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We recast the Aiyagari–Bewley–Huggett model of income and wealth distribution in continuous
time. This workhorse model—as well as heterogeneous agent models more generally—then boils down to
a system of partial differential equations, a fact we take advantage of to make two types of contributions.
First, a number of new theoretical results: (1) an analytic characterization of the consumption and saving
behaviour of the poor, particularly their marginal propensities to consume; (2) a closed-form solution
for the wealth distribution in a special case with two income types; (3) a proof that there is a unique
stationary equilibrium if the intertemporal elasticity of substitution is weakly greater than one. Second,
we develop a simple, efficient and portable algorithm for numerically solving for equilibria in a wide class
of heterogeneous agent models, including—but not limited to—the Aiyagari–Bewley–Huggett model.
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1. INTRODUCTION

One of the key developments in macroeconomics research over the last three decades has been
the incorporation of explicit heterogeneity into models of the macroeconomy. Fuelled by the
increasing availability of high-quality micro data, the advent of more powerful computing methods
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as well as rising inequality in many advanced economies, such heterogeneous agent models have
proliferated and are now ubiquitous. This is a welcome development for a number of reasons.
First, it opens up the door to bringing micro data to the table in order to empirically discipline
macro theories. Second, macroeconomists often want to analyse the welfare implications of
particular shocks or policies. This is impossible without asking “who gains and who loses?”,
that is, distributional considerations often cannot be ignored. Third, models with heterogeneity
often deliver strikingly different aggregate implications than do representative agent models, for
example, with respect to monetary and fiscal policies.1

Despite the continuously increasing popularity of macroeconomic models with rich
heterogeneity, the literature has suffered from a dearth of theoretical and analytical results. Little
is known about the properties of consumption and saving behaviour in the presence of borrowing
constraints, those of the resulting wealth distribution, and equilibrium uniqueness (or lack thereof).
Instead, most studies rely on purely numerical analyses to characterize the implications of such
theories. But even such computational approaches are often difficult and costly, particularly if the
question at hand requires solving for the economy’s transition dynamics or if the model features
non-differentiabilities or non-convexities.

In this article, we make some progress on these issues by recasting the standard incomplete
market model of Aiyagari (1994), Bewley (1986), and Huggett (1993) in continuous time.2 Our
main contributions are twofold. First, we prove a number of new theoretical results about this
workhorse model.3 Second, we develop a simple, efficient, and portable algorithm for numerically
solving both stationary equilibria and transition dynamics of a wide class of heterogeneous agent
models, including—but not limited to—the Aiyagari–Bewley–Huggett model.

Both types of contributions make use of an important property: when recast in continuous time,
heterogeneous agent models boil down to systems of two coupled partial differential equations.
The first of these is a Hamilton–Jacobi–Bellman (HJB) equation for the optimal choices of
a single atomistic individual who takes the evolution of the distribution and hence prices as
given. And the second is a Kolmogorov Forward (KF) equation characterizing the evolution of
the distribution, given optimal choices of individuals.4 More generally, our approach is to cast
heterogeneous agent models in terms of the mathematical theory of “Mean Field Games” (MFG)
initiated by Lasry and Lions (2007).5 The system of coupled HJB and KF equations is known as
the “backward–forward MFG system.”

1. Deaton (2016) succinctly summarizes the second and third reasons: “Aggregation needs to be seen, not as a
nuisance, but as a hallmark of seriousness [...] While we often must focus on aggregates for macroeconomic policy,
it is impossible to think coherently about national well-being while ignoring inequality and poverty, neither of which
is visible in aggregate data. Indeed, and except in exceptional cases, macroeconomic aggregates themselves depend on
distribution.”

2. Another important early reference is Imrohoroğlu (1989) who studies a model with both idiosyncratic and
aggregate risk. The presence of a storage technology means that the model is set in partial equilibrium (the interest rate
is exogenous and equals zero). Because of this difference, we refer to the Aiyagari–Bewley–Huggett model throughout
the paper, but without wanting to diminish Imrohoroğlu’s important contribution.

3. Of course and as is well-known, the unadorned Aiyagari–Bewley–Huggett model is not sufficiently rich to be
an empirically realistic theory of income and wealth distribution. Understanding its theoretical properties is nevertheless
important, simply because it forms the backbone of much of modern macroeconomics.

4. The “Kolmogorov Forward equation” is also often called “Fokker–Planck equation.” Because the term
“Kolmogorov Forward equation” seems to be somewhat more widely used in economics, we will use this convention
throughout the article. But these are really two different names for the same equation.

5. The theory of “Mean Field Games” is a general and rigorous framework for the analysis of dynamic, stochastic
games with a continuum of players. The name comes from an analogy to the continuum limit taken in “Mean Field
theory” which approximates large systems of interacting particles by assuming that these interact only with the statistical
mean of other particles. In general, MFGs can be written in terms of a so-called “Master equation” which reduces to the
“backward–forward MFG system” in the case without aggregate uncertainty. For more on MFGs, see e.g. Guéant et al.
(2011) and Cardaliaguet (2013).
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In the context of the Aiyagari–Bewley–Huggett model, the HJB equation characterizes
individuals’ optimal consumption and saving behaviour given a stochastic process for income;
and the KF equation characterizes the evolution of the joint distribution of income and wealth.
The two equations are coupled because optimal consumption and saving depend on the interest
rate which is determined in equilibrium and hence depends on the wealth distribution. We start
with a particularly parsimonious case: a Huggett (1993) economy in which idiosyncratic income
risk takes the form of exogenous endowment shocks that follow a two-state Poisson process and
in which individuals save in unproductive bonds that are in fixed supply. Later in the article,
we extend many of our results to more general stochastic processes and to an Aiyagari (1994)
economy in which individuals save in productive capital.

We prove three new theoretical results about the Aiyagari–Bewley–Huggett model. First, we
provide an analytic characterization of the consumption and saving behaviour of the poor. We
show that, under natural assumptions, an individual’s saving policy function behaves like −√

2νa
in the vicinity of the borrowing constraint, where a is her wealth in deviations from this constraint
and ν is a constant that depends on parameters. Equivalently, her consumption function behaves
like her total income plus

√
2νa. This characterization implies that (1) individuals necessarily

hit the borrowing constraint in finite time after a long enough sequence of low-income shocks
and (2) we have an intuitive characterization of the speed ν at which an individual does so as
well as her marginal propensity to consume (MPC) out of a windfall income gain. This MPC
is higher the lower is the interest rate relative to the rate of time preference, the more willing
to intertemporally substitute individuals are, or the higher is the likelihood of getting a high-
income draw; it is non-monotone in the income received in low-income states (e.g. unemployment
benefits). Understanding the theoretical determinants of MPCs is, of course, important for a large
body of applied work.6 Second, we derive an analytic solution for the wealth distribution for a
special case with two income types. This analytic solution provides a clean characterization of
various properties of the wealth distribution, particularly the behaviour of its left and right tails.
For example, a direct corollary of individuals hitting the borrowing constraint in finite time is that
the wealth distribution features a Dirac point mass at this constraint. Third, we prove existence and
uniqueness of a stationary equilibrium for general utility functions and income processes under
the intuitive condition that the intertemporal elasticity of substitution (IES) −u′(c)/(u′′(c)c) is
weakly greater than one for all consumption levels c.7 Without a uniqueness result the economy
could, in principle, be subject to poverty traps and history dependence.8

In addition to these results, which are new also relative to the existing discrete-time literature,
we extend some useful existing discrete-time results and concepts to continuous time. First, we
adapt a number of results from Aiyagari (1994), e.g., that the wealth distribution has a finite upper
bound and that a stationary equilibrium exists. Second, we characterize the saving behaviour of
the wealthy and show that, with constant relative risk aversion (CRRA) utility, consumption and
saving policy functions become linear for high wealth (Benhabib et al., 2015; Benhabib and Bisin,
2018). Third, we show how to define in continuous time marginal propensities to consume and

6. The distribution of MPCs determines, for example, the efficacy of fiscal stimulus (e.g. Kaplan and Violante,
2014; Hagedorn et al., 2017), the transition mechanism of monetary policy (e.g. Auclert, 2019; Kaplan et al., 2018),
the effect of a credit crunch or house price movements on consumer spending (e.g. Guerrieri and Lorenzoni, 2017;
Berger et al., 2018), and the extent to which inequality affects aggregate demand (e.g. Auclert and Rognlie, 2018, 2017).

7. The uniqueness result additionally assumes that individuals cannot borrow. A key step in our proof is an important
result by Olivi (2018). Contemporaneous work by Light (2018) derives a uniqueness result under a similar condition on
the IES in a more restrictive discrete-time setting: an Aiyagari economy with CRRA utility and Cobb–Douglas production
(as well as no borrowing).

8. For the same reasons, one of the first results that every graduate student learns is that the neoclassical growth
model—the representative-agent counterpart to the Aiyagari model—features a unique steady state.
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save over discrete time intervals. This is not obvious and, at the same time, important for bringing
the model to the data. Finally, a methodological contribution of our article is to show how to handle
borrowing constraints in continuous time: conveniently, the borrowing constraint never binds in
the interior of the state space and only shows up in a boundary condition. The consumption
first-order condition always holds with equality, thereby sidestepping any complications due to
“occasionally binding constraints.” Many of our proofs exploit this fact.

As already mentioned, our second main contribution is the development of a simple, efficient,
and portable numerical algorithm for computing a wide class of heterogeneous agent models.
The algorithm is based on a finite difference method and applies to the computation of both
stationary and time-varying equilibria.9 We explain this algorithm in the context of the Aiyagari–
Bewley–Huggett model. But the algorithm is, in fact, considerably more general and applies to
any heterogeneous agent model with a continuum of atomistic agents (and without aggregate
shocks). In Sections 6 and 7, we demonstrate the algorithm’s generality by applying it to other
theories that feature non-convexities, a fat-tailed wealth distribution and multiple assets. Codes for
these applications (and many more) are available at https://benjaminmoll.com/codes/ in Matlab
as well as Python, Julia, and C++.

The first step of the algorithm is to solve the HJB equation for a given time path of prices.
The second step is to solve the KF equation for the evolution of the joint distribution of income
and wealth. Conveniently, after having solved the HJB equation, one obtains the time path of the
distribution essentially “for free,” i.e., with very few lines of code. This is because the KF equation
is the “transpose problem” of the HJB equation.10 The third step is to iterate and repeat the first two
steps until an equilibrium time path of prices is found. For the first step, we make use of the theory
of “viscosity solutions” to HJB equations (Crandall and Lions, 1983), and the corresponding
theory for their numerical solution using finite difference methods (Barles and Souganidis, 1991).
While much of our paper can be read without knowledge of viscosity solutions, we provide a
brief introduction in Section 6.

Continuous time imparts a number of computational advantages relative to discrete time. As
explained in more detail in Section 5.1, these relate to the handling of borrowing constraints,
the numerical solution of first-order conditions and the fact that continuous-time problems with
discretized state space are, by construction, very “sparse.” These computational advantages are
reflected in the algorithm’s efficiency which we showcase in Section 5.6. At the same time,
the algorithm is simple. Implementing it requires only some basic knowledge of matrix algebra
and access to a software package that can solve sparse linear systems (e.g. Matlab). Finally,
the algorithm is portable. For example, it applies without change to problems that involve non-
differentiabilities and non-convexities. These are difficult to handle with standard discrete-time
methods.11 In contrast, viscosity solutions and finite difference methods are designed to handle
non-differentiable and non-convex problems. To illustrate this, we use the same algorithm to
compute equilibria of an economy in which the interplay of indivisible housing and mortgages
with a down-payment constraint causes a non-convexity which can result in individual poverty
traps and multiple stationary distributions, an idea going back to Galor and Zeira (1993) among
others.

Besides hopefully being useful in their own right, our paper’s contributions are also the
foundation for a number of generalizations that go beyond the setup that we consider in the

9. Our numerical method is based on Achdou and Capuzzo-Dolcetta (2010) and Achdou (2013) but modified to
handle the particular features of heterogeneous agent models, in particular borrowing constraints.

10. More precisely, the differential operator in the KF equation is the adjoint of the differential operator in the HJB
equation. The adjoint of an operator is the infinite-dimensional analogue of a matrix transpose.

11. Because first-order conditions are no longer sufficient and standard envelope theorems do not apply.
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present paper (as well as the extensions in Section 7). First, building on the finite difference method
developed here, Ahn et al. (2017) and Fernández-Villaverde et al. (2019) develop computational
methods for solving heterogeneous agent models with aggregate uncertainty in addition to
idiosyncratic risk (as in Den Haan, 1997; Krusell and Smith, 1998). Second, Olivi (2018)
leverages our continuous-time formulation to obtain powerful comparative statics and sufficient
statistics in incomplete markets models—results we build on in our uniqueness proof. Third,
Parra-Alvarez et al. (2017) discuss how to identify and estimate continuous-time Aiyagari-
Bewley-Huggett models. Fourth, Nuño and Moll (2017) and Nuño and Thomas (2017) devise
a method for computing social optima. Fifth, Shaker Akhtekhane (2017) and Moll (2018) extend
our computational approach to economies with heterogeneous firms à la Hopenhayn (1992).
Sixth, Ruttscheidt (2018), building on Ahn (2017), computes equilibria in economies with a large
number of individual state variables (four or more) by marrying our finite difference method with
a sparse grid approach (Bungartz and Griebel, 2004; Gerstner and Griebel, 2010). All of these
generalizations build on the tools developed in the present article.

A large theoretical and quantitative literature studies environments in which heterogeneous
households are subject to uninsurable idiosyncratic shocks. See Heathcote et al. (2009), Guvenen
(2011), Quadrini and Ríos-Rull (2015), and Krueger et al. (2015) for recent surveys, and the
textbook treatment in Ljungqvist and Sargent (2004). All of these are set in discrete time.

Much fewer papers have studied equilibrium models with heterogeneous households in
continuous time.12 All of these papers make “just the right assumptions” about the environment
being studied so that equilibria can be solved explicitly (or at least characterized tightly).13 In
contrast, our aim is to develop tools for solving and analysing models that do not permit closed-
form solutions. Our methods apply as long as the model under consideration can be boiled down
to an HJB equation and a KF equation, a feature shared by a wide class of heterogeneous agent
models. These two approaches are clearly complementary: on the one hand, having explicit
solutions is often extremely valuable for gaining intuition; on the other hand, restricting attention
to environments for which these can be found may represent a sort of “analytic straitjacket” for
some applications and the availability of more general methods may prove useful in such contexts.

One other paper by Bayer et al. (2019) also studies a continuous-time version of the standard
Aiyagari–Bewley–Huggett model. The main differences between their paper and ours are:
(1) they analyse a partial equilibrium framework whereas we consider a general equilibrium
framework and (2) we develop a numerical algorithm for solving both stationary and time-varying
equilibria.14 Barczyk and Kredler (2014a,b, 2018) study quantitative continuous-time Aiyagari–
Bewley–Huggett models with imperfectly altruistic overlapping generations. We instead focus
on the simpler workhorse version with infinitely lived individuals, allowing us to prove a
number of new theoretical results. Finally, Rocheteau et al. (2015) propose an elegant alternative

12. See, for example, Jovanovic (1979), Moscarini (2005), Alvarez and Shimer (2011), Moll (2014), Stokey (2014),
Vindigni et al. (2015), Jones and Kim (2018), Jones (2015), Toda and Walsh (2015), Benhabib et al. (2016), Cao and Luo
(2017), and Kasa and Lei (2018). Miao (2005), Luttmer (2007, 2011, 2015), and Benhabib et al. (2017) analyse theories
with heterogeneous producers. These papers, like ours, all study economies with a continuum of heterogeneous agents
yielding a system of coupled HJB and KF equations. In contrast, other papers study environments with a finite number of
heterogeneous agents (typically equal to two). For example, see Scheinkman and Weiss (1986) and applications of their
framework by Conze et al. (1993) and Lippi et al. (2013).

13. Similarly, there are also several discrete-time approaches for retaining tractability in environments with
heterogeneous households (e.g. Bénabou, 2002; Krebs, 2003; Heathcote et al., 2014).

14. Additionally, Bayer, Rendall, and Wälde assume a “natural borrowing constraint” implying that individuals
never actually hit that constraint. Another difference is that they characterize individuals’ saving behaviour in terms of a
differential equation for its consumption policy function whereas we work with the HJB equation. Lise (2013) is another
paper studying a continuous-time partial-equilibrium setting.
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general equilibrium model with incomplete markets in continuous time. Market incompleteness
in their framework stems from lumpy consumption expenditure shocks rather than idiosyncratic
income risk. As a result their model features only one individual state variable and many results
can be derived in closed form. The tradeoff is that their theory is further from the standard
Aiyagari–Bewley–Huggett model that forms the backbone of much of modern macroeconomics.15

Section 2 lays out our continuous-time version of the workhorse macroeconomic model of
income and wealth distribution in the parsimonious form due to Huggett (1993) while Section
3 briefly sketches the general approach of casting heterogeneous agent models as Mean Field
Games. Section 4 contains our new theoretical results. Section 5 describes our computational
algorithm for both stationary and time-varying equilibria and discusses computational advantages
relative to existing discrete-time methods. Section 6 applies the algorithm to a problem with a
non-convexity and provides a brief introduction to viscosity solutions. Section 7 discusses a
number of generalizations and extensions and Section 8 concludes.

2. THE WORKHORSE MODEL OF INCOME AND WEALTH DISTRIBUTION IN
MACROECONOMICS

To explain the logic of our approach in the simplest possible fashion, we present it in a context
that should be very familiar to many economists: a general equilibrium model with incomplete
markets and uninsured idiosyncratic labour income risk as in Aiyagari (1994), Bewley (1986),
and Huggett (1993). We first do this in the context of an economy in which individuals save in
unproductive bonds that are in fixed supply as in Huggett (1993). We later consider different ways
of closing the model.

2.1. Setup

Individuals. There is a continuum of individuals that are heterogeneous in their wealth a and
income y. The state of the economy is the joint distribution of income and wealth. Individuals
have standard preferences over utility flows from future consumption ct discounted at rate ρ ≥0:

E0

∫ ∞

0
e−ρtu(ct)dt. (1)

The function u is strictly increasing and strictly concave. An individual has an income yt which
is simply an endowment of the economy’s final good. His wealth takes the form of bonds and
evolves according to

ȧt =yt +rtat −ct, (2)

where rt is the interest rate. Individuals also face a borrowing limit

at ≥a, (3)

where −∞<a<0.16 Finally, an individual’s income evolves stochastically over time. In
particular, we assume that income follows a two-state Poisson process yt ∈{y1,y2}, with y2 >y1.

15. Wang (2007) proposes an elegant continuous-time Aiyagari–Bewley–Huggett model that can be solved
analytically but at the cost of making two non-standard assumptions on preferences: CARA utility and discount rates that
are increasing in past consumption (in the absence of the second assumption, constant absolute risk aversion (CARA)
utility implies exploding wealth inequality, and non-existence of a stationary distribution).

16. As discussed in detail in Aiyagari (1994), if the borrowing limit a is less tight than the so-called “natural
borrowing limit”, the constraint at ≥a will never bind and the “natural borrowing limit” will be the effective borrowing
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The process jumps from state 1 to state 2 with intensity λ1 and vice versa with intensity λ2. The
two states can be interpreted as employment and unemployment so that λ1 is the job-finding
rate and λ2 the job destruction rate. The two-state Poisson process is chosen for simplicity, and
Section 7 extends the setup to more general income processes.

Individuals maximize (1) subject to (2), (3) and the process for yt , taking as given the evolution
of the equilibrium interest rate rt for t ≥0. For future reference, we denote by gj(a,t),j=1,2 the
density of the joint distribution of income yj and wealth a. As we will see, this distribution
will typically feature a Dirac point mass at the borrowing constraint a and we therefore write
aggregates that integrate over the wealth distribution in terms of the corresponding cumulative
distribution function (CDF) Gj(a,t).17

Equilibrium. The economy can be closed in a variety of ways. We here present the simplest
possible way of doing this following Huggett (1993). We assume that the only price in this
economy is the interest rate rt which is determined by the requirement that, in equilibrium, bonds
must be in fixed supply:

∫ ∞

a
adG1(a,t)+

∫ ∞

a
adG2(a,t)=B, (4)

where 0≤B<∞. B=0 means that bonds are in zero net supply. Alternatively, B can be positive.
For instance, a government could issue debt and sell it to individuals or there could be saving
opportunities abroad. The economy can be closed in a number of alternative ways. For example,
in Section 7, we let individuals save in productive capital and the interest rate equals the marginal
product of capital of a representative firm as in Aiyagari (1994).

Useful utility functions. We have not imposed any assumptions on the utility function u besides
it being strictly increasing and strictly concave. But in later parts of the paper, it will sometimes
be instructive to specialize this utility function to either constant relative risk aversion (CRRA)
utility

u(c)= c1−γ

1−γ
, γ >0, (5)

or to exponential utility

u(c)=−1

θ
e−θc, θ >0. (6)

2.2. Stationary equilibrium

Individuals’ consumption–saving decision and the evolution of the joint distribution of their
income and wealth can be summarized with two differential equations: a HJB equation and a

limit. In a stationary equilibrium with r >0, the “natural borrowing limit” is at ≥−y1/r where y1 is the lowest income. In
an equilibrium with a time-varying interest rate rt the natural borrowing constraint is at ≥−y1

∫∞
t exp

(−∫ s
t rτ dτ

)
ds. The

natural borrowing constraint ensures that at never becomes so negative that the individual cannot repay her debt even if
she chooses zero consumption thereafter.

17. Suppressing dependence on time t, the CDF will decompose as Gj(a)= G̃j(a)+mjδa=a where dG̃j(a)=gj(a)da,
mj is the mass at a, and δ is the Dirac delta function. Equivalently, the integral of any function ϕ is

∫∞
a ϕ(a)dGj(a)=∫∞

a ϕ(a)gj(a)da+ϕ(a)mj . Also note that
∫∞

a dG1(a)+∫∞
a dG2(a)=1, that is, Gj(a) is the unconditional distribution of

wealth for a given productivity type j=1,2.
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Kolmogorov Forward (or Fokker–Planck) equation. In a stationary equilibrium, these take the
form:18

ρvj(a)=max
c

u(c)+v′
j(a)(yj +ra−c)+λj(v−j(a)−vj(a)), (7)

0=− d

da
[sj(a)gj(a)]−λjgj(a)+λ−jg−j(a), (8)

for j=1,2 and where, throughout this article, we adopt the convention that −j=2 when j=1
and vice versa. The derivations of the HJB equation (7) and the KF equation (8) can be found in
Supplementary Appendix B. The function sj in (8) is the saving policy function, i.e. the optimally
chosen drift of wealth

sj(a)=yj +ra−cj(a), where cj(a)= (u′)−1(v′
j(a)). (9)

The domain of the differential equations (7) and (8) is (a,∞), where a is the borrowing limit.
The reader may wonder why the borrowing constraint (3) does not feature in the HJB equation

(7). The reason is that, in our continuous-time formulation, the borrowing constraint never binds
in the interior of the state space, i.e., for a>a and as a result an undistorted first-order condition
u′(cj(a))=v′

j(a) holds everywhere.19 Intuitively, since wealth a is a continuously moving state
variable, if it is strictly above the borrowing constraint today, it will still be strictly above the
constraint an infinitesimal time interval later. Instead, the borrowing constraint gives rise to a
state constraint boundary condition20

v′
j(a)≥u′(yj +ra), j=1,2. (10)

To see why this is the appropriate boundary condition, note that the first-order condition u′(cj(a))=
v′

j(a) still holds at a=a. The boundary condition (10) therefore implies sj(a)=yj +ra−cj(a)≥0,
i.e., it ensures that the borrowing constraint is never violated. Supplementary Appendix D derives
the state constraint boundary condition (10) more rigorously and makes the connection to a
somewhat more general strategy for imposing state constraints used in the mathematics literature,
namely to look for a constrained viscosity solution of (7).21 The KF equation (8) requires no
boundary condition at a: the state constraint is satisfied by virtue of sj being the optimal saving
policy function from the HJB equation (7).

18. The system can be written more compactly as two non-linear partial differential equations in vj and gj only,
that do not involve a max operator: define the Hamiltonian H(p)=maxc u(c)−pc, write the saving policy function as
sj(a)=yj +ra+H ′(v′

j(a)) and write (7) and (8) as

ρvj(a)=H(v′
j(a))+v′

j(a)(yj +ra)+λj(v−j(a)−vj(a)),

0=− d

da
[(yj +ra+H ′(v′

j(a)))gj(a)]−λjgj(a)+λ−jg−j(a).

19. This is in contrast to discrete-time formulations where there is a set [a,a∗) with a∗ >a such that type 1’s
borrowing constraint binds for all a∈[a,a∗) and hence the first-order condition is distorted.

20. Note that this inequality has very little to do with the inequality in discrete-time first-order conditions due to
occasionally binding borrowing constraints—see e.g. equation (37) later in the article. In fact, the two inequalities go in
opposite directions. Even though both inequalities result from the presence of borrowing constraints, the logic behind
them is completely different.

21. See Soner (1986a,b) and Capuzzo-Dolcetta and Lions (1990).
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Finally, the stationary interest rate r must satisfy the analogue of the market clearing
condition (4)

S(r) :=
∫ ∞

a
adG1(a)+

∫ ∞

a
adG2(a)=B. (11)

The two ordinary differential equations (7) and (8) together with (9), (10), and the equilibrium
relationship (11) fully characterize the stationary equilibrium of our economy. In the Mean Field
Games (MFG) literature in mathematics this system of coupled HJB and KF equations is called
a “backward–forward MFG system,” here in its stationary form.

2.3. Transition dynamics

Many interesting questions require studying transition dynamics, that is the evolution of the
economy when the initial distribution of income and wealth does not equal the stationary
distribution. The time-dependent analogue of the stationary system (7) to (11) is

ρvj(a,t)=max
c

u(c)+∂avj(a,t)(yj +r(t)a−c)+λj(v−j(a,t)−vj(a,t))+∂tvj(a,t), (12)

∂tgj(a,t)=−∂a[sj(a,t)gj(a,t)]−λjgj(a,t)+λ−jg−j(a,t), (13)

sj(a,t)=yj +r(t)a−cj(a,t), cj(a,t)= (u′)−1(∂avj(a,t)), (14)

for j=1,2, and together with the equilibrium condition (4). We here use the short-hand notation
∂av=∂v/∂a and so on, and as before sj denotes the optimal saving policy function. The domain
of the two partial differential equations (12) and (13) is (a,∞)×R

+ (though more on the time
domain momentarily). The function vj again satisfies a state constraint boundary condition similar
to (10)

∂avj(a,t)≥u′(yj +r(t)a), j=1,2. (15)

The density gj satisfies the initial condition

gj(a,0)=gj,0(a). (16)

The value function satisfies a terminal condition. In principle, the time domain is R
+ but in

practice we work with (0,T ) for T “large” and impose

vj(a,T )=vj,∞(a), (17)

where vj,∞ is the stationary value function that solves the stationary problem (7) to (11).
The two partial differential equations (12) and (13) together with (14), the equilibrium

relationship (4) and the boundary conditions (15) to (17) fully characterize the evolution of our
economy. This is the time-dependent version of a “backward–forward MFG system.” It has two
properties that are worth emphasizing. First, the two equations (12) and (13) are coupled: on one
hand, an individual’s consumption-saving decision depends on the evolution of the interest rate
which is in turn determined by the evolution of the distribution; on the other hand, the evolution
of the distribution depends on individuals’ saving decisions. Second, the two equations run in
opposite directions in time: the Kolmogorov Forward equation (13) runs forward (as indicated
by its name) and looks backwards—it answers the question “given the wealth distribution today,
savings decisions and the random evolution of income, what is the wealth distribution tomorrow?”
In contrast, the HJB equation (12) runs backwards and looks forward—it answers the question
“given an individual’s valuation of income and wealth tomorrow, how much will she save today
and what is the corresponding value function today?”
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3. GENERAL HETEROGENEOUS AGENT MODELS AS MEAN FIELD GAMES

That a heterogeneous agent model boils down to a system of coupled HJB and KF equations is
not special to the Aiyagari–Bewley–Huggett model. We here briefly sketch the general approach
of casting such models in terms of the mathematical theory of Mean Field Games (MFGs) and
provide some references. We also comment on an issue concerning HJB and KF equations, namely
what the correct notion of a solution to these partial differential equations (PDEs) is.

3.1. General backward–forward MFG systems

Any heterogeneous agent model with a continuum of atomistic agents (and without aggregate
shocks) can be written as a “backward–forward MFG system” of coupled HJB and KF equations.
The system from the Aiyagari–Bewley–Huggett model generalizes in two obvious ways. First,
the notion of an agent is abstract and also covers firms. Second, general heterogeneous agent
models may feature n individual state variables rather than just two. The value function and
distribution are then functions of n variables and the backward-forward MFG system is set in n
dimensions. Supplementary Appendix C spells out the equations for the abstract, n-dimensional
case. To make the mathematics literature accessible to economists, we there also explain the
vector calculus notation that is typically used in this literature.

The mathematical theory of MFGs was initiated by Lasry and Lions (2007). Cardaliaguet
(2013) and Ryzhik (2018) provide excellent and relatively accessible accounts of its current state.
A natural question is whether this literature contains any “off-the-shelf” results on backward–
forward MFG systems that apply to the economic models we want to study, say with regard to
existence and uniqueness of solutions. As we explain in Supplementary Appendix C.5, the answer
is “no” unfortunately: several of the typical features of heterogeneous agent models in economics
mean that they are not special cases of the MFGs treated in mathematics.

3.2. Classical versus weak solutions of HJB and KF equations

A classical solution to a PDE or ordinary differential equation (ODE) is a solution that is
differentiable as many times as needed to satisfy the corresponding equation. For example,
classical solutions to the first-order HJB and KF equations (12) and (13) would need to be once
differentiable. Similarly, classical solutions to second-order equations that arise for example if y
follows a diffusion process would need to be twice differentiable. In general, we do not expect
to find such classical solutions to either HJB or KF equations. For instance, the value function
v may have kinks and the distribution g may feature Dirac point masses. Instead, we generally
look for certain weak solutions of these equations, that is, solutions that may not be continuously
differentiable or even continuous but still satisfy these equations in some sense. As we explain in
Supplementary Appendices D and E, the correct notion for a weak solution of the HJB equation
is a viscosity solution and that of the KF equation is a measure-valued solution.22 See Evans
(2010, Section 1.3) and Tao (2008) for illuminating discussions on the role of weak solutions in
the study of partial differential equations more generally.

Most of our article employs classical methods and the preceding paragraph equips the reader
sufficiently well for those parts that do not. An exception is the model with a non-convexity due
to indivisible housing in Section 6. We there discuss in more detail the usefulness of viscosity
solutions.

22. The standard notion of a measure-valued solution is only defined on the interior of the state space and therefore
cannot be used to deal with a Dirac point mass at the boundary, a feature that arises in our application. We show in
Supplementary Appendix E how to extend the standard notion to take into account this possibility.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/89/1/45/6149490 by London School of Econom

ics user on 11 January 2022

https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdab002#supplementary-data
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdab002#supplementary-data
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdab002#supplementary-data
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdab002#supplementary-data
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdab002#supplementary-data
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdab002#supplementary-data
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdab002#supplementary-data
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdab002#supplementary-data
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdab002#supplementary-data


Copyedited by: ES MANUSCRIPT CATEGORY: Article

[11:41 28/12/2021 OP-REST210009.tex] RESTUD: The Review of Economic Studies Page: 55 45–86

ACHDOU ET AL. INCOME AND WEALTH DISTRIBUTION IN MACROECONOMICS 55

4. THEORETICAL RESULTS FOR THE AIYAGARI–BEWLEY–HUGGETT MODEL:
CONSUMPTION, SAVING, AND INEQUALITY

This Section presents theoretical results about our continuous-time version of the Aiyagari–
Bewley–Huggett model, including the three new results emphasized in the introduction. Sections
4.1 to 4.5 analyse the HJB and KF equations (7) and (8) in partial equilibrium, i.e., taking as given
a fixed interest rate r (assumed to be less than ρ which will be the equilibrium outcome). Section
4.6 then imposes market clearing (11) and considers the stationary equilibrium, particularly its
existence and uniqueness. While we focus on the case with two income states for pedagogical
reasons, all results except the closed-form wealth distribution in Proposition 3 generalize to
alternative income processes (see Section 7).

4.1. An Euler equation

Our first few theoretical results concern the consumption and saving behaviour of individuals.
Our characterization of individual behaviour uses the following Lemma.

Lemma 1 The consumption and saving policy functions cj(a) and sj(a) for j=1,2 correspond-
ing to the HJB equation (7) satisfy

(ρ−r)u′(cj(a))=u′′(cj(a))c′
j(a)sj(a)+λj(u

′(c−j(a))−u′(cj(a))),

sj(a)=yj +ra−cj(a).
(18)

Proof. Differentiate the HJB equation (7) with respect to a (envelope condition) and use that
v′

j(a)=u′(cj(a)) and hence v′′
j (a)=u′′(cj(a))c′

j(a). �

The differential equation (18) is an Euler equation. The right-hand side is simply the expected
change of individual marginal utility of consumption Et[du′(cj(at))]/dt.23 Therefore (18) is
equivalent to

Et[du′(cj(at))]
u′(cj(at))

= (ρ−r)dt.

4.2. Consumption and saving behaviour of the poor

Our first main result is obtained by analysing the Euler equation (18) close to the borrowing
constraint. The interesting case is when the behaviour at the constraint differs qualitatively from
that of rich individuals. Whether this is the case depends crucially on two factors: the tightness of
the borrowing constraint a, and the properties of the utility function at low levels of consumption.
To focus on the interesting case, we make the following assumption.

Assumption 1 The coefficient of absolute risk aversion R(c) :=−u′′(c)/u′(c) remains finite at
the borrowing limit

R :=−u′′(y1 +ra)

u′(y1 +ra)
<∞.

The next proposition shows that the borrowing constraint “matters” if this assumption holds.
Standard utility functions satisfy R(c)<∞ for c>0 but limc→0R(c)=∞. For example, with

23. This uses the extension of Ito’s formula to Poisson processes: Et[du′(cj(at))]=[u′′(cj(at))c′
j(at)sj(at)+

λj(u′(c−j(at))−u′(cj(at)))]dt.
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CRRA utility (5), R(c)=γ /c. Therefore, for such standard utility functions Assumption 1 is
equivalent to a>−y1/r, i.e., the borrowing constraint matters if it is tighter than the “natural
borrowing constraint.” However, Assumption 1 is considerably weaker than this. In particular,
if the utility function is such that absolute risk aversion remains bounded as consumption goes
to zero, R(0)<∞, Assumption 1 holds and hence the constraint matters even with the natural
borrowing constraint a=−y1/r. An example is exponential utility (6) for which R=θ <∞
regardless of the tightness of the borrowing constraint. Summarizing, Assumption 1 says that
either the borrowing constraint is tighter than the natural borrowing constraint or the coefficient of
absolute risk aversion is bounded as consumption approaches zero (or both).24 For completeness,
the case in which Assumption 1 is violated is covered in Proposition 1’ in the Supplementary
Appendix.

In what follows as well as elsewhere in the article, we use the following asymptotic notation: for
any two functions f and g, “f (a)∼g(a) as a→a” is short-hand notation for lima→a f (a)/g(a)=1,
i.e., f “behaves like” g for a close to a.

Proposition 1 (MPCs and Saving at Borrowing Constraint) Let s1(a) and c1(a) be the
optimal saving and consumption policy functions of the low-income type. If r <ρ and Assumption
1 holds, then:

1. s1(a)=0 but s1(a)<0 all a>a. That is, only individuals exactly at a are constrained, whereas
those with wealth a>a are unconstrained and decumulate assets.
2. as a→a, the saving and consumption policy functions of the low-income type and the
corresponding instantaneous marginal propensity to consume satisfy

s1(a)∼−√2ν1
√

a−a, (19)

c1(a)∼y1 +ra+√2ν1
√

a−a,

c′
1(a)∼r+

√
ν1

2(a−a)
, (20)

ν1 := (ρ−r)u′(c1)+λ1(u′(c1)−u′(c2))

−u′′(c1)

≈ (ρ−r)IES(c1)c1 +λ1(c2 −c1),

(21)

where cj =cj(a),j=1,2 and IES(c) :=−u′(c)/(u′′(c)c).25 The derivatives of c1 and s1 are
unbounded at the borrowing constraint, c′

1(a)→∞ and s′
1(a)→−∞ as a→a.

The proof of the proposition, like those of all others, is in the Supplementary Appendix. The proof
of the first part follows straight from the state constraint boundary condition (10). The second

24. Assumption 1 is also what determines consumption and saving behaviour at the constraint for a wide class of
less standard utility functions, say, with subsistence concerns. For example, in the Stone–Geary case u′(c)= (c−c)−γ

for c≥c, the constraint “matters” if a>−(y1 −c)/r. We have also been asked why Assumption 1 is an assumption on
risk aversion rather than marginal utility: intuition suggests that a sufficient condition for the constraint to “matter”
should be that u′(y1 +ra)<∞. This is not true. A counterexample is a=−y1/r and Guiso and Paiella (2008) utility
u′(c)=exp(−θcε/ε) with 0<ε<1. Marginal utility at the constraint is then indeed bounded, u′(y1 +ra)=1<∞, but
risk aversion is not, R=−lima→aθ (y1 +ra)ε−1 =∞, violating Assumption 1. As Proposition 1’ in the Supplementary
Appendix shows, this implies that individuals never hit the constraint in finite time.

25. Type 1’s consumption at the borrowing constraint is c1 =y1 +ra and type 2’s consumption c2 >c1 is a more
complicated object determined by the HJB equation (7) for j=2.
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(a) Consumption Policy Function (b) Saving Policy Function

Figure 1

Consumption and saving behaviour with r <ρ

part of the proof follows from characterizing the limiting behaviour of the squared saving policy
function (s1(a))2 as wealth a approaches the borrowing constraint a – hence the square root.

The consumption and saving behaviour in the Proposition is illustrated in Figure 1.
Importantly, the derivatives of type 1’s consumption and saving policy functions become
unbounded at the borrowing constraint. This unbounded derivative has an important implication,
namely that individuals hit the borrowing constraint in finite time.

Corollary 1 (Hit Constraint in Finite Time) If r <ρ and Assumption 1 holds, then the wealth
of an individual with initial wealth a0 and successive low-income draws y1 hits the borrowing
constraint at a finite time T and converges toward it at speed governed by ν1:

a(t)−a∼ ν1

2
(T −t)2 , T :=

√
2(a0 −a)

ν1
, 0≤ t ≤T . (22)

The result that the borrowing constraint is reached in finite time bears some similarity to optimal
stopping time problems (see e.g. Stokey, 2009). Just like in stopping time problems, continuous
time avoids a type of integer problem arising in discrete time: the borrowing constraint would
be reached after a non-integer time period, but discrete time forces this to occur after an integer
number of periods.26

Proposition 1 features an intuitive formula (21) for the speed at which individuals hit the
borrowing constraint, ν1. In Section 4.4, we show that ν1 is also the key quantity determining the
marginal propensity to consume (MPC) out of a windfall income gain. We therefore postpone the
discussion of formula (21) until that section.

Intuition for Proposition 1 and Corollary 1: two useful special cases. To understand the intuition
for the square root in Proposition 1, the saving behaviour in Corollary 1 and the role of Assumption

26. A discrete-time analogue of Corollary 1 is derived in Huggett (1997) who proves that for a sufficiently long
sequence of “bad” shocks, individuals hit the borrowing constraint (the argument is part of the proof of his Lemma 1).
Unlike our formula, Huggett’s result does not include a characterization of the speed at which this happens, i.e., there is
no analogue of our ν1.
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(a) Consumption (b) Savings (c) Wealth

Figure 2

First special case in which borrowing constraint binds in finite time

1, we now consider two special cases for which analytic solutions are available. Both abstract
from income uncertainty which is inessential to this point.27

In the first special case, an individual has exponential utility (6), receives a deterministic
income stream y>0, faces a strict no-borrowing constraint a≥0 and starts with some initial
wealth a0 >0. The corresponding Euler equation and budget constraint are

ċ= 1

θ
(r−ρ), ȧ=y+ra−c.

Conjecture that at some time T >0, individuals hit the borrowing constraint, i.e. a(T )=0 and
hence c(T )=y. From the Euler equation, consumption for t ≤T is

c(t)=y+ν(T −t), ν := ρ−r

θ
>0 (23)

The case r =0 contains all the intuition.28 Substituting into the budget constraint yields ȧ(t)=
−ν(T −t) with solution

a(t)= ν

2
(T −t)2 (24)

for t ≤T and where the constant of integration is zero because a(T )=0. Since a(0)=a0, the
hitting time is given by T =√

2a0/ν. These are the same expression as in Corollary 1. Figure 2
plots the time paths of consumption, saving and wealth and shows that consumption declines
linearly toward c(T )=y while wealth declines quadratically towards a(T )=0.

To understand the square root in the saving and consumption policy functions in Proposition
1, consider an individual at t =0 with some initial wealth a0. From (23) and (24), we have
c(0)=y+νT and ȧ(0)=−νT with T =√

2a0/ν. Writing consumption and saving in terms of
the state variable a rather than calendar time, we have c(a)=y+√

2νa and s(a)=−√
2νa which

are the square-root expressions from Proposition 1. This simple derivation also shows why the

27. We are indebted to Xavier Gabaix for suggesting the first special case. Also see Holm (2018) who characterizes
consumption behaviour with deterministic income, a borrowing constraint and hyperbolic absolute risk aversion (HARA)
utility.

28. In the case r �=0, (24) generalizes to a(t)= ν

r2

(
r(T −t)−1+e−r(T−t)

)
which satisfies a(t)∼ ν

2 (T −t)2 as t →T

(apply l’Hôpital’s rule twice to see that limt→T
a(t)

(T−t)2 = ν
2 . Also all other properties of consumption and saving behaviour

emphasized here are unchanged for t close to T or, equivalently, for a0 close to a.
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(a) Consumption (b) Savings (c) Wealth

Figure 3

Second special case in which borrowing constraint never binds

consumption policy function is concave in wealth a (Figure 1). As the individual approaches
the borrowing constraint, both her consumption and wealth decline. If both consumption and
wealth declined at the same speed, then consumption would be linear in wealth. Instead, wealth
declines more rapidly than consumption – quadratically rather than linearly—see Figures 2(a)
and (c)—and therefore consumption is strictly concave in wealth, and more so the higher is the
speed ν.

In contrast, consider a second special case which is identical except that y=0 and that the
individual has CRRA utility (5). The Euler equation and budget constraint are then

ċ

c
= 1

γ
(r−ρ), ȧ=ra−c.

It is easy to show that ȧ(t)=−ηa(t),c(t)=(r+η)a(t) where η := ρ−r
γ and a(t)=a0e−ηt . The

situation is depicted in Figure 3. As wealth decumulates towards the borrowing constraint, the
rate of decumulation slows down more and more and individuals never actually hit the borrowing
constraint. This is an immediate consequence of a linear saving policy function s(a)=−ηa.
Turning this logic around, consumption is linear in wealth because both consumption and wealth
decline toward the borrowing constraint at the same speed—see Figure 3(a) and (c)—rather than
wealth declining faster as in the exponential case.

4.3. Consumption and saving behaviour of the wealthy

Proposition 1 characterizes consumption and saving behaviour close to the borrowing constraint.
The following Proposition 2 characterizes this behaviour for large wealth levels. This will be
useful below, when we characterize the upper tail of the wealth distribution.

Proposition 2 (Consumption and Saving Behaviour of the Wealthy) Assume that r <ρ and
that relative risk aversion −cu′′(c)/u′(c) is bounded above for all c.

1. Then there exists amax <∞ such that sj(a)<0 for all a>amax,j=1,2, and s2(a)∼ζ2(amax −a)
as a→amax for some constant ζ2.
2. In the special case of CRRA utility (5) individual policy functions are asymptotically linear in
a:

sj(a)∼ r−ρ

γ
a, cj(a)∼ ρ−(1−γ )r

γ
a as a→∞ (25)
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The first part of the Proposition is the analogue of Proposition 4 in Aiyagari (1993). The condition
that −cu′′(c)/u′(c) is bounded above for all c for example rules out exponential utility (6) in which
case γ (c)=θc.

The second part of the Proposition extends to continuous time a result by Benhabib et al.
(2015) who have shown that, with CRRA utility, consumption, and saving policy functions are
asymptotically linear for large wealth.29 To understand the intuition for this linearity, consider
a special case without income risk: individuals have CRRA utility, (5), deterministic labour
income y>0, and face the natural borrowing constraint a=−y/r. Consumption and saving policy
functions then have a closed-form solution given by

s(a)= r−ρ

γ

(
a+ y

r

)
, c(a)= ρ−(1−γ )r

γ

(
a+ y

r

)
. (26)

As a→∞, y/r becomes small relative to a and the policy functions indeed satisfy (25).
The asymptotic linearity of consumption and saving policy functions with CRRA utility has

played a key role in the literature. For instance, Krusell and Smith (1998) argue that this linearity
explains their finding that the business cycle properties of a baseline heterogeneous agent model
are virtually indistinguishable from its representative agent counterpart. Future studies may want
to gauge the robustness of this result to relaxing the CRRA assumption.

4.4. Marginal propensities to consume and save

We now characterize marginal propensities to consume and save, defined as the changes in
consumption and saving in response to a windfall increase in available funds a. Propositions 1 and
2 characterize the slope of the consumption function c′

j(a) or, equivalently, the instantaneous MPC
which captures the consumption gain (per time unit) after such a windfall over an infinitesimally
small time interval. This is an interesting object but it does not correspond to what is measured in
the data, namely the fraction of income consumed out of a windfall income gain over a discrete
time interval. We here show how to characterize this more empirically relevant object.

Definition 1 The Marginal Propensity to Consume (MPC) over a period τ is given by

MPCj,τ (a)=C′
j,τ (a), where Cj,τ (a)=E

[∫ τ

0
cj(at)dt

∣∣∣a0 =a,y0 =yj

]
. (27)

Similarly, the Marginal Propensity to Save (MPS) over a period τ is given by

MPSj,τ (a)=S′
j,τ (a), where Sj,τ (a)=E

[
aτ

∣∣∣a0 =a,y0 =yj

]
. (28)

To get a feel for the behaviour of these objects and to see how they differ from their
instantaneous counterparts c′

j(a) and s′
j(a), it is instructive to consider a time interval τ that

is sufficiently small so that individuals do not switch income state. Expected saving over a period

29. The proof makes use of a simple homogeneity property: for all ξ >0, the value function v expressed as a function
of wealth a and income y satisfies v(ξa,y)=ξ1−γ v(a,y/ξ ). That is, doubling wealth a, besides scaling everything by a
factor 21−γ , effectively halves income y. Therefore, as wealth becomes large, it is as if the individual had no labour
income. And it is well-known that the consumption-saving problem with CRRA and without labour income has an
analytic solution with linear policy functions given by (25).
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τ for the low-income type S1,τ (a) is then simply given by aτ starting from a0 =a. But from

Corollary 1 we know that aτ −a∼ ν1
2

(
(T −τ )+

)2 with T =√2(a0 −a)/ν1, i.e.

S1,τ (a)∼ ν1

2

((√
2(a−a)/ν1 −τ

)+)2

+a. (29)

Differentiating this expression and using the budget constraint, we get the following result.

Corollary 2 Assume τ is sufficiently small that individuals with current income draw y1 do not
receive the high-income draw y2,30 that r <ρ, and that Assumption 1 holds. Then

MPC1,τ (a)∼min

{
τ

√
ν1

2(a−a)
,1

}
+τ r =min{τc′

1(a),1+τ r}, as a→a, (30)

where c′
1(a) is the instantaneous MPC from Proposition 1. Alternatively, (30) holds with equality

in the special case with exponential utility, deterministic income and a=r =0.

We make three observations. First, in contrast to the instantaneous MPC c′
1(a) which becomes

unbounded as a→a, the MPC over a time period τ in (30) is bounded between zero and 1+
τ r. Second, for a>a and τ small enough, the marginal propensity to consume (30) is strictly
decreasing in wealth a (i.e. C1,τ (a), is strictly concave in a). Third, the key quantity determining
the size of the MPC is ν1, the speed at which individuals hit the borrowing constraint. We
have already discussed the intuition for the last two properties: because wealth declines toward
the borrowing constraint faster than consumption, the mapping from wealth to consumption is
concave; the faster wealth declines, the more concave this mapping.

In contrast, consider the second special case of Section 4.2 in which individuals never hit the
borrowing constraint. From a(t)=a0e−ηt with η=: (ρ−r)/γ , saving over a period τ is given by
Sτ (a)=ae−ητ . Since both consumption and saving over a period τ are linear in wealth a, the
marginal propensities to save and consume are independent of wealth:31

MPSτ (a)=e−ητ ≈1−ητ, MPCτ (a)=1−e−ητ +τ r ≈τ (η+r), η := ρ−r

γ
.

Summarizing, when people hit the borrowing constraint in finite time, MPCs depend on wealth
and, in particular, are higher for poorer people.

When individuals experience new income draws within the time interval τ , it is no longer
possible to characterize the MPC and MPS as tightly as in Corollary 2 because we lack a
characterization of c2(a) in the vicinity of the borrowing constraint. However, the following
Lemma shows how to easily compute the MPC numerically. The key idea is that Cj,τ (a) defined
in (27) is a conditional expectation that satisfies the Feynman-Kac formula which establishes a
link between conditional expectations of stochastic processes and solutions to partial differential
equations. Given Cj,τ (a), we then compute MPCj,τ (a)=C′

j,τ (a).

30. Alternatively, we can take λ1 →0 so that the low-income state is close to being absorbing.
31. Similar expressions can be obtained in the special case from Section 4.3 in which saving and consumption

policy functions are linear throughout the wealth distribution and given by (26).
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Figure 4

MPCs across the wealth distribution

Lemma 2 (Computation of MPCs using Feynman–Kac formula) The conditional expecta-
tion Cj,τ (a) defined in (27) and therefore the MPC can be computed as Cj,τ (a)=�j(a,0) where
�j(a,t) satisfies the system of two PDEs

0=cj(a)+∂a�j(a,t)sj(a)+λj(�−j(a,t)−�j(a,t))+∂t�j(a,t), j=1,2

on (a,∞)×(0,τ ), with terminal condition �j(a,τ )=0 for all a.

Proof. This follows from a direct application of the Feynman–Kac formula. �
Figure 4(a) plots the MPC computed in this way for the two income types and assuming that

individuals have CRRA utility (5). For comparison, Figure 4(b) plots the “instantaneous MPC,”
i.e. the slope of the consumption function. As expected, the former is a smoother version of
the latter and, in contrast to the latter, does not exceed 1+τ r. As wealth a→∞ the borrowing
constraint becomes irrelevant and the slope of the consumption function converges to η+r with
η= (ρ−r)/γ and therefore the MPC to τ (η+r).

As an aside, in some applications a slightly altered version of the MPCs in Definition 1 is
easier to map to the data. Empirical studies do not typically estimate MPCs out of an infinitesimal
increase in resources. Instead, they estimate the increase in consumption in response to a discrete
increase, say by $500. To this end, define MPCx

j,τ (a) := (Cj,τ (a+x)−Cj,τ (a))/x. This is the
MPC out of x dollars over a period τ , i.e., a discrete counterpart to the MPC in (27). Kaplan et al.
(2018) compute such discrete MPCs and compare them to various empirical studies such as
Broda and Parker (2014), Misra and Surico (2014), Blundell et al. (2016), and Fagereng et al.
(2016).

Using the analytic expression for ν1 to better understand MPCs. As part of Proposition 1 we
obtained an analytic expression (21) for ν1, the speed of hitting the borrowing constraint. As
just discussed, ν1 is also the key quantity governing the size of MPCs. We can therefore use the
formula (21) to examine how MPCs depend on various model parameters and to shed some light
on various numerical results that may seem counterintuitive at first. For instance, consider the
dependence of the low-income type’s MPC1,τ (a) on the low-income realization y1. This low-
income realization may, for example, represent the size of unemployment benefits. Figure 5(a)
graphs this relationship for y1 ranging between 0 and y2 =0.2 separately for various percentiles of
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Dependence of MPCs on parameters

the wealth distribution and assuming that individuals have CRRA utility (5). Perhaps surprisingly,
the MPC is a hump-shaped function of the low-income realization y1. But formula (21) easily
resolves the apparent mystery. With CRRA utility (5) so that the IES is constant

ν1 ≈ (ρ−r)
c1

γ
+λ1(c2 −c1),

where c1 =y1 +ra. An increase in y1 has two offsetting effects. The intuitive part is that as y1
increases, individuals are better insured against idiosyncratic income risk and therefore have a
low MPC (as in models without risk and borrowing constraints). In the formula, as y1 increases
toward y2, λ1(c2 −c1) converges to zero and this results in a lower ν1. But, there is an offsetting
effect captured by the term (ρ−r)c1/γ : if consumption conditional on hitting the constraint c1
is high, individuals do not mind hitting the constraint as much. Hence they converge to it faster
or, equivalently, have a higher MPC.

Figure 5(b) instead graphs the dependence of the low-income type’s MPC on the realization
of the high income y2. The MPC is increasing in y2 and the intuition can again be seen from our
formula for ν1 which shows that the MPC is higher the larger is the consumption gain from getting
a high-income draw λ1(c2 −c1). Other comparative statics are as follows: individuals have higher
MPCs, the lower is the interest rate r relative to the rate of time preference ρ, and the higher is
the likelihood λ1 of getting a high-income draw (so that getting stuck at the constraint is less
likely). Similarly, MPCs tend to be higher the higher is the IES and the tighter is the borrowing
constraint, i.e. the closer to zero is a.

4.5. The stationary wealth distribution

We now present the paper’s second main theoretical result: an analytic solution to the Kolmogorov
Forward equation characterizing the stationary distribution with two income types (8) for given
individual saving policy functions. This analytic solution yields a number of insights about
properties of the stationary wealth distribution, particularly at the borrowing constraint and in the
right tail.

The derivation of this analytic solution is constructive and we therefore present it in the
main text. Summing the KF equation (8) for the two income types, we have d

da [s1(a)g1(a)+
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(a) Stationary Saving Policy Function (b) Stationary Densities

Figure 6

Saving behaviour and stationary wealth distribution with r <ρ

s2(a)g2(a)]=0 for all a, which implies that s1(a)g1(a)+s2(a)g2(a) equals a constant. Because
any stationary distribution must be bounded, we must then have s1(a)g1(a)+s2(a)g2(a)=0 for
all a.32 Substituting into (8) and rearranging, we have

g′
j(a)=−

(
s′
j(a)

sj(a)
+ λj

sj(a)
+ λ−j

s−j(a)

)
gj(a), j=1,2. (31)

Importantly, (31) are two independent ODEs for g1 and g2 rather than the coupled system of
two ODEs (8) we started out with. Together with two boundary conditions they can be solved
separately. To obtain these boundary conditions, we simply impose that the densities integrate to
the stationary mass of individuals with the respective income types:

m1 +
∫ ∞

a
g1(a)da= λ2

λ1 +λ2
, m2 +

∫ ∞

a
g2(a)da= λ1

λ1 +λ2
, (32)

where m1 =G1(a) and m2 =G2(a) are potential Dirac masses at the borrowing constraint. Solving
the two ODEs (31) analytically and using our characterization of the optimal saving policy
functions from Section 4.2 we obtain our second main theoretical result.

Proposition 3 (Stationary Wealth Distribution with Two Income Types) If r <ρ, relative
risk aversion −cu′′(c)/u′(c) is bounded above for all c, and Assumption 1 holds, then there
exists a unique stationary distribution given by

gj(a)= κj

sj(a)
exp

(
−
∫ a

a

(
λ1

s1(x)
+ λ2

s2(x)

)
dx

)
, j=1,2 (33)

for some constants of integration κ1 <0 and κ2 >0 that satisfy κ1 +κ2 =0 and are uniquely pinned
down by (32). The stationary wealth distribution has the following properties:

32. Under Assumption 1, we expect s1(a)=0,s2(a)>0,g2(a)>0 so how can s1(a)g1(a)+s2(a)g2(a)=0? The
answer is that, as a→a, g1 explodes and s1g1 converges to a negative constant. Proposition 3 confirms this: see (33)
which implies sj(a)gj(a)=κj,j=1,2 with κ1 <0,κ2 >0 and κ1 +κ2 =0.
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1. (Close to the borrowing constraint) The stationary distribution of low-income types has a
Dirac point mass at the borrowing constraint a, i.e., its CDF satisfies G1(a)=m1 >0. The Dirac
point mass m1 can be found from the constants of integration κ1,κ2 and is expressed in terms
λ1,λ2,s1,s2 in Supplementary Appendix equation (A.71). The CDF further satisfies

G1(a)∼m1exp
(
λ1
√

2(a−a)/ν1

)
as a↓a (34)

The stationary distribution of high-income types does not have a Dirac point mass at a, i.e., its
CDF satisfies G2(a)=m2 =0, and its density is in fact finite, g2(a)<∞.
2. (In the right tail) The support of the stationary wealth distribution is bounded above at some
amax <∞ defined in Proposition 2. It does not have a Dirac point mass at amax.
3. (Smoothness) In contrast to the analogous discrete-time economy, the density of wealth is
continuous and differentiable for all a>a, i.e., everywhere except at the borrowing constraint.

Corollary 3 in the Supplementary Appendix lists some additional but less central properties of
the wealth distribution that follow from (33).

Part 1 of the Proposition follows immediately from Proposition 1 and that individuals hit the
borrowing constraint in finite time if Assumption 1 holds. In this case, (1) g1 in (33) explodes
as a→a and (2) there is a Dirac mass at a, G1(a)=m1 >0. This is illustrated in Figure 6(b). In
particular, note the spike in the density g1(a) at a=a. In contrast, if Assumption 1 is violated,
then there is no Dirac mass. An alternative heuristic derivation of (34) provides some intuition.
First, (8) implies that G1 satisfies 0=−s1(a)G′

1(a)−λ1G1(a)+λ2G2(a). As a↓a, G2(a)→0 and
hence G1 satisfies G′

1(a)/G1(a)∼−λ1/s1(a) with solution

G1(a)∼m1exp

(
−
∫ a

a

λ1

s1(x)
dx

)
,

for a constant of integration m1 >0. Substituting in s1(a)∼−√
2ν1

√
a−a from Proposition 1

yields (34). In Supplementary Appendix A.6, we discuss in more detail the role of Assumption 1
using our two simple special cases from Section 4.2.

Part 2 of the Proposition states that the stationary wealth distribution in our economy
is bounded above. Like discrete-time versions of Aiyagari–Bewley–Huggett economies with
idiosyncratic labour income risk only, our model therefore has difficulties explaining the high
observed wealth concentration in developed economies like the U.S. In particular, empirical
wealth distributions seem to feature fat Pareto tails. Section 7 extends the model to feature such
a fat-tailed stationary distribution by introducing a second, risky asset.

Part 3, which can also be seen in Figure 1, highlights an important difference between our
continuous-time formulation and the traditional discrete-time one: except for the Dirac mass
exactly at the borrowing constraint a, the wealth distribution is smooth for all a>a. This is
true even though income follows a process with discrete states (a two-state Poisson process). In
contrast, in discrete-time Aiyagari–Bewley–Huggett models with discrete-state income processes,
this distribution features “spikes” on the interior of the state space.33

33. See for example Figure 1 in Imrohoroğlu (1989) and Figure 17.7.1 in Ljungqvist and Sargent (2004). To see
why this must happen, consider a discrete-time Huggett economy with two income states. All individuals with wealth
a=a who get the high-income draw choose the same wealth level a′ >a. So if there is a Dirac mass at a, there must also
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(a) Stationary Saving Policy Function (b) Stationary Densities

Figure 7

Effect of an increase in r on saving behaviour and stationary distribution.

4.6. Stationary equilibrium: existence and uniqueness

We construct stationary equilibria along the same lines as in Aiyagari (1994). That is, we fix an
interest rate r <ρ, solve the individual optimization problem (7), find the corresponding stationary
distribution from (8), and then find the interest rate r that satisfies the market clearing condition
(11), i.e., S(r)=B. While we continue to focus on the case of two income types for the sake of
continuity, all results in this section generalize to any stationary Markovian process for income
y, e.g., continuous diffusion or jump-diffusion processes.

Figure 7 illustrates the typical effect of an increase in r on the solutions to the HJB equation
(7) and the KF equation (8). An increase in r from rL to rH >rL leads to an increase in individual
saving at most wealth levels and the stationary distribution shifts to the right. Aggregate saving
S(r) as a function of the interest rate r typically looks like in Figure 8, i.e., it is increasing. A
stationary equilibrium is then an interest rate r such that S(r)=B. But, we have so far not proven
that S(r) is increasing or that it intersects B and hence there may, in principle, be no or multiple
equilibria. Existence of a stationary equilibrium can be proved with a graphical argument due to
Aiyagari (1994) that is also the foundation for a number of existence results in the literature (e.g.
Açıkgöz, 2018).

Proposition 4 (Existence of Stationary Equilibrium) If relative risk aversion −cu′′(c)/u′(c)
is bounded above for all c and Assumption 1, then there exists a stationary equilibrium.

The logic behind the proof is simple. One can show that the function S(r) defined in (11) is
continuous. To guarantee that there is at least one r such that S(r)=B, it then suffices to show
that

lim
r↑ρ

S(r)=∞, lim
r↓−∞S(r)=a.

We next turn to our third main theoretical result: uniqueness of a stationary equilibrium.

be a Dirac mass at a′. But all individuals with wealth a′ who get the high-income draw, also choose the same wealth level
a′′. So there must also be a Dirac mass at a′′ >a′. And so on. Through this mechanism, the Dirac mass at the borrowing
constraint “spreads into the rest of the state space.” In continuous time individuals instead leave the borrowing constraint
in a smooth fashion (here according to a Poisson process, i.e., a process with a continuously distributed arrival time).
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Figure 8

Equilibrium in the bond market

Proposition 5 (Uniqueness of Stationary Equilibrium) Assume that the intertemporal elas-
ticity of substitution is weakly greater than one for all consumption levels

IES(c) :=− u′(c)

u′′(c)c
≥1 for all c≥0, (35)

and that the borrowing constraint takes the form of a strict no-borrowing limit a≥0. Then:

1. Individual consumption cj(a;r) is strictly decreasing in r for all a>0 and j=1,2.
2. Individual saving sj(a;r) is strictly increasing in r for all a>0 and j=1,2.
3. An increase in the interest rate leads to a rightward shift in the stationary distribution in the
sense of first-order stochastic dominance: G(a;r)=G1(a;r)+G2(a;r) is decreasing in r for all
a in its support.
4. Aggregate saving S(r) is strictly increasing and hence our continuous-time version of Huggett’s
economy has at most one stationary equilibrium.

We briefly sketch key steps in the proof. Part 1 makes use of an important result by Olivi (2018)
who analyses the continuous-time income fluctuation problem put forth in the current paper and
shows that the consumption response to a change in the interest rate can be decomposed into
substitution and income effects as:

∂cj(a)

∂r
= 1

u′′(c0)
E0

∫ T

0
e−∫ t

0 ξsdsu′(ct)dt︸ ︷︷ ︸
substitution effect<0

+ 1

u′′(c0)
E0

∫ T

0
e−∫ t

0 ξsdsu′′(ct)(∂act)atdt︸ ︷︷ ︸
income effect>0

with ξt :=ρ−r+∂act >0 and where T := inf{t ≥0|at =0} is the stopping time at which wealth
reaches the borrowing constraint. Here the expectations are over sample paths (at,yt) starting from
(a0,y0)= (a,yj) and ∂act is short-hand notation for the instantaneous MPC c′

j(at). Olivi (2018)
further simplifies these substitution and income effects and expresses them in terms of potentially
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observable sufficient statistics. We instead pursue a different avenue: we show that a sufficient
condition for the substitution effect to dominate the income effect and hence ∂cj(a)/∂r <0 for
all a>0 is that the IES is weakly greater than one.

Part 2 uses the budget constraint sj(a)=yj +ra−cj(a). If consumption is decreasing in r, then
saving is increasing in r for a≥0. Because there is a positive mechanical effect of r on saving
through interest income ra, the assumption that the IES is greater than one is likely overly strong
and saving may also be increasing in r with an IES less than one. Consistent with this, consider
the simple deterministic example with CRRA utility in (26): whether consumption is increasing
in r depends on the IES 1/γ ; but saving s(a) is increasing in a independently of 1/γ .34 Future
work should try to prove uniqueness under weaker assumptions than the IES being greater than
one. Either way, IES(c)≥1 is an intuitive assumption and it includes the commonly used case of
logarithmic utility IES(c)=1.

Part 3, first-order stochastic dominance, and Part 4, that aggregate saving is increasing in r,
both use a simple probabilistic argument: starting from a given initial wealth level, for any given
income trajectory, a higher interest rate implies a higher saving flow and hence a higher wealth
level. Uniqueness of the stationary equilibrium then follows immediately from the monotonicity
of aggregate saving.35

5. COMPUTATION

We now describe our algorithm for numerically computing equilibria of continuous-time
heterogeneous agent models. We use a finite difference (FD) method based on work by
Achdou and Capuzzo-Dolcetta (2010) and Achdou (2013) which is simple, efficient and easily
extended to other environments. We explain our method in the context of the baseline
heterogeneous agent model of Section 2. But the algorithm is, in fact, considerably more
general and applies to any heterogeneous agent model with a continuum of atomistic agents
(and without aggregate shocks). It is particularly well-suited for computing transition dynamics
and solving problems with non-convexities, a fact we illustrate in Section 7 by computing
equilibria of such economies. Codes for these applications (and many more) are available from
https://benjaminmoll.com/codes/ in Matlab as well as Python, Julia and C++.

5.1. Computational advantages relative to discrete time

Before explaining our algorithm, we provide a brief overview of some of its computational
advantages relative to traditional discrete-time methods. We here list four computational
advantages that we consider crucial and that contribute notably to the efficiency gains over
traditional methods. The first of these advantages is special to the solution of problems with
borrowing constraints. The second to fourth advantages concern the solution of heterogeneous
agent models more broadly (e.g. models with heterogeneous firms).

To appreciate the first two advantages, contrast the first-order condition of the continuous-time
income fluctuation problem (7) with that in the analogous discrete-time problem. For concreteness

34. Differentiating s(a) in (26) yields ∂s(a)
∂r = 1

γ

(
a+ y

r
ρ
r

)
which is positive for all a≥−y/r as long as r <ρ.

35. Açıkgöz (2018) provides a numerical example of multiplicity in an Aiyagari model with an IES of 1/6.5, i.e.,
considerably below one.
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also assume CRRA utility (5) so that the two conditions are

c−γ =v′
j(a), j=1,2 in continuous time and (36)

c−γ ≥β

2∑
k=1

πjkv′
k(a′), a′ =yj +(1+r)a−c, j=1,2 (37)

in discrete time, where 0<β <1 is a discount factor and πjk =Pr(y′ =yk |y=yj) are the entries of
the Markov transition matrix for the analogous discrete-time income process. The first advantage
of our continuous-time approach is that, as explained in Section 2.2, the borrowing constraint (3)
only shows up in the boundary condition (10) and therefore the first-order condition (36) holds
with equality everywhere in the interior of the state space. In contrast, the discrete-time first-
order condition (37) holds with complementary slackness and therefore is an inequality. This is
because the borrowing constraint may bind one time period ahead. Continuous time allows us to
completely sidestep any technical difficulties arising due to such occasionally binding constraints.

Second and related, the first-order condition in (36) is “static” in the sense that it only
involves contemporaneous variables. Given (a guess for) the value function vj(a) it can be solved
by hand: cj(a)= (v′

j(a))−1/γ ,j=1,2. In contrast, the discrete-time condition (37) defines the
optimal choice only implicitly. Typical solution methods therefore employ costly root-finding
operations. Our continuous-time approach again sidesteps this difficulty.36 Intuitively, in discrete-
time dynamic programming, the first-order condition is concerned with tradeoffs between “today”
and “tomorrow” while all relevant information from tomorrow onwards is encoded in the
continuation value function; in contrast, in continuous-time dynamic programming, the value
function encodes all relevant information from today onwards and the first-order condition is
therefore static.37

The third advantage of continuous time is a form of “sparsity.” To solve the HJB and KF
equations (7) and (8), we discretize these so that their solution boils down to solving systems of
linear equations. The resulting matrices are typically extremely sparse, namely “tridiagonal” or
at least “block-tridiagonal.” This sparsity generates considerable efficiency gains because there
are well-developed routines for solving sparse linear systems, either implemented as part of
commercial software packages like Matlab or open-source libraries like SuiteSparse. The reason
that tridiagonal matrices arise is that a discretized continuous-time process either stays at the
current grid point, takes one step to the left or one step to the right. But, it never jumps.38

Fourth, in all heterogeneous agent models, there is a tight link between solving the HJB and
KF equations. One can typically “kill two birds with one stone” in the sense that, having computed
the solution to the HJB equation one gets the solution to the KF equation “for free”: the matrix
in the discretized version of the latter is the transpose of the matrix in that of the former. The
underlying mathematical reason is that the KF equation is the “transpose problem” of the HJB

36. In this regard, it shares some similarities with the “endogenous grid method” of Carroll (2006). The difference
is that in continuous time this also works with “exogenous grids.”

37. The first-order condition (36) also does not involve an expectation operator as in (37), i.e., a summation or
costly numerical integral over future income states. Instead, the HJB equation (7) captures the stochastic evolution of
income with an additive terms λj(v−j(a)−vj(a)) that does not affect the first-order condition.

38. Except of course if the process is a Poisson process, i.e., if jumps are “built in.” That being said, the sparsity
property survives as long as there is at least one continuously moving state variable (like wealth), i.e. not all individual
state variables follow discrete-state Poisson processes.
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equation or, more precisely, that the differential operator in the KF equation is the adjoint of the
operator in the HJB equation.39

5.2. Bird’s eye view of algorithm for stationary equilibria

Our aim is to calculate stationary equilibria—functions v1,v2 and g1,g2 and a scalar r satisfying
(7), (8), and (11)—given a specified function u, and values for the parameters ρ,λ1,λ2 and a.
Transition dynamics are the subject of Section 5.5. Before, we describe the algorithm in detail,
we provide a bird’s eye view of the algorithm’s general structure. We focus on two distinct
challenges. First, the HJB and KF equations describing a stationary equilibrium are coupled
and one therefore has to iterate on them somehow. Second, solving these differential equations
requires approximating the value function and distribution.

Iterating on the equilibrium system. From a bird’s eye perspective our algorithm for solving the
stationary equilibrium shares many similarities with algorithms typically used to solve discrete-
time heterogeneous agent models. In the context of our Huggett economy, we use a bisection
algorithm on the stationary interest rate. We begin an iteration with an initial guess r0. Then for
�=0,1,2,... we follow

1. Given r�, solve the HJB equation (7) using a FD method and calculate s�
j (a).

2. Given s�
j (a), solve the KF equation (8) for g�

j (a) using a FD method.

3. Given g�
j (a), compute the net supply of bonds S(r�)=∫∞

a a(g�
1(a)+g�

2(a))da and update the

interest rate: if S(r�)>B, decrease it to r�+1 <r� and vice versa.

When r�+1 is close enough to r�, we call (r�,v�
1,v

�
2,g

�
1,g

�
2) a stationary equilibrium. As already

noted, this continuous-time algorithm is extremely close to typical discrete-time algorithms. It
instead differs in the solutions of the dynamic programming equation and the equation for the
distribution, and it is this difference that is the source of the resulting efficiency gains.

Discretization of the equilibrium system. In order to solve the differential equations (7) and (8),
the value function and distribution need to be approximated in some fashion. We explain our
approach—a FD method—in more detail in the next two subsections. But a brief sketch is as
follows. In a nutshell, the key idea is that this FD method transforms our system of differential
equations into a system of sparse matrix equations. With this goal in mind, we approximate both
v1,v2 and g1,g2 at I discrete points in the space dimension, ai,i=1,...,I . Denote the value function
and distribution along this discrete grid using the vectors v=(v1(a1),...,v1(aI ),v2(a1),...,v2(aI ))T

and g=(g1(a1),...,g1(aI ),g2(a1),...,g2(aI ))T; both v and g are of dimension 2I , the total number
of grid points in the individual state space. The end product of our discretization method will be
the following system of matrix equations:

ρv=u(v)+A(v;r)v, (38)

0=A(v;r)Tg, (39)

B=S(g;r). (40)

39. In principle, one can use an analogous approach in discrete time: form a Markov transition matrix over all states
and use it to both iterate backward over value functions and forward over distributions. This method is less popular than
it should be and researchers often solve for distributions by Monte-Carlo simulation.
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The first equation is the discretized HJB equation (7), the second equation is the discretized
KF equation (8) and the third equation is the discretized market clearing condition (11). The
2I ×2I matrix A(v;r) has the interpretation of a transition matrix that captures the evolution of
the idiosyncratic state variables in the discretized state space. It turns out to be extremely sparse.
A(v;r)T in the second equation denotes the transpose of that same matrix, i.e. the discretized KF
equation is the “transpose problem” of the discretized HJB equation. As already noted, (38)–(40)
is a system of sparse matrix equations that is easy to solve on a computer by following (the
analogues of) Steps 1 to 3 in the previous paragraph.

5.3. Step 1: Solving the HJB equation

For Step 1, we solve the HJB equation (7) using a FD method. We now explain this approach.
The Supplementary Appendix contains a more detailed explanation.

Theory for numerical solution of HJB equations (Barles–Souganidis). Before we explain our
approach, we note that there is a well-developed theory concerning the numerical solution
of HJB equations using FD schemes in the same way as there is a well-developed theory
concerning the numerical solution of discrete-time Bellman equations. The key result is due
to Barles and Souganidis (1991) who have proven that, under certain conditions, the solution to
a FD scheme converges to the (unique viscosity) solution of the HJB equation. The interested
reader should consult Barles and Souganidis’ original (and relatively accessible) paper or the
introduction by Tourin (2013). In short, for their result to hold, the FD scheme needs to satisfy
three conditions: (1) “monotonicity”, (2) “stability” and (3) “consistency.” Here, it suffices to
note that (2) and (3) are typically easy to satisfy and, in practice, the main difficulty is to design
a FD scheme that is “monotone.”

Finite difference method. We here explain the FD method for solving the stationary HJB equation
for the special case with no income uncertainty y1 =y2 =y:

ρv(a)=max
c

u(c)+v′(a)(y+ra−c). (41)

The generalization to income risk is straightforward. As already mentioned, the FD method
approximates the function v at I discrete points in the space dimension, ai,i=1,...,I . We use
an equispaced grid with distance �a between points and denote vi :=v(ai). We approximate the
derivative v′

i =v′(ai) with either a forward or a backward difference approximation

v′(ai)≈ vi+1 −vi

�a
=:v′

i,F or v′(ai)≈ vi −vi−1

�a
=:v′

i,B.

The FD approximation to (41) is then

ρvi =u(ci)+v′
isi, si :=y+rai −ci, ci = (u′)−1(v′

i), i=1,...,I (42)

where v′
i is either the forward or backward difference approximation. Which of the two

approximations is used where in the state space is extremely important because this choice
determines whether Barles and Souganidis’ monotonicity condition is satisfied.

Upwinding. As just mentioned, it is important whether and when a forward or a backward
difference approximation is used. The ideal solution is to use a so-called “upwind scheme.”
The rough idea is to use a forward difference approximation whenever the drift of the state
variable (here, saving si =y+rai −ci) is positive and to use a backward difference whenever it is
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negative. This is intuitive: if saving is positive, what matters is how the value function changes
when wealth increases by a small amount; and vice versa when saving is negative. The right thing
to do is therefore to approximate the derivative in the direction of the movement of the state.
To this end use the notation s+

i =max{si,0}, i.e. s+
i is “the positive part of si” and analogously

s−
i =min{si,0}. The upwind version of (42) is

ρvi =u(ci)+ vi+1 −vi

�a
s+
i + vi −vi−1

�a
s−
i , i=1,...,I, (43)

where ci = (u′)−1(v′
i) uses an FD approximation v′

i that depends on the sign of si in the same
way. This simplified exposition ignores two important and related issues. First, that the HJB
equation (41) is highly non-linear due to the presence of the max operator, and therefore so is its
FD approximation (43). It therefore has to be solved using an iterative scheme and one faces a
choice between using so-called “explicit” and “implicit” schemes. Related, from the first-order
condition ci = (u′)−1(v′

i), saving si and consumption ci themselves depend on whether the forward
or backward approximation is used so (43) has a circular element to it. The solution to both these
issues is described in detail in the Supplementary Appendix.

The upwind FD scheme for the HJB equation (43) can be conveniently written in matrix
notation. Denoting by v= (v1,...,vI )T the vector collecting the value function at different grid
points, we have the matrix equation (38). The matrix A(v;r) has a special structure: first, it
is sparse; more precisely, it is tridiagonal: all entries are zero except for those on the main
diagonal, the first diagonal below this, and the first diagonal above the main diagonal. Second, all

diagonal entries are negative and given by
s−

i
�a − s+

i
�a ≤0 and all off-diagonal entries are positive

and given by − s−
i

�a ≥0 and
s+

i
�a ≥0. Third, all rows of A(v;r) sum to zero. All these properties are

extremely intuitive. In effect, the FD method approximates the continuous state variable a with
a discrete-state Poisson process on the grid ai,i=1,...,I and the matrix A(v;r) summarizes the
corresponding Poisson intensities. The properties noted above are precisely the properties that a
Poisson transition matrix needs to satisfy. For these reasons we will sometimes refer to A(v;r)
as “transition matrix.”

Boundary conditions and handling the borrowing constraint. Besides guaranteeing that the
Barles–Souganidis monotonicity condition holds, an upwind scheme like (43) has an additional
advantage: the handling of boundary conditions. First, consider the upper end of the state space
aI . If it is large enough, saving is negative sI <0 so that s+

I =0.40 Therefore from (43) the forward
difference is never used at the upper end of the state space. As a result no boundary condition is
needed. Next, consider the lower end of the state space and how to impose the state constraint
boundary condition (10) which holds with equality only when the constraint binds. This is where
the special structure of the upwind scheme comes in: we set v′

1,B =u′(y+ra1) but only for the
backward difference approximation and not for the forward difference approximation v′

1,F which
is instead computed as (v2 −v1)/�a. Then, we let the upwind scheme select by itself whether
this boundary condition is used. From (43), we see that the boundary condition is only imposed
if it would be the case that s1 <0; but it is not used if s1 >0. This ensures that the borrowing
constraint is never violated.

40. In fact, in the special case without uncertainty analysed in the present section and under the assumption r <ρ,
saving is negative everywhere in the state space. The condition that aI needs to be large enough really only matters for
the case with uncertainty. That the case without uncertainty is special also applies to the subsequent discussion: without
uncertainty the state constraint (10) always holds with equality.
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5.4. Step 2: Solving the Kolmogorov forward equation

For Step 2, consider the stationary KF equation (8). We again discretize the equation using a FD
scheme. In contrast to the HJB equation which is non-linear in v, the KF equation is linear in g. Its
discretized counterpart can therefore be solved in one iteration. There are a number of admissible
FD schemes, but one is particularly convenient and well-founded: the discretization (39) which
involves the transpose of the transition matrix A(v,r).

The deep underlying reason for this choice of discretization is that the KF equation actually is
the “transpose” problem of the HJB equation. More precisely, the differential operator in the KF
equation (8) is the adjoint of the operator in the HJB equation (7), the “infinitesimal generator.”41

Our transpose discretization of the KF equation (39) is not only well-founded mathematically; it
is also extremely convenient: having solved the HJB equation, the solution of the Kolmogorov
Forward equation is essentially “for free.”

The same numerical method—building the matrix A and then working with its transpose –
can also be used when solving problems that involve only the KF equation, e.g., because the
optimal decision rules can be solved for analytically. This approach is, for example, pursued in
Jones and Kim (2018) and Gabaix et al. (2016).

Does the presence of a Dirac point mass in the stationary wealth distribution g1 cause problems
for our FD method? Supplementary Appendix F.2 explains why the answer is “no.” First, we
show theoretically that the only implication of the Dirac mass is that some care is required when
interpreting the numerical output, in particular the first element of the vector g (corresponding
to the density of income type y1 at the point a=a). Second, we use the analytic solution for the
wealth distribution in Proposition 3 as a test case for our numerical algorithm and show that it
performs extremely well in practice unless the wealth grid is very coarse.

5.5. Computing transition dynamics

The algorithm to calculate time-varying equilibria—functions v1,v2,g1,g2, and r satisfying (4),
(12), and (13) given an initial condition (16) and a terminal condition (17)—is the natural
generalization of that used to compute stationary equilibria. The main complication is that we
now need to iterate on an entire function r(t) rather than just a scalar r. We begin an iteration with
an initial guess r0(t),t ∈ (0,T ). Then for �=0,1,2,..., we follow

1. Given r�(t) and (17), solve the HJB equation (12), marching backward in time. Calculate the
saving policy function s�

j (a,t).

2. Given s�
j (a,t) and (16), solve the KF equation, marching forward in time, for g�

j (a,t).

3. Given g�
j (a,t), compute the net supply of bonds S�(t)=∫∞

a a(g�
1(a,t)+g�

1(a,t))da and update

the interest rate as r�+1(t)=r�(t)−ξ (t) dS�(t)
dt where ξ (t)>0.42

41. The “infinitesimal generator” is the continuous-time analogue of a discrete-time transition matrix, and the adjoint
of an operator is the infinite-dimensional analogue of a matrix transpose. In our context, the infinitesimal generator captures
the evolution of the process in (a,yj)-space. This operator – let us denote it by A – is defined as follows: for any vector
of functions [f1(a),f2(a)]T

A
[

f1(a)
f2(a)

]
=
[

f ′
1(a)s1(a)+λ1(f2(a)−f1(a))

f ′
2(a)s2(a)+λ2(f1(a)−f2(a))

]
.

Next, one can show that the operator in the KF equation (8) is the adjoint of this operator: denoting by A∗ the adjoint of

A, (8) is 0=A∗
[

g1(a)
g2(a)

]
. Equation (39) is the discretized version of this problem.

42. A good initial guess satisfies r0(T )=r∗ where r∗ corresponds to the new stationary equilibrium. With such an
initial guess it is convenient to choose ξ (t) with ξ (T )=0, e.g., ξ (t)=ξ0

(
e−ξ1t −e−ξ1T

)
,ξ0,ξ1 >0.
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When r�+1(t) is close enough to r�(t) for all t, we call (r�,v�
1,v

�
2,g

�
1,g

�
2) an equilibrium.

The FD method used for computing the time-dependent HJB and KF equations for a given
time path r�(t) is similar to that for their stationary counterparts. In addition to discretizing wealth
a, we now also discretize time t on a grid tn,n=1,...,N , here with equal-sized time steps of length
�t. Denoting by vn and gn the stacked, discretized value function and distribution at time tn, the
time-dependent counterpart to (38)–(40) is

ρvn =u(vn+1)+A(vn+1;rn)vn + vn+1 −vn

�t
,

gn+1 −gn

�t
=A(vn;rn)Tgn+1,

B=S(gn),

(44)

for time steps n=1,...,N , with terminal condition vN =v where v is the steady state solution to
(38) and with initial condition g1 =g0.

An alternative to Step 3 in the algorithm above is to view Steps 1 and 2 as defining excess
supply as a function of the entire time path r(t),t ≥0 and to solve it by means of a root-finding
method like Newton’s method or a quasi-Newton method like Broyden’s method. This is easiest
to understand in the context of the discretized system (44): given an N-dimensional vector of
interest rates r= (r1,...,rN ), the system (44) defines an N-dimensional excess supply function
f :RN →R

N , with the nth element equal to excess supply at the nth time step, S(gn)−B. One
then uses a root-finding method to find the vector r∗ such that f(r∗)=0. All this is explained in
more detail in the Supplementary Appendix.

Our computational method for transition dynamics can, of course, also be used to compute
(non-linear) impulse responses to unanticipated aggregate shocks (“MIT shocks”). It should be
straightforward to use a linearized counterpart to compute linear impulse responses to small MIT
shocks along the lines of Boppart et al. (2018) and Auclert et al. (2019) to obtain further speed
gains.

5.6. Performance and comparison to a discrete-time method

Section 5.1 listed a number of computational advantages of continuous time relative to discrete
time. We here substantiate these claims and compare the computational performance of our
method to that of a state-of-the-art discrete-time method. We also explain how one may assess
the accuracy of our solution method and discuss the relation to traditional discrete-time accuracy
metrics like Euler equation errors.

A test problem. As a basis for these comparisons, we use a standard partial-equilibrium income
fluctuation problem with a fixed interest rate. We focus on a partial-equilibrium problem because
our strategy for iterating on equilibrium prices and computing transition dynamics is identical to
that of standard discrete-time methods, i.e., any speed gain due to continuous time will necessarily
occur in partial equilibrium. However, we now consider a version with a richer income process. We
consider both a continuous-time and a discrete-time version and specify these to be as comparable
as possible. For example, the discrete-time version features an AR(1) process for the logarithm
of income and the continuous-time version features an Ornstein–Uhlenbeck process, a diffusion
process that is the natural continuous-time analogue of an AR(1) process, both with comparable
persistence and standard deviation and with a stationary mean of one. Other details about the
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(a) Speed-accuracy tradeoff: policy function (b) Speed-accuracy tradeoff: aggregate
         consumption

Figure 9

Computational speed and accuracy: continuous versus discrete time

Notes: The figure reports speed and accuracy measures for the numerical solution of an income fluctuation problem in both continuous and
discrete time. See Supplementary Appendix F.1 for a detailed description of the exercise. Each blue circle correspond to a continuous-time
computation with a different number of grid points ranging from 25 to 10,000 grid points (the “true” solution). Similarly, each red cross
corresponds to a discrete-time computation. (a) uses the policy function error as the accuracy metric and (b) uses the percentage error in
aggregate consumption. The code is available at https://benjaminmoll.com/comparison/.

specification and parameterization are in Supplementary Appendix F.1. We solve the continuous-
time version using our FD method and the discrete-time version using the endogenous grid method
(Carroll, 2006).

Assessing accuracy. When comparing different computational methods, we want to understand
which method is faster while keeping the accuracy of the numerical solution constant. We therefore
require a metric for assessing this accuracy. A challenge in this regard is that, standard discrete-
time accuracy metrics such as Euler equations errors are not applicable in continuous time. To
see this, consider the analogous discrete-time problem in Section 5.1 with Euler equation (37).
As explained by Santos (2000), the rationale for examining the residuals in this Euler equation
is that it is the first-order condition of the maximization problem in the Bellman equation. And
by bounding the error in this first-order condition, one can bound the error in the policy function
and more importantly the value function, i.e. the welfare loss from suboptimal behaviour due to
numerical error. But for HJB equations like (41) and the associated finite-difference approximation
(42), there is no error in the first-order condition (36) because it can be solved by hand. Instead, any
error in the numerical solution of this PDE stems only from the finite-difference approximation
of its derivatives. This is explained in more detail in Supplementary Appendix F.1 where we
also briefly discuss other candidate accuracy metrics from the mathematics literature on HJB
equations.

Given this, we use the following pragmatic approach. We first solve the two income fluctuation
problems using an extremely fine grid with 10,000 wealth grid points. We then treat this solution
as the “true solution” and assess the accuracy of numerical solutions with coarser grids in terms
of the discrepancy from this solution. We present results for two accuracy metrics: (1) the mean
percentage error in the policy function averaged over all wealth and income states and (2) the
percentage error in stationary aggregate consumption.

Speed-accuracy tradeoff. Figure 9(a) plots speed-accuracy tradeoffs for the continuous- and
discrete-time solution methods of our test problem, using the policy function error as our accuracy
metric. Each blue circle corresponds to a continuous-time computation but with a different number
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of grid points ranging from a very coarse discretization with 25 grid points to an extremely fine one
with 10,000 grid points (the “true” solution). Similarly, each red cross corresponds to a discrete-
time computation. For each computation, the figure plots the time until the algorithm converged
measured in seconds (vertical axis) against the policy function error (horizontal axis). Starting
with a coarse grid in the lower right and increasing the number of grid points, the computations
become slower but more accurate and we move toward the upper left. By varying the number
of grid points, the blue line with circles therefore traces out a continuous-time speed-accuracy
tradeoff. Similarly, the red line with crosses traces out the analogous discrete-time tradeoff.

The key takeaway from the figure is that the continuous-time speed-accuracy tradeoff strictly
dominates its discrete-time counterpart: for any given policy function error, the continuous-time
method is always faster; conversely, for any given computational speed, the continuous-time
method is always more accurate. Supplementary Appendix Figure A.1(a) reports the ratio of the
computational times for different accuracy levels. It shows that the continuous-time method is
at least twice as fast as the discrete-time method but can be more than 30 times faster if high
accuracy (low error) is required.

Figure 9(b) repeats this exercise but instead using the percentage error in aggregate
consumption as the accuracy metric. The computations are now somewhat more time-intensive
because they require computing stationary distributions in addition to policy functions. The
difference in computational performance is even more striking: for a given level of accuracy
the continuous-time method is between 10 and 500 times faster—see Supplementary Appendix
Figure A.1(a) which plots the relative speed.

General equilibrium and transition dynamics. As already noted, our strategy for iterating on
equilibrium prices and computing transition dynamics is the same as in standard discrete time
problems and we therefore do not conduct a comparison between the two. We nevertheless briefly
comment on our method’s performance for computing these. All of Figures 1, 6, and 8 for the
Huggett economy earlier in the paper were computed using a Matlab implementation of the
algorithm in Section 5.2. Even though we work with a fine wealth grid with I =1000 grid points,
solving for a stationary equilibrium takes about 0.25 seconds on a MacBook Pro laptop computer.
Next, consider the corresponding transition dynamics. With I =1000 wealth grid points, N =400
time steps and the same hardware, computing (12) and (13) for a fixed time path r(t) takes about
2 s. Iterating on r(t) until an equilibrium transition is found takes about 4 minutes (even though
market clearing conditions like (4) that implicitly define prices are difficult to impose during
transitions).43

5.7. Finite difference methods in economics and alternatives

Candler (1999) has previously used a FD method to solve HJB equations arising in economics
and also discusses upwinding. Our numerical method adds to his in three dimensions. First and
most obviously, we consider coupled HJB and KF equations rather than just the HJB equation
in isolation: the system (7), (8), and (11) rather than just (7). Second, even when considered in
isolation, our HJB equation differs from Candler’s because it features a borrowing constraint—
a ubiquitous feature of heterogeneous agent models—and we design an upwind method that

43. In contrast, computing transitions for the Aiyagari model in Supplementary Appendix G.2, where prices
are explicit functions of the aggregate capital stock, takes only 1 minute and 40 seconds. The Matlab code for
the stationary equilibrium and transition dynamics of the Huggett model are available at https://benjaminmoll.com/
huggett_equilibrium_iterate/ and http://benjaminmoll.com/huggett_transition/. The code for the Aiyagari model is at
http://benjaminmoll.com/aiyagari_poisson_MITshock/.
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respects this constraint. Third, we show that our solution method has well-developed theoretical
underpinnings by making the connection to the Barles and Souganidis (1991) theory.

Another method that is closely related to FD methods and has been previously used in
economics is the Markov-chain approximation method (MCAM) of Kushner and Dupuis (2013).
See, e.g., Golosov and Lucas (2007) and Barczyk and Kredler (2014a,b, 2018). One way of
viewing our FD method is as a simple special case of MCAM. As we explained in Section
5.3, our FD method effectively approximates the law of motion for continuous state variables
with a discrete-state Poisson process; that is, we use the FD method to build an approximating
Markov chain. MCAM is a more general approach to building such approximating Markov chains,
e.g., via trinomial trees.

Besides the FD and Markov-chain approximation (MCA) methods, there are many alternative
methods for solving partial differential equations in general and HJB and KF equations in
particular. Examples include finite-element, finite-volume, and semi-Lagrangean methods as well
as approximation via orthogonal (e.g. Chebyshev) polynomials. In principle, these other methods
can also be used to solve heterogeneous agent models of the type discussed here; in particular by
following the same Steps 1 to 3 laid out in Section 5.2 but simply exchanging the solution method
used within Steps 1 and 2. There is no sense in which our FD method dominates these other
methods, some of which may even be more accurate for coarse discretizations. We nevertheless
prefer the FD method for two reasons. First, it is transparent and easy to implement: in case the
algorithm spits out junk, it is usually easy to track down the problem. Second, it delivers a useful
symmetry for the HJB and KF equations: the transpose property discussed in Section 5.4 which
is typically not shared by other methods. Finally, because the FD method is fast, choosing fine
grids is usually sufficiently cheap and the potentially higher accuracy of alternative methods for
coarse discretizations is therefore not relevant.

6. NON-CONVEXITIES AND THE POWER OF VISCOSITY SOLUTIONS

Many important economic problems involve non-convexities. These are difficult to handle with
standard discrete-time methods. In contrast, viscosity solutions and finite difference methods are
designed to handle such problems. To illustrate this, we now present an economy in which
the interplay of indivisible housing and mortgages with a down-payment constraint causes
a non-convexity. We show that the same algorithm that we used in the standard Aiyagari–
Bewley–Huggett model can be used without change. We also use this problem to provide a
brief introduction to viscosity solutions and to comment on their usefulness.

6.1. Non-convexities: indivisible housing, mortgages, poverty traps

We here provide a parsimonious example of a theory that features a non-convexity: individuals
can take out a mortgage to buy houses subject to a down-payment constraint and housing is
indivisible. The purpose of this subsection is not to propose a quantitatively realistic model of
housing; rather it is to showcase what kind of models can be solved with our computational
algorithm.

Setup. Individuals have preferences over consumption ct and housing services ht :

E0

∫ ∞

0
e−ρtU(ct,ht)dt.

They can borrow and save in a riskless bond bt and buy housing at price p. The key restriction is
that there are no houses below some threshold size hmin >0. That is, an individual can either not
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own a house ht =0 or one that is larger than hmin; compactly:

ht ∈{0,[hmin,∞)}.

An individual’s budget constraint is ḃt +pḣt =yt +rbt −ct . As before yt ∈{y1,y2} follows a two-
state Poisson process. When buying a house, the individual can take out a mortgage and borrow
up to a fraction θ ∈[0,1] of the value of the house:

−bt ≤θpht .

Equivalently, the down-payment needs to be at least a fraction 1−θ of the house’s value. The
interest rate r and house price p are determined in equilibrium. Housing is in fixed supply
normalized to unity and bonds are in zero net supply.

Stationary equilibrium. It is convenient to work with net worth at :=bt +pht which follows
ȧt =yt +r(at −pht)−ct . The borrowing constraint then becomes pht ≤φat with φ := 1

1−θ
. Denote

the set of admissible housing choices by H(a)={h :ph≤φa}∩{0,[hmin,∞)}. A stationary
equilibrium is fully characterized by the following system of equations

ρvj(a)= max
c,h∈H(a)

U(c,h)+v′
j(a)(yj +r(a−ph)−c)+λj(v−j(a)−vj(a)), (45)

0=− d

da
[sj(a)gj(a)]−λjgj(a)+λ−jg−j(a),

1=
∫ ∞

0
(h1(a)dG1(a)+h2(a)dG2(a)), 0=

∫ ∞

0
(b1(a)dG1(a)+b2(a)dG2(a)),

where cj(a),hj(a),sj(a)=yj +r(a−phj(a))−cj(a) and bj(a)=a−phj(a) are the optimal con-
sumption, housing, saving and bond holding policy functions.

In what follows, we solve this equilibrium system under the additional assumption that utility
is quasi-linear U(c,h)=u(c+f (h)). This assumption is convenient because the optimal housing
choice separates from the consumption-saving problem and allows for a simple connection to
theories with non-convex production technologies (Skiba, 1978). That being said, the model can
easily be solved numerically for general preferences u(c,h). Assuming quasi-linear utility and
defining q=c+f (h), (45) becomes

ρvj(a)=max
q

u(q)+v′
j(a)(yj +F(a)−q)+λj(v−j(a)−vj(a)), (46)

F(a)= max
h∈H(a)

{f (h)+r(a−ph)}. (47)

The function F is the pecuniary benefit from optimally allocating wealth a between housing and
bonds. Figure 10(a) and (b) plot the solution to the optimal housing choice problem as a function
of wealth a: panel (a) plots the housing policy function h(a) and panel (b) plots the pecuniary
benefit F(a). The vertical line in the two graphs is at a∗ :=phmin/φ, the down-payment necessary
to buy the smallest available house hmin. An individual with wealth at below this threshold simply
cannot buy a house at time t, and hence h(a)=0 for a≤a∗. As her wealth increases above a∗, the
individual is first up against the constraint ph≤φa so that the size of her house increases linearly
with wealth; when her wealth is large enough, she chooses the unconstrained house size given by
the solution to f ′(h)=rp. Importantly the function F in panel (b) is convex–concave as a function
of wealth a as in some theories of economic growth (Skiba, 1978).
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(a) Housing Policy Function (b) Pecuniary Benefit of Wealth

(c) Saving Policy Function (d) Value Function

(e) First Example of Stationary
Densities

(f) Second Example of Stationary
Densities

Figure 10

Model with indivisible housing: policy and value functions and multiple stationary distributions.

Figure 10(c) plots the resulting saving policy function. The black, dashed horizontal line is
at zero, i.e., saving is positive above that line and negative below. Optimal saving has the typical
feature of problems with non-convexities: for each income type, there is a threshold wealth level
(the “Skiba point”) below which individuals decumulate assets and above which they accumulate
assets. In Figure 10(c), these points are where the saving policy functions intersect zero while
sloping upward. As usual, each “Skiba point” is strictly below the point of the non-convexity a∗
(the dashed vertical line). Figure 10(d) plots the corresponding value functions: importantly, they
feature convex kinks at the “Skiba point”. The next section discusses how the theory of viscosity
solutions deals with such non-differentiability.

Since the theory features classic poverty trap dynamics, there can be multiple stationary wealth
distributions. Figures 10(e) and (f) confirm this possibility: they plot two possible stationary
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wealth distributions. In fact, there is a continuum of stationary wealth distributions. In results not
shown here due to space constraints, we have also computed the model’s transition dynamics.
Not surprisingly given the discussion thus far, the economy features history dependence in the
sense that initial conditions determine where the economy ends up in the long run. As already
noted, the point of this subsection is not to argue quantitatively that the presence of indivisible
housing and down-payment constraints creates history dependence. Rather it is to showcase the
possibilities of our computational algorithm.

6.2. Viscosity Solutions

Because the value function features kinks the HJB equation does not have a classical solution
(Section 3.2). Instead, the solution is a particular type of weak solution: a viscosity solution
(Crandall and Lions, 1983). Supplementary Appendix D defines this solution concept and
provides an overview of the corresponding theory. We here provide a brief summary.

To this end, consider a simplified version of (46) without labour income y1 =y2 =0:

ρv(a)=max
q

{
u(q)+v′(a)(F(a)−q)

}
, (48)

with F defined in (47). As already noted, F is convex–concave (Figure 10(b)). Note the similarity
to theories of economic growth with convex–concave production functions (Skiba, 1978) and to
theories of entrepreneurship with financial constraints and non-convexities in production, either
due to fixed costs in production or to an occupational choice (see e.g. Buera, 2009; Buera et al.,
2011; Buera and Shin, 2013; Buera et al., 2015). Our theoretical and computational approaches
also carry over to such theories.

Since, we expect the value function v to feature a kink, we require a solution concept to the
HJB equation (48) that allows for such points of non-differentiability. In particular, we need to
answer the question: what do we mean by saying “v satisfies (48)” if the derivative v′ does not
exist at some point? The basic idea of viscosity solutions is as follows. We replace the derivative
v′ at a point where it does not exist with the derivative φ′ of a smooth function φ (a “test function”)
that “touches v.” We then define a viscosity solution as a function v that satisfies an alternative
equation that features φ′ instead of v′. Definition 1 in Appendix D spells this out formally. To
give the reader a flavour, consider a convex kink in v as in Figure 10(d) and denote the kink point
by a∗. Informally, a viscosity solution to (48) is defined as a function v that satisfies

ρv(a∗)≥max
q

{
u(q)+φ′(a∗)(F(a∗)−q)

}
(49)

for any smooth function φ that “touches v from below” and that satisfies another symmetric
condition for potential concave kinks. The rough intuition for (49) is as follows. The derivative
v′ in (48) is the marginal continuation value. At points where this derivative does not exist,
we replace the non-differentiable continuation value v with a differentiable one φ and make
use of a “monotonicity” condition familiar from discrete-time dynamic programming: a higher
continuation value implies that also today’s value must be weakly higher. In particular, the
inequality in (49) is due to φ representing a worse continuation value than v. The viscosity
solution is then defined as the function v such that this monotonicity condition holds for any
such function φ. Importantly, one can also prove that this solution is unique and that it equals the
value function of the corresponding sequence problem. Summarizing, the viscosity solution is
the natural solution from the point of view of optimal control theory while being able to handle
kinks. All of this is discussed in more detail in Supplementary Appendix D.
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As discussed in Section 5.1 a computational advantage of continuous time is that first-
order conditions are static and can often be solved by hand. This is still true in the presence
of non-convexities. For instance, the first-order condition in (48) is simply u′(q)=v′(a) and the
optimal policy q∗(a)= (u′)−1(v′(a)). In contrast, the analogous discrete-time first-order condition
u′(F(a)−a′)=βv′(a′) is no longer sufficient and typically has multiple solutions (because v′
jumps at the kink). Intuitively, the discrete-time first-order condition is concerned with tradeoffs
between “today” and “tomorrow” while all relevant information from tomorrow onwards is
encoded in the continuation value function. But this means that one still has to worry about
“crossing the non-convexity” between today and tomorrow. In continuous time, instead, the
value function encodes all relevant information about the future from today onwards, thereby
eliminating this problem.

Finally, the Barles–Souganidis theory still applies in the presence of kinks and therefore our
computational algorithm can be applied without change.

7. GENERALIZATIONS AND EXTENSIONS

We here outline a number of generalizations and extensions of the baseline Huggett model in
Sections 2 to 5. Details are in Supplementary Appendix G. The purpose of this brief section is
to showcase the generality of our methods and in particular the portability of our computational
algorithm.

More general income processes. Our baseline model assumed that income yt takes one
of two values, high and low. Supplementary Appendix G.1 extends many of our results to an
environment with a continuum of productivity types.44 In particular, the computational algorithm
laid out in Section 5 carries over without change. This is true even though the system of equations
describing an equilibrium will be a system of PDEs rather than a system of ODEs.

Aiyagari model. Supplementary Appendix G.2 extends our results to the case where
individuals save in productive capital and income takes the form of labour income as in Aiyagari
(1994).

Soft borrowing constraints. Supplementary Appendix G.3 considers a wedge between
borrowing and saving rates and characterize the implication for saving behaviour and the wealth
distribution. This form of “soft constraint” can explain the empirical observation that wealth
distributions typically have a spike at zero net worth and mass both to the left and the right of
zero.

Fat tails. As shown in Proposition 3, the stationary wealth distribution in the Huggett economy
with a bounded income process is bounded above. More generally, any income process with a
thin-tailed stationary distribution generates a thin-tailed wealth distribution. This property of the
model is problematic vis-à-vis empirical wealth distributions which typically feature fat upper
tails. In Supplementary Appendix G.4, we extend the Huggett model of Section 2 to feature a fat-
tailed stationary wealth distribution by introducing idiosyncratic investment risk (Nardi and Fella,
2017; Benhabib and Bisin, 2018).

Multiple assets with adjustment costs. The model in Sections 6 featured two assets: bonds
and housing. But portfolio adjustment between the two assets was costless so that they collapsed
into one state variable, net worth. Such costless portfolio adjustment is often a bad assumption,
in particular when modeling illiquid assets such as housing. On our computational website, we
therefore extend our algorithm to multiple assets with kinked (but convex) adjustment costs.

44. Among the theoretical results, we extend Propositions 1, 2, 4, and 5. That is, all propositions from Section 4
except Propositions 3 (the analytic solution for the stationary distribution with two income types).
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Kaplan et al. (2018) argue that such a two-asset structure is important for understanding the
monetary transmission mechanism.

Stopping time problems. Problems with multiple assets may also feature non-convex
adjustment costs like fixed costs. Individuals then solve stopping time problems (Stokey, 2009).
Instead of solving a standard HJB equation, the value function solves a “HJB Variational
Inequality” (HJBVI, Øksendal, 1995; Tourin, 2013).45 On our computational website, we
also generalize our algorithm to such stopping time problems.46 McKay and Wieland (2019),
Guerrieri et al. (2020), and Laibson et al. (2020) use this algorithm to study durables and housing
investment as well as mortgage refinancing decisions. The method also promises to be useful in
other applications, e.g. problems involving default by individuals (see e.g. Livshits et al., 2007)
or by sovereign states (see e.g. Aguiar et al., 2013; Bornstein, 2020).

8. CONCLUSION

This article makes two types of contributions. First, we prove a number of new theoretical
results about the Aiyagari–Bewley–Huggett model, the workhorse theory of income and wealth
distribution in macroeconomics: (1) an analytic characterization of the consumption and saving
behaviour of the poor, particularly their marginal propensities to consume; (2) a closed-form
solution for the wealth distribution in a special case with two income types; (3) a proof that there
is a unique stationary equilibrium if the intertemporal elasticity of substitution is weakly greater
than one. Second, we develop a simple, efficient and portable algorithm for numerically solving
both stationary equilibria and transition dynamics of a wide class of heterogeneous agent models,
including—but not limited to—this model. Both types of contributions were made possible by
recasting the Aiyagari–Bewley–Huggett model in continuous time, thereby transforming it into
a system of partial differential equations.

It is our hope that the methods developed in this article, particularly the numerical algorithm,
will also prove useful in other applications. One potential application is to spatial theories of
trade and development as in Rossi-Hansberg (2005) and Allen and Arkolakis (2014). These
theories typically feature a continuum of producers and households distributed over a continuum
of locations. In dynamic versions, space would simply be an additional variable in the HJB and KF
equations. A challenge would be how to solve for equilibrium prices which are typically functions
of space rather than a small number of (potentially time-varying) scalars. Related, a second avenue
for future research is to explore richer interactions between individuals. In the class of theories, we
have considered here, individuals interact only through prices. But for many questions of interest,
richer interactions may be important: for instance there may be more “local” interactions in
the form of knowledge spillovers or diffusion (see e.g. Perla and Tonetti, 2014; Lucas and Moll,
2014; Burger et al., 2016; Benhabib et al., 2017; Papanicolaou et al., 2020). In principle, the
apparatus put forward in this article—the backward–forward MFG system of coupled HJB and
KF equations—is general enough to encompass such richer models.

Acknowledgments. This version supersedes an earlier version of the paper entitled “Heterogeneous Agent
Models in Continuous Time.” It is supplemented by two online appendices https://benjaminmoll.com/HACT_appendix/
and https://benjaminmoll.com/HACT_Numerical_Appendix/ as well as a website with codes https://benjaminmoll.

45. Economists typically tackle such problems by imposing a “smooth pasting” condition on the boundary between
an inaction region and an adjustment region. While this approach is convenient in one dimension when this boundary
is a simple threshold, it becomes impractical in multiple dimensions. The HJBVI approach instead avoids imposing a
smooth pasting condition (which becomes a result rather than an imposed axiom) and multi-dimensional problems pose
no conceptual problem over one-dimensional one.

46. See the applications labelled “Stopping Time Problem” at https://benjaminmoll.com/codes/.
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