(x− amax)

)
dx

=
λ1√
ν1/2

√
a− a+

λ2

ζ2

(
log(amax − a)− log(amax − a)

)
Therefore (33) and the Dirac point mass m1 defined in Proposition 3 become

g1(a) =
κ1

−
√

2ν1

√
a− a

exp

(
λ1√
ν1/2

√
a− a

)(
amax − a
amax − a

)λ2/ζ2
g2(a) =

κ2

−ζ2(a− amax)
exp

(
λ1√
ν1/2

√
a− a

)(
amax − a
amax − a

)λ2/ζ2 (113)

m1 =
λ2

λ1 + λ2

m̃1,
1

m̃1

=
λ2

ζ2

(amax − a)−λ2/ζ2
ˆ amax

a

exp

(
λ1√
ν1/2

√
a− a

)
(amax − a)λ2/ζ2−1da.

Finally, as explained in Appendix A.4.4, we have κ1 = −λ1m1 and κ2 = λ2m2.

Figure 14 plots this solution and compares it to the numerical solution computed using

the algorithm laid out in Section 4.4 with I = 500 wealth grid points (of course, also assuming

that s1 and s2 are given by (112)). We here assume that a = 0, amax = 1, ν1 = 0.05, ζ2 =

0.25, λ1 = 0.5, λ2 = 0.5. With I = 500 grid points, the results are extremely similar for all

other parameter combinations we have tried. Panel (a) plots the densities and panel (b)

plots the corresponding cumulative distribution functions (CDFs).63

63To obtain the CDFs corresponding to the closed-form solution (113), we numerically integrate g1 and
g2 in (113). In this regard, a difficulty is that g1(a) → ∞ as a → a. We therefore compute the cumulative
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Figure 14: A fine grid with I = 500 points results in the FD scheme being highly accurate
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Figure 15: A coarse grid with only I = 30 points results in the FD scheme being relatively
inaccurate
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Figure 15 repeats the exercise but with only I = 30 wealth grid points. With this

much lower number of grid points the approximation is naturally of lower quality. That

being said, the approximation can easily be improved by employing a non-equispaced grid.

See the online Appendix at https://benjaminmoll.com/HACT Numerical Appendix/ for a

discussion on how to do this.

The codes used to generate Figures 14 and 15 are available online at https://benjaminmoll.

com/KFE accuracy check/. The interested reader can try out herself how varying the num-

ber of grid points and parameter values affects the accuracy of the numerical solution.

distribution function for type 1 as G1(a) = p1 −
´ amax

a
g1(a)da where p1 = λ2

λ1+λ2
is the total mass of type 1

individuals.
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G Details for Section 6: Generalizations and Extensions

G.1 More General Income Processes

Our baseline model assumed that income yt takes one of two values, high and low. We now

extend many of our theoretical results to an environment with a continuum of productivity

types. Furthermore, the computational algorithm laid out in Section 4 carries over without

change. This is true even though the system of equations describing an equilibrium will be

a system of PDEs rather than a system of ODEs.

As in Section 1.1, there is a continuum of individuals that are heterogeneous in their

wealth a and income y. The state of the economy is the joint distribution of income and

wealth g(a, y, t). The simplest way of introducing a continuum of income types is to work

with a continuous diffusion process. Individual income evolves stochastically over time on a

bounded interval [y, ȳ] with ȳ > y ≥ 0, according to the stationary diffusion process64

dyt = µ(yt)dt+ σ(yt)dWt. (114)

This is simply the continuous-time analogue of a Markov process (without jumps). Wt is a

Wiener process or standard Brownian motion and the functions µ and σ are called the drift

and the diffusion of the process. We normalize the process such that its stationary mean

equals one. An individual’s problem is now to maximize (1) subject to (2), (3) and (114),

taking as given the evolution of the interest rate rt for t ≥ 0.65

Similarly to Section 1, a stationary equilibrium can be written as a system of partial

differential equations. The problem of individuals and the joint distribution of income and

wealth satisfy stationary HJB and KF equations:

ρv(a, y) = max
c

u(c) + ∂av(a, y)(y + ra− c) + ∂yv(a, y)µ(y) +
1

2
∂yyv(a, y)σ2(y), (115)

0 =− ∂a(s(a, y)g(a, y))− ∂y(µ(y)g(a, y)) +
1

2
∂yy(σ

2(y)g(a, y)). (116)

on (a,∞)× (y, ȳ). The function s is the saving policy function

s(a, y) = y + ra− c(a, y), where c(a, y) = (u′)−1(∂av(a, y)). (117)

64The process (114) either stays in the interval [y, ȳ] by itself or is reflected at y and ȳ. From a theoretical
perspective there is no need for restricting the process to a bounded interval, and unbounded processes can
be easily analyzed. Instead the motivation for this assumption is purely practical: we ultimately solve the
problem numerically and any computations necessarily require income to lie in a bounded interval.

65The corresponding “natural borrowing constraint” is now at ≥ −y
´∞
t

exp
(
−
´ s
t
rτdτ

)
ds. As before,

the borrowing constraint a only binds if it is tighter than this “natural” borrowing limit.
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The function v again satisfies a state constraint boundary condition at a = a which is now

∂av(a, y) ≥ u′(y + ra), all y. (118)

Because the diffusion is reflected at y and ȳ, the value function also satisfies the boundary

conditions

∂yv(a, y) = 0, ∂yv(a, ȳ) = 0, all a. (119)

A stationary equilibrium is a scalar r and functions v and g satisfying the PDEs (115)

and (116) with s given by (117), boundary conditions (118), (119), with an equilibrium

condition analogous to (11), namely
´ ȳ
y

´∞
a
ag(a, y)dady = B. Transition dynamics again

satisfy a system of time-dependent PDEs analogous to that in Section 1.

Importantly, the computational algorithm laid out in Section 4 carries over without

change: from a computational perspective it is immaterial whether we solve a system of

ODEs like (7) and (8) or a system of PDEs like (115) and (116). This would not be true if

we had relied on an pre-built ODE solver (say one that is part of Matlab) to solve the ODEs

(7) and (8).

Other income processes are possible as well. For instance, Kaplan, Moll, and Violante

(2018) consider a “jump-drift process” with transitory and permanent components. As in

(114) there is a continuum of types for each component; but rather than moving continuously

over time as in (114), each component is subject to Poisson jumps. Income could also follow

a jump-diffusion process. At the most general level, we can accommodate any income process

that can be represented with an “infinitesimal generator.” To treat the general case, we write

the HJB and KF equations as

ρv = max
c

u(c) + (y + ra− c)∂av +Av, (120)

0 = −∂a(s(a, y)g) +A∗g, (121)

with a state constraint a ≥ 0. Here A is the infinitesimal generator (“infinite-dimensional

transition matrix”) of the stochastic process for income yt and A∗ is its adjoint. For instance,

if yt follows a two-state Poisson process as in Section 1, then (Av)(a, yj) = λj(v(a, y−j) −
v(a, yj)). Or if yt is a continuous diffusion like aboves, then Av = µ(y)∂yv + σ2(y)

2
∂yyv.

Figure 16 plots the stationary saving policy function and wealth distribution when in-

come follows a diffusion. Both inherit all important properties of the saving policy function

and wealth distribution from the baseline model with two income types from Sections 1 and

3. This is not just a numerical result. Instead Propositions 6 and 7 below generalize Propo-

sitions 1 and 2 from the case with a two-state Poisson process to other processes including

the diffusion process (114).

Proposition 6 (Generalization of Proposition 1 to Other Income Processes) Assume
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Figure 16: Stationary Equilibrium of Huggett Model with Diffusion Process

that r < ρ and that Assumption 1 holds with y1 replaced by y. Then the solution to the HJB

equation (77) and the corresponding saving policy function have the following properties:

1. There is a cutoff y∗ such that s(a, y) = 0 for all y ≤ y∗ but s(a, y) < 0 for all a > a, y ≤
y∗. That is, individuals with y ≤ y∗ and wealth exactly at the borrowing constraint are

constrained, whereas those with income y ≤ y∗ and wealth a > a are unconstrained

and decumulate assets. Those with income y > y∗ are always unconstrained and they

accumulate assets even at the constraint s(a, y) > 0 for all y > y∗.

2. as a→ a, the saving and consumption policy function of individuals with income below

the threshold, y ≤ y∗, and the corresponding instantaneous marginal propensity to

consume satisfy

s(a, y) ∼ −
√

2ν(y)
√
a− a,

c(a, y) ∼ y + ra+
√

2ν(y)
√
a− a,

∂ac(a, y) ∼ r +
1

2

√
2ν(y)
√
a− a

,

ν(y) =
(ρ− r)u′(c(y))− (Au′(c))(y)

−u′′(c(y))
,

where c(y) = c(a, y) is consumption at the borrowing constraint. For the special case
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with a diffusion process (114) so that Av = µ(y)∂yv + σ2(y)
2
∂yyv:

ν(y) =
(ρ− r)u′(c(y))− µ(y)∂yu

′(c(y))− σ2(y)
2
∂yyu

′(c(y))

−u′′(c(y))

= (ρ− r)IES(c(y))c(y) +

(
µ(y)− σ2(y)

2
P(c(y))

)
c′(y) +

σ2(y)

2
c′′(y)

where P(c) := −u′′′(c)/u′′(c) is absolute prudence.

This implies that for y ≤ y∗ the derivatives of c(a, y) and s(a, y) are unbounded at the

borrowing constraint, ∂ac(a, y) → ∞ and ∂as(a, y) → −∞ as a → a. Therefore indi-

viduals with wealth a > a and successive low income draws y ≤ y∗ decumulate wealth

and hit the borrowing constraint in finite time at speed governed by ν(y) analogous to

Corollary 1.

This Proposition shows that – as can be seen in panel (a) of the Figure – the saving policy

function has an unbounded derivative at a = a for income y below some threshold, and that

therefore individuals with persistent low income realizations hit the borrowing constraint in

finite time. This results in the spike in the wealth distribution at a = a in panel (b).66

Proposition 7 (Generalization of Proposition 2 to Other Income Processes) Consider

the HJB equation (77) with a general income process on [y, ȳ] and the corresponding policy

functions. Assume that r < ρ and that relative risk aversion γ(c) := −cu′′(c)/u′(c) is bounded

above for all c.

1. Then there exists amax <∞ such that s(a, y) < 0 for all a ≥ amax and all y.

2. In the special case of CRRA utility (5) individual policy functions are asymptotically

linear in a. As a→∞, they satisfy

s(a, y) ∼ r − ρ
γ

a, c(a, y) ∼ ρ− (1− γ)r

γ
a, all y.

We do not state the extended Propositions 4 and 5 here because the wording is unchanged.

The proofs of Proposition 4 and 5 already covered the case of a general income process.

66Given that the figure plots the density g(a, y), some readers may wonder why the spike representing the
Dirac mass at a = a is finite. The answer is that the figure plots the output of our numerical scheme, gi,j
over grids ai, i = 0, ..., I and yj , j = 1, ..., J . As explained in Appendix F.2 the correct interpretation is that
gi,j ≈ g(ai, yj) for all grid points in the interior i > 0. But at the boundary g0,j∆a ≈ m(yj) where m(y) is the
Dirac mass. In the figure for example, g0,j equals about 0.35 at its highest point. The correct interpretation
is: since the computation uses ∆a = 0.3, the corresponding Dirac mass is g0,j∆a = 0.35× 0.3 = 0.105.
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Proof of Proposition 6: Analogous to Proposition 1, we start by differentiating (115)

with respect to a (envelope condition) and using the FOC u′(c(a, y)) = ∂av(a, y) to obtain

the “Euler equation”

(ρ− r)u′(c) = u′′(c)(∂ac)s+Au′(c) (122)

The proof of Part 1 follows the same steps as in Proposition 1. For Part 2, use ∂ac = r−∂as
in (122) and rearrange to get

(∂as− r)s =
(r − ρ)u′(c) +Au′(c)

u′′(c)

Now consider low income types y ≤ y∗ for whom s(a, y) = 0. As a → a, we additionally

have, c(a, y)→ c(y) := y + ra > 0 and −u′(c(a, y))/u′′(c(a, y))→ 1/R > 0. Therefore

s(a, y)∂as(a, y)→ ν(y) with ν(y) :=
(r − ρ)u′(c(y)) + (Au′(c))(y)

u′′(c(y))

as defined in the Proposition. Using l’Hôpital’s rule we have

lim
a→a

(s(a, y))2

a− a
= lim

a→a
2s(a, y)∂as(a, y) = 2ν(y)

and hence (s(a, y))2 ∼ 2ν(y)(a−a). Taking the square root yields s(a, y) ∼ −
√

2ν(y)
√
a− a.�

Proof of Proposition 7, Part 1: The proof of Part 1 follows identical steps as in the

proof of Proposition 2.

Proof of Proposition 7, Part 2: Also the proof of Part 2 follows similar steps as the

proof of Proposition 2. We still have Lemma 3 which shows that the case without labor

income has a closed-form solution. We next prove a Lemma about a scaling property of the

value function. We then combine the two Lemmas to prove the statement in the Proposition.

Lemma 10 Consider problem (120). For any ξ > 0,

v(ξa, y) = ξ1−γvξ(a, y) (123)

where vξ solves

ρvξ(a, y) = max
c

u(c) + ∂avξ(a, y)(y/ξ + ra− c) + (Avξ)(a, y) (124)
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Proof of Lemma 10: Write (120) as

ρv(a, y) = H(∂av(a, y)) + ∂av(a, y)(y + ra) + (Av)(a, y) (125)

H(p) = max
c
{u(c)− pc} =

γ

1− γ
p
γ−1
γ

From (123), v(a, y) = ξ1−γvξ(a/ξ, y), ∂av(a, y) = ξ−γ∂avξ(a/ξ, y). Therefore H(∂av(a, y)) =

H(∂avξ(a/ξ, y))ξ1−γ. Substituting into (125) and dividing by ξ1−γ yields (124).�

Conclusion of Proof of Part 2 of Proposition 7: With Lemmas 3 and 10 in hand

we are ready to prove Part 2 of Proposition 7. Consider first the asymptotic behavior of

the consumption policy function c(a, y). From (123), v(a, y) = ξ1−γvξ(a/ξ, y), ∂av(a, y) =

ξ−γ∂avξ(a/ξ, y) and therefore

c(a, y) = (∂av(a, y))−1/γ = ξ(∂avξ(a/ξ, y))−1/γ = ξcξ(a/ξ, y)

In particular with ξ = a we have

c(a, y) = aca(1, y)

Hence

lim
a→∞

c(a, y)

a
= lim

ξ→∞
cξ(1, y) = c(1) =

ρ− (1− γ)r

γ
,

where the second equality uses that problem (124) converges to that with no labor income

(59) as ξ → ∞ and therefore also cξ(a, y) → c(a) for all a as ξ → ∞. The asymptotic

behavior of s(a, y) can be proved in an analogous fashion.�

G.2 An Alternative Way of Closing the Model: Aiyagari (1994)

Section 1 assumed that wealth takes the form of bonds that are in fixed supply. It is, of

course, possible to make other assumptions. In particular, we can assume as in Aiyagari

(1994) that wealth takes the form of productive capital that is used by a representative firm

which also hires labor. Each individual’s income is the product of an economy-wide wage wt
and her idiosyncratic labor productivity zt and her wealth follows (2) with yt = wtzt. The

total amount of capital supplied in the economy equals the total amount of wealth. In a

stationary equilibrium it is given by

K =

ˆ z̄

z

ˆ ∞
a

ag(a, z)dadz := S(r, w). (126)
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Capital depreciates at rate δ. There is a representative firm with a constant returns to scale

production function Y = F (K,L). Since factor markets are competitive, the wage and the

interest rate are given by

r = ∂KF (K, 1)− δ, w = ∂LF (K, 1), (127)

where we use that the mean of the stationary distribution of productivities z equals one.

Because the income fluctuation problem at the heart of the Aiyagari model is the same

as that in the Huggett model all of Propositions 1 to 3 apply without change. So does

Proposition 4. Proposition 5 applies by exploiting a homogeneity property noted by Auclert

and Rognlie (2016), namely that individual policy functions and therefore aggregate saving

is homothetic in the wage rate, S(r, w) = wS(r, 1) for all w > 0.67 The computational

algorithm is again unchanged except that, in Step 3, it imposes (126) and (127) rather than

(11).

G.3 Soft Borrowing Constraints and Non-Participation

Empirical wealth distributions typically have the following properties: there are individuals

with both positive and negative net worth but there is a spike at close to zero net worth. This

empirical observation does not square well with the Aiyagari-Bewley-Huggett model we have

considered thus far. If we set the borrowing constraint to a = 0, we get the spike at zero but

there are no individuals with negative net worth; if we set a < 0, we get a spike at a strictly

negative wealth level. Both are counterfactual. A simple way of generating the empirical

observation is to model a wedge between the interest rates at which people can borrow and

save. Such a wedge functions as a “soft” borrowing constraint. In particular, it is a soft

version of a hard no-borrowing constraint (3) with a = 0 in the sense that the soft constraint

becomes closer and closer to the hard constraint as the interest-rate wedge increases (and

is equivalent if the wedge is infinite). Such a soft constraint is used in a number of recent

papers including Alonso (2018) and Kaplan, Moll, and Violante (2018). In this section, we

provide the first theoretical characterization of such soft borrowing constraints.

Consider the Huggett model from Section 1 with one modification: there is a wedge

between borrowing and lending rates. That is, we replace the budget constraint (2) by

ȧt = yt + r(at)at − ct, r(a) =

{
r+, a ≥ 0

r−, a < 0
, r− > r+.

67Uniqueness requires one additional technical assumption about the production function F . To see this
note that the homotheticity property implies that (126) becomes S(r, 1) = k(r) where k(r) := K(r)/w(r) is
normalized capital demand. Since S(r, 1) slopes upward by Proposition 5, the equilibrium is unique if k(r)
slopes downward. Auclert and Rognlie show that this is indeed the case if α < ε where α is the capital share
and ε is the elasticity of substitution corresponding to F (both of which may depend on K/L).
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We show below that, in order to obtain a stationary wealth distribution with a spike at zero

and positive mass on both sides of zero, it is necessary to introduce more than two income

types. In particular, the simplest extension of the model that yields the desired result is to

have three income types i.e. yt ∈ {y0, y1, y2} with y0 < y1 < y2.

The next Proposition characterizes the saving behavior with a soft borrowing constraint.

To avoid the somewhat cluttered notation resulting from considering three income types, it

only considers the deterministic case yt = y for all t. This case has all the intuition and the

extension to stochastic income is straightforward.

Proposition 8 (Saving Behavior with Soft Borrowing Constraint) Assume that r+ <

ρ < r−, that yt = y for all t and that y > 0 (so that −u′′(y)/u′(y) < ∞, the analogue of

Assumption 1). Then the solution to the HJB equation (7) and the corresponding saving

policy function (9) have the following properties:

1. s(0) = 0 but s(a) < 0 all a > 0 and s(a) > 0 all a < 0.

2. close to a = 0, the saving and consumption policy functions satisfy

s(a) ∼ −
√

2ν+a, c′(a) ∼ r+ +
1

2

√
2ν+

a
, ν+ :=

(ρ− r+)u′(y)

−u′′(y)
> 0 as a ↓ 0,

s(a) ∼
√

2ν−a, c′(a) ∼ r− +
1

2

√
2ν−
a
, ν− :=

(ρ− r−)u′(y)

−u′′(y)
< 0 as a ↑ 0.

This implies that the derivatives of s and c are unbounded at zero, with s′(a) → −∞
and c′(a)→∞ both as a ↑ 0 and a ↓ 0.

3. Individuals with a > 0 decumulate wealth and hit a = 0 in finite time. Individuals with

a < 0 instead accumulate wealth and also hit a = 0 in finite time.

The main takeaway from the Proposition is that a soft borrowing constraint results in an

interesting symmetry in the saving policy function around zero net worth. To understand

this property consider the blue solid line labelled s1(a) in Figure 17(a) (we will return to the

other two lines below). The behavior for a > 0 with a soft borrowing constraint is identical

to that with a hard borrowing constraint but at a = 0: as a ↓ 0 it behaves like −
√
a. See for

example Figure 1(b). The main takeaway from the Proposition is that the behavior of the

saving policy function for a < 0 is simply a mirror image around the forty-five degree line

of the behavior for a > 0: as a ↑ 0 it behaves like
√
−a.68 A simple extension of Corollary

1 then implies that individuals with a > 0 decumulate wealth and hit a = 0 in finite time;

individuals with a < 0 instead accumulate wealth and also hit a = 0 in finite time.

68Interestingly, for a < 0 the consumption function is convex, that is, the instantaneous MPC c′(a) is
increasing in wealth a. See the Proposition which, ignoring constants, shows that c′(a) ∼

√
1/(−a) as a ↑ 0.
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Figure 17: Saving Behavior and Wealth Distribution with Soft Borrowing Constraint

Of course with only one income type, the stationary wealth distribution will only be a

Dirac point mass at a = 0. With two income types, it will be a Dirac mass at a = 0 combined

with some mass either to the left (a < 0) or to the right (a > 0) but not both. Therefore to

speak to the empirical observation of a spike at zero combined with mass both to the left

and the right of zero it is necessary to introduce (at least) another income type. Figure 17(a)

plots the saving policy functions in such a version with three income types y0 < y1 < y2.

Figure 17(b) plots the resulting wealth densities g0, g1 and g2. The unconditional wealth

distribution is the sum of these three densities. As expected, it has a spike at zero and mass

both to the left and the right.

Proof of Proposition 8 The proof follows the same steps as Proposition 1. In particular,

from the Euler equation (envelope condition)

(s′(a)− r(a))s(a) =
(r(a)− ρ)u′(c(a))

u′′(c(a))

Therefore, taking the left and right limits as a ↓ 0 and as a ↑ 0, we have

s(a)s′(a)→ ν+, ν+ :=
(ρ− r+)u′(y)

−u′′(y)
as a ↓ 0

s(a)s′(a)→ ν−, ν− :=
(ρ− r−)u′(y)

−u′′(y)
as a ↑ 0

Note that ν+ > 0 because we have assumed r+ < ρ and ν− < 0 because r− > ρ. By again

following the same steps as in Proposition 1 we then obtain the expressions in Part 2. Part

3 follows from Corollary 1.

106



G.4 Fat Tails in a Huggett Model with Two Assets

In this section we show how to extend the Huggett model of Section 1 to feature a fat-tailed

stationary wealth distribution. We do this by introducing a risky asset in addition to the

riskless bond. The insight that the introduction of “investment risk” into a Bewley model

generates a Pareto tail for the wealth distribution is due to Benhabib, Bisin, and Zhu (2015)

and our argument mimics several of their steps.69 Our result differs from theirs in three

regards. First, Benhabib, Bisin and Zhu make their argument in an environment with a

risky asset only and no market for bonds, i.e. no borrowing and lending. In contrast, we

analyze a framework with two assets, a risky asset and a riskless bond that is in zero net

supply. Our framework therefore nests both the standard Aiyagari-Bewley-Huggett model

and the framework of Benhabib, Bisin and Zhu as special cases. Conveniently, in continuous

time, analyzing a model with two assets poses no extra difficulty relative to the one-asset

case.70 Second, we obtain an easily interpretable analytic solution for the tail exponent of the

wealth distribution and we show that, somewhat counterintuitively, top wealth inequality

is decreasing in the riskiness of the risky asset. Finally, we explore the effects of both

linear and progressive capital income taxation on top wealth inequality and macroeconomic

performance.

Setup The setup is similar to that described in Section 1. We here keep the description

as short as possible and focus on highlighting the differences between the two setups. The

main difference to the previous setup is that individuals now have access to a real risky asset

kt in addition to the riskless bond which we now denote by bt. With this additional asset,

the budget constraint (2) now becomes

dkt + dbt = (zt + R̃tkt + rtbt − ct)dt (128)

where rt is the return on the riskless bond, i.e. the real interest rate, as before and R̃t is the

return on the risky asset. The return of the risky asset is stochastic and given by71

R̃tdt = Rdt+ σdWt

69Also see Benhabib, Bisin, and Zhu (2011) and Benhabib, Bisin, and Zhu (2016). Quadrini (2009) and
Cagetti and De Nardi (2006) argue for the importance of entrepreneurial risk in explaining the right tail of the
wealth distribution, which is one particular form of investment risk. Also see Krusell and Smith (1998) and
Castaneda, Diaz-Gimenez, and Rios-Rull (2003) for alternative mechanisms accounting for skewed wealth
distributions in the data.

70In particular, the two assets can still be summarized by a single state variable, “net worth.”
71This notation is somewhat unconventional. The more conventional notation is to denote the return over

a time interval of length dt by dR̂t = Rdt + σdWt and to write the budget constraint (128) as dkt + dbt =

(zt + rtbt − ct)dt + dR̂tkt. This is equivalent and yields the same budget constraint in terms of net worth
at = kt + bt, namely (128) below.
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where R is a parameter and Wt is a standard Brownian motion, that is dWt ≈ lim∆t→0 εt
√

∆t,

with εt ∼ N (0, 1). The risky asset is a real asset in the sense that kt units produce R̃tkt units

of physical output, and only positive asset positions are possible kt ≥ 0. One particularly

appealing interpretation of the risky asset is that R̃t is the return from owning and running a

private firm.72 A negative R̃t captures strong enough depreciation. But other interpretations

are possible as well. Finally, there is still a borrowing constraint which we now write as

bt ≥ −φ with φ ≥ 0.

The problem of an individual can be simplified by writing the budget constraint in terms

of wealth or net worth at = bt + kt:

dat = (zt + rat + (R− r)kt − ct)dt+ σktdWt (129)

Because capital satisfies kt ≥ 0, there is a state constraint at ≥ a = −φ as before. Similarly,

the borrowing constraint bt ≥ −φ can be written as

kt ≤ at + φ (130)

Individuals maximize (1) subject to (129), (130) and the processes for zt and R̃t, taking as

given the evolution of the equilibrium interest rate rt for t ≥ 0.

Stationary Equilibrium As before, individuals’ saving decisions and the joint distri-

bution of income and wealth can be summarized by means of a Hamilton-Jacobi-Bellman

equation and a Kolmogorov Forward equation

ρvj(a) = max
c,0≤k≤a+φ

u(c) + v′j(a)(zj + ra+ (R− r)k − c)

+
1

2
v′′j (a)σ2k2 + λj(v−j(a)− vj(a))

(131)

0 =− d

da
[sj(a)gj(a)] +

1

2

d2

da2
[σ2kj(a)2gj(a)]− λjgj(a) + λ−jg−j(a). (132)

for j = 1, 2. As before, sj(a) is the optimal saving policy function and kj(a) is the optimal

choice of the risky asset. It can be seen that (131) is an optimal portfolio allocation problem

as in Merton (1969) and kj(a)/a is the share of the individual’s portfolio invested in the

risky asset. For example, kj(a) > a means that the individual borrows in riskless bonds so

72For example, assume that private firms produce using capital and labor using a constant returns to scale
production functions Ztf(kt, `t) as in Angeletos (2007), and define

R̃tkt = max
`t
{Ztf(kt, `t)− wt`t − δtkt} .

Then the process for R̃t inherits the properties of the process for Zt. Also see Quadrini (2009) and Cagetti
and De Nardi (2006) for related models of private firms.
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as to invest into the risky asset. The interest rate r is determined in equilibrium by the fact

that bonds are in zero net supply. The bond market clearing condition can be written as:

ˆ ∞
a

k1(a)g1(a)da+

ˆ ∞
a

k2(a)g2(a)da =

ˆ ∞
a

ag1(a)da+

ˆ ∞
a

ag2(a)da

The Tail of the Wealth Distribution We now show that if individuals have CRRA util-

ity (5), the stationary wealth distribution has a Pareto tail, and derive an analytic expression

for the tail parameter. The key to this result is the following result.

Proposition 9 With CRRA utility (5), individual policy functions are asymptotically linear

in a (as a→∞) and given by

cj(a) ∼
(
ρ− (1− γ)r

γ
− 1− γ

2γ

(R− r)2

γσ2

)
a (133)

sj(a) ∼
(
r − ρ
γ

+
1 + γ

2γ

(R− r)2

γσ2

)
a (134)

kj(a) ∼ R− r
γσ2

a. (135)

where for any two functions f and g, f ∼ g means lima→∞ f(a)/g(a) = 1.

The key idea of this result is that for large enough wealth a, labor income and the borrowing

constraint become irrelevant, and so individual behavior will be like in a problem without

labor income and without a borrowing constraint. And with CRRA utility, this problem is

the portfolio allocation problem of Merton (1969) which can be solved analytically with the

policy functions in Lemma 9.

Before proceeding to the main result of this section, we make one additional assumption

on parameter values.

Assumption 2 (R− r)2 < 2σ2(ρ− r).

This assumption states that the excess return on the risky asset cannot be too large relative

to the riskiness of assets and the gap between the interest rate and the rate of time preference.

With this assumption in hand, we obtain the following analytic solution for the fatness of

the stationary wealth distribution.

Proposition 10 With CRRA utility (5) and under Assumption 2, there is a unique sta-

tionary wealth distribution which follows an asymptotic power law, that is 1−G(a) ∼ ma−ζ

with tail exponent

ζ = γ

(
2σ2(ρ− r)
(R− r)2

− 1

)
. (136)
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Therefore top wealth inequality 1/ζ is decreasing in volatility σ, risk aversion γ, and the rate

of time preference ρ, and increasing in the stationary interest rate r, and the excess return

of risky assets R− r.

Somewhat counterintuitively, top wealth inequality is decreasing in the volatility of the risky

asset. The reason for this is that there are two offsetting effects. On one hand, a higher σ has

a direct effect in that more randomness in the risky asset leads to higher inequality. On the

other hand, if σ increases, risk averse individuals optimally choose a smaller portfolio share

of risky assets (see (135)) which is a force towards lower top wealth inequality. Formula

(136) shows that the latter effect always dominates so that top wealth inequality 1/ζ is

unambiguously decreasing in volatility σ. Another way of stating this is that what matters

for top wealth inequality is the volatility of wealth σkj(a) and from (135) we have

σkj(a) ∼ R− r
γσ

a (137)

which is decreasing in σ. The behavior of top wealth inequality with respect to the other

parameter values is more intuitive: individuals invest a large share of their assets into risky

assets when they are not too risk averse, or when the excess return of risky assets is high,

and this also implies that wealth inequality is high. Also note that the fatness of the tail

parameter does not depend in any way on the properties of the stochastic process for labor

income (the income levels z1, z2 or the Poisson intensities λ1, λ2). This property of models

with investment risk was first pointed out by Benhabib, Bisin, and Zhu (2011) using the

theory of “Kesten processes” in a discrete-time model with investment risk.

Proposition 10 provides a powerful formula for calibrating models with investment risk.

Empirically, wealth distributions for developed countries like the United States feature a

high degree of concentration with a tail exponent of ζ ≈ 1.5. From (136) it can be seen

that the model can generate such high wealth concentration quite easily. For example with

a standard risk aversion parameter of γ = 2, an excess return of four percent, R− r = 0.04,

a gap between interest rate and rate of time preference of ρ − r = 0.035, and a standard

deviation of returns of twenty percent, σ = 0.2, we get ζ = 1.5 just like in the data.

Figure 18 plots individuals’ optimal choices and the resulting wealth distribution for

the model with both a risky and a riskless asset. Panel (d) in particular shows that the

distribution behaves asymptotically like a Pareto distribution by showing that the logarithm

of the density of log wealth fi(x) is asymptotically linear in the logarithm of wealth x =

log(a).73 Table 2 reports the results of a calibration exercise for the wealth distribution

in a stationary equilibrium. It can be seen that the model matches the empirical wealth

73We here use the fact that if a variable a follows a Pareto distribution g(a) ∝ a−ζ−1, then x = log a
follows an exponential distribution f(x) ∝ e−ζx and hence log f(x) is a linear function of x where the slope
equals the tail exponent ζ.
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Figure 18: Optimal Choices and Pareto Tail of Wealth Distribution in Two-Asset Model

distribution of the United States quite well, particularly at the top.74

Effect of Capital Income Taxation on Top Wealth Inequality We briefly examine

the question how a tax on capital income affects top wealth inequality. To this end, we

introduce a linear tax on capital income into our version of Huggett’s model with both a

risky and a riskless asset. We modify the budget constraint (128) to

dkt + dbt = (zt + (1− τ)(R̃tkt + rtbt) + Tt − ct)dt
74The parameter values are γ = 2, ρ = 0.05, σ = 0.56, λ1 = λ2 = 0.5, z1 = 0.4, z2 = 0.6, φ = 1.5 and the

equilibrium interest rate is r = 0.0492. It should be possible to further improve the fit at the bottom by
allowing for a looser borrowing limit φ so that a larger fraction of individuals hold negative wealth.
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U.S. Data Model
Tail Exponent ζ 1.5 1.55
Top 1% wealth share 34.6% 34.6%
Next 9% wealth share 38.0% 32.8%
Next 40 % wealth share 26.7% 26.3%
Bottom 50 % wealth share 0.7% 6.3%

Table 2: Wealth Distribution in Model vs. Data (Source: Survey of Consumer Finances)

where τ is the linear tax on capital income and Tt are lump-sum transfers. We assume

that the government balances its budget each period and redistributes revenues from capital

income taxation equally to all individuals. It is not hard to show that the formula for top

wealth inequality (136) becomes

ζ = γ

(
2σ2(ρ− r(1− τ))

(R− r)2
− 1

)
A higher capital income tax rate τ lowers top wealth inequality. Interestingly, capital taxa-

tion affects top wealth inequality only through its effect on the return of the riskless asset.

This is because a linear capital income tax does not affect the volatility of wealth in (137).

On one hand, a high tax rate directly lowers the effective variance of the risky asset σ(1−τ).

On the other hand, this reduced riskiness implies that individuals invest a larger fraction of

their wealth into risky assets. The two effects exactly offset each other as can be seen from

(137).

Proof of Proposition 9 Before proceeding to the proof of the result, we derive two

auxiliary Lemmas. The first Lemma considers an auxiliary problem without labor income,

y1 = y2 = 0, and without a borrowing constraint, φ = ∞ and shows that optimal policy

functions are linear in wealth. The second Lemma shows that the problem with labor income

and a borrowing constraint (131) satisfies a certain homogeneity property.

Lemma 11 Consider the problem

ρv(a) = max
c,k

u(c) + v′(a)(ra+ (R− r)k − c) +
1

2
v′′(a)σ2k2 (138)

where u(c) = c1−γ/(1 − γ), γ > 0. The optimal policy functions that solve (138) are linear
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in wealth and given by

c(a) =

(
ρ− (1− γ)r

γ
− 1

2

(R− r)2

σ2

1− γ
γ2

)
a (139)

s(a) =

(
r − ρ
γ

+
1 + γ

2γ

(R− r)2

γσ2

)
a (140)

k(a) =
R− r
γσ2

a (141)

Proof of Lemma 11 Grouping terms by the relevant maximization problems and solving

these, we can write

ρv(a) = H(v′(a)) +G(v′(a), v′′(a)) + v′(a)ra (142)

H(p) = max
c
{u(c)− pc} =

γ

1− γ
p
γ−1
γ

G(p, q) = max
k

{
p(R− r)k +

1

2
qσ2k2

}
=

1

2

p2

−q
(R− r)2

σ2

and from the first-order conditions

u′(c(a)) = v′(a), k(a) = − v
′(a)

v′′(a)

R− r
σ2

(143)

Guess and verify v(a) = Ba1−γ and hence v′(a) = (1− γ)Ba−γ, v′′(a) = −γ(1− γ)Ba−γ−1

H(v′(a)) =
γ

1− γ
(v′(a))

γ−1
γ =

γ

1− γ
((1− γ)B)

γ−1
γ a1−γ

(v′(a))2

−v′′(a)
=

(1− γ)B

γ
a1−γ

G(v′(a), v′′(a)) =
1

2

(v′(a))2

−v′′(a)

(R− r)2

σ2
=

1

2

(R− r)2

σ2

(1− γ)B

γ
a1−γ

Substituting into (142) and dividing by Ba1−γ, we have

ρ = γ((1− γ)B)−
1
γ +

1

2

(R− r)2

σ2

1− γ
γ

+ (1− γ)r. (144)

From (143) c(a) = ((1− γ)B)−
1
γ a and hence using (144) we obtain (139), (140) and (141).�

Lemma 12 Consider the problem (131). For any ξ > 0,

vj(ξa) = ξ1−γvξ,j(a) (145)
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where vξ,j solves

ρvξ,j(a) = max
c,0≤k≤a+φ/ξ

u(c) + v′j(a)(yj/ξ + ra+ (R− r)k − c)

+
1

2
v′′ξ,j(a)σ2k2 + λj(vξ,−j(a)− vξ,j(a))

(146)

Proof of Lemma 12 The proof follows exactly the same steps as the proof of the second

part of Proposition 2 and is therefore ommitted.�

Also the conclusion of the proof combines the preceding two Lemmas in exactly the same

manner as in the proof of the second part of Proposition 2. We therefore again omit it.�

Proof of Proposition 10 The following argument shows that if there exists a station-

ary distribution, it must have a Pareto tail with a tail parameter (136). Adding the two

Kolmogorov Forward (Fokker-Planck) equations (132)

0 = − d

da
[s1(a)g1(a) + s2(a)g2(a)] +

σ2

2

d2

da2
[k1(a)2g1(a) + k2(a)2g2(a)]. (147)

From Proposition 9, for large a we have sj(a) = s̃j + s̄a and kj(a) = k̃j + k̄a where

s̄ =
r − ρ
γ

+
1 + γ

2γ

(R− r)2

γσ2
, k̄ =

R− r
γσ2

(148)

A heuristic argument is to use a “guess-and-verify” strategy, i.e. guess that g(a) = g1(a) +

g2(a) = ξa−ζ−1, and verify that the guess solves (147) for large enough a (all other terms go

to zero as a → ∞). We here present a more rigorous and constructive proof. Integrating

(147)
σ2

2

d

da
[k1(a)2g1(a) + k2(a)2g2(a)] = [s1(a)g1(a) + s2(a)g2(a)] + C. (149)

As in the proof of Proposition 3, we choose C = 0 as an implicit boundary condition.

Later we will check that the solution does satisfy this condition. Now we define yj(a) =

σ2kj(a)2gj(a)/2, and rewrite (149) as

y′1(a) + y′2(a) =
2s1(a)

σ2k1(a)2
y1(a) +

2s2(a)

σ2k2(a)2
y2(a). (150)

Define y(a) = y1(a) + y2(a). After collecting the leading term, (150) is written as

y′(a) =
θ

a
y(a) + h1(a)y1(a) + h2(a)y2(a), (151)

θ =
2s̄

σ2k̄2
, hj(a) =

2

σ2

(
s̃j + s̄a

(k̃j + k̄a)2
− s̄

k̄2a

)
, j = 1, 2.
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Dividing (151) by y(a) and integrating both sides from a1 to a2 where a1 < a2 are large

enough, we have

ln

(
y(a2)

aθ2

)
− ln

(
y(a1)

aθ1

)
=

ˆ a2

a1

h1(x)y1(x)

y(x)
dx+

ˆ a2

a1

h2(x)y2(x)

y(x)
dx. (152)

Note that there exists a positive constant C̄ such that |hj(a)| ≤ C̄/a2, j = 1, 2 and yj > 0.

Therefore we have∣∣∣∣ln(y(a2)

aθ2

)
− ln

(
y(a1)

aθ1

)∣∣∣∣ ≤ ˆ a2

a1

C̄

x2

(
y1(x)

y(x)
+
y2(x)

y(x)

)
dx ≤ C̄

(
1

a1

− 1

a2

)
.

Hence there exists ξ̄ such that

lim
a→∞

ln

(
y(a)

aθ

)
= ξ̄.

Recalling the definition of y(a) = σ2g(a)(k1(a)2 + k2(a)2)/2, we have

lim
a→∞

g(a)

aθ−2
=

2 exp (ξ̄)

σ2k̄2
. (153)

Equivalently

g(a) ∼ ξa−ζ−1, ζ = 1− θ = 1− 2s̄

σ2k̄2
, ξ =

2 exp (ξ̄)

σ2k̄2
.

Finally, substituting the expressions for s̄ and k̄ in (148) into the expression for ζ yields

(136).�
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