## **Asset-Price Redistribution**

Andreas Fagereng Bl Matthieu Gomez Columbia

Émilien Gouin-Bonenfant Columbia Martin Holm University of Oslo

Benjamin Moll LSE Gisle Natvik Bl

April 2023

### Rising asset prices



U.S. Nonfinancial Corporate Businesses

Rising asset prices ... relative to income = rising valuations



### Welfare consequences of rising asset valuations?

• Rising asset valuations had large effects on distribution of wealth

**Q:** But what are welfare consequences of rising valuations?

- Answer is not obvious. Two polar views regarding effect of  $P \uparrow$ :
  - 1. Shift of real resources towards wealthy (Piketty-Zucman, Saez-Yagan-Zucman)
  - 2. Welfare-irrelevant paper gains (Cochrane, Krugman)

### What We Do: Theory

• Formula for money-metric welfare gains/losses (= compensating variation) from asset price changes here for case of one asset and no borrowing

Welfare 
$$\operatorname{Gain}_{i} = \sum_{t=0}^{\infty} \operatorname{Discounting}_{t} \times \left(\operatorname{Asset} \operatorname{sales}_{it} \times \operatorname{Price} \operatorname{deviation}_{t}\right) + \dots$$

- price deviations holding cashflows constant ⇒ pure valuation effects
- envelope theorem  $\Rightarrow$  first-order approximation
- +... captures other effects (collateral,GE,..) but 1st term is always there
- Two main lessons: higher valuations ...
  - 1. benefit sellers, not holders
  - 2. are purely redistributive in terms of welfare (for every seller there is a buyer)
- Implication: both polar positions from previous slide are wrong

### What We Do: Empirics

• Implement as sufficient statistic using Norwegian admin data (1994–2019)

Welfare 
$$\text{Gain}_{i} = \sum_{t=0}^{T} \text{Discounting}_{t} \left( \sum_{k=1}^{K} \left( \text{Asset sales}_{ikt} \times \text{Price deviation}_{kt} \right) + \text{Borrowing}_{it} \times \text{Rate deviation}_{t} \right) + \text{Terms from generalizations}$$

• measure net asset sales, borrowing (housing, stocks, debt, deposits)

- measure price deviations = deviations from constant price-dividend ratios (Gordon growth model) to isolate valuation effect
- Document large redistributive effects of rising asset valuations
  - in cross section
  - from young towards old
  - from poor towards wealthy

Rising asset valuations generate large welfare gains & losses



Example: large redistribution from young to old ...



... mostly due to house price changes



1. Theory: Intuition in two-period model

2. Theory: Sufficient statistic in full dynamic model with multiple assets

3. Empirics: implementation using Norwegian administrative data

4. Empirics: redistribution across households

5. Empirics: generalizations of baseline sufficient statistics approach

### Intuition in two-period model

- Periods t = 0 and t = 1, endowments  $Y_0$  and  $Y_1$
- Can trade shares N at time t = 0 that pay dividend D at time t = 1

$$V = \max_{\{C_0, C_1\}} U(C_0) + \beta U(C_1)$$
  

$$C_0 + (N_0 - N_{-1})P_0 = Y_0, \qquad C_1 = Y_1 + N_0 D_1$$

• Comparative static: effect of *P*<sub>0</sub> on welfare *V*?



- Rising asset prices benefit sellers  $(N_{-1} N_0 > 0)$ , not holders  $(N_{-1} > 0)$
- Note:  $D_1$  held constant, else additional term  $+ \frac{\beta U'(C_1)}{U'(C_0)} N_0 dD_1$

### Intuition in two-period model

- Periods t = 0 and t = 1, endowments  $Y_0$  and  $Y_1$
- Can trade shares N at time t = 0 that pay dividend D at time t = 1

$$V = \max_{\{C_0, C_1\}} U(C_0) + \beta U(C_1)$$
  

$$C_0 + (N_0 - N_{-1})P_0 = Y_0, \qquad C_1 = Y_1 + N_0 D_1$$

• Comparative static: effect of *P*<sub>0</sub> on welfare *V*?



- Rising asset prices benefit sellers  $(N_{-1} N_0 > 0)$ , not holders  $(N_{-1} > 0)$
- Note:  $D_1$  held constant, else additional term  $+ \frac{\beta U'(C_1)}{U'(C_0)} N_0 dD_1$

### Intuition in two-period model

- Rising asset prices benefit sellers  $(N_{-1} N_0 > 0)$ , not holders  $(N_{-1} > 0)$
- How can initial holders not benefit from  $P_0 \uparrow$ ? Two counteracting effects:

(t = 0) High initial return 
$$R_0 = P_0/P_{-1}$$
  $\uparrow$ 

$$(t = 1)$$
 Low future returns  $R_1 = D_1/P_0 \downarrow$ 

- For sellers, high initial returns dominate ...
- For buyers, low future returns dominate

#### A seller's investment decision

A buyer's investment decision





### Full dynamic model with multiple assets

- Infinite horizon, no risk
- One-period bond  $\{B_{i,t}\}_{t=0}^{\infty}$  with prices  $\{Q_t\}_{t=0}^{\infty}$  (deposits)
  - one-period return:  $R_{t+1} = 1/Q_t$
  - return from 0 to t:  $R_{0 \rightarrow t} \equiv R_1 \cdot R_2 \cdots R_t$
- K long-duration assets  $\{N_{ik,t}\}_{t=0}^{\infty}$ , prices  $\{P_{k,t}\}_{t=0}^{\infty}$  & dividends  $\{D_{k,t}\}_{t=0}^{\infty}$ 
  - adjustment cost  $\chi_{ik}(N_{ik,t} N_{ik,t-1})$ , potentially kinked (inaction)

• asset returns: 
$$R_{k,t+1} \equiv \frac{D_{k,t+1} + P_{k,t+1}}{P_{k,t}}$$

### Extensions: see paper, show you two of these today

- 1. Borrowing and collateral constraints
- 2. Incomplete markets
- 3. Bequests
- 4. Consolidating businesses with their owners.
- 5. Government sector
- 6. Taxes on assets
- 7. Housing and wealth in the utility function
- 8. General equilibrium

Welfare gains/losses in full dynamic model

Households solve

$$V_{i} = \max_{\{C_{i,t}, B_{i,t}, \{N_{ik,t}\}_{k=1}^{K}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} U(C_{i,t}) \quad \text{s.t.}$$

$$C_{i,t} + \sum_{k=1}^{K} (N_{ik,t} - N_{ik,t-1}) P_{k,t} + B_{i,t} Q_{t} + \sum_{k=1}^{K} \chi_{ik} = \sum_{k=1}^{K} N_{ik,t-1} D_{k,t} + B_{i,t-1} + Y_{i,t}$$

• **Proposition:** welfare effect of perturbation  $\{dP_{1,t}, ..., dP_{K,t}, dQ_t\}_{t=0}^{\infty}$  is

$$dV_{i} = U'(C_{i,0}) \times \underbrace{\sum_{t=0}^{\infty} R_{0 \to t}^{-1} \left( \sum_{k=1}^{K} (N_{ik,t-1} - N_{ik,t}) dP_{k,t} - B_{i,t} dQ_{t} \right)}_{\text{Welfare Gain}}$$

As in two-period model, rising asset prices benefit net sellers
 ... but portfolio choice + timing of purchases also matters



• **Corollary:** Suppose that initial prices clear all asset markets, i.e. asset sales and purchases add up to zero for each asset class. Then

$$\sum_{i=1}^{l} \text{Welfare Gain}_i = 0$$

so that asset price deviations are purely redistributive

### Extension: general equilibrium

- Claim: in GE, our formula does not capture full welfare effect but rather welfare effect working through equilibrium asset price changes
- Fundamental drivers of asset prices: vector  $z_t = \bar{z}_t + \theta \Delta z_t$
- Equilibrium prices:  $\Gamma_t(\theta) = \{ \{ P_{k,t}(\theta), D_{k,t}(\theta) \}_k, Q_t(\theta), Y_t(\theta) \}$
- Welfare  $V({\Gamma_t(\theta)}_{t=0}^{\infty}, \theta)$ . Hence

d

$$V = \sum_{t=0}^{\infty} \left( \sum_{k=1}^{K} \frac{\partial V}{\partial P_{k,t}} \frac{\partial P_{k,t}}{\partial \theta} + \frac{\partial V}{\partial Q_t} \frac{\partial Q_t}{\partial \theta} \right) d\theta$$
  
Welfare gain through asset prices = our main formula  
$$+ \sum_{t=0}^{\infty} \left( \sum_{k=1}^{K} \frac{\partial V}{\partial D_{k,t}} \frac{\partial D_{k,t}}{\partial \theta} + \frac{\partial V}{\partial Y_t} \frac{\partial Y_t}{\partial \theta} \right) d\theta + \frac{\partial V}{\partial \theta} d\theta$$
  
Welfare gain through dividends, labor income, ... Direct effect

Extension: collateral constraints  $-B_{i,t} \leq \theta N_{i,t} P_t$ 

• With collateral constraint, money-metric welfare gains are

Welfare Gain<sub>i</sub> = 
$$\sum_{t=0}^{\infty} \frac{\beta^t U'(C_{i,t})}{U'(C_{i,0})} \Big( (N_{i,t-1} - N_{i,t}) \, \mathrm{d}P_t - B_{i,t} \, \mathrm{d}Q_t \Big) + \sum_{t=0}^{\infty} \frac{\beta^t \mu_{i,t}}{U'(C_{i,0})} \theta N_{i,t} \, \mathrm{d}P_t$$

where  $\mu_{i,t}$  is Lagrange multiplier on collateral constraint

• Alternatively, household-specific rate schedule  $Q_{i,t} = Q_t F(N_{i,t}P_t, B_{i,t})$ :

### Extension: collateral constraints $-B_{i,t} \leq \theta N_{i,t} P_t$

• With collateral constraint, money-metric welfare gains are

Welfare Gain<sub>i</sub> = 
$$\sum_{t=0}^{\infty} \frac{\beta^t U'(C_{i,t})}{U'(C_{i,0})} \Big( (N_{i,t-1} - N_{i,t}) dP_t - B_{i,t} dQ_t \Big) + \sum_{t=0}^{\infty} \frac{\beta^t \mu_{i,t}}{U'(C_{i,0})} \frac{\theta N_{i,t} dP_t}{\theta N_{i,t}} dP_t$$

where  $\mu_{i,t}$  is Lagrange multiplier on collateral constraint

• Alternatively, household-specific rate schedule  $Q_{i,t} = Q_t F(N_{i,t}P_t, B_{i,t})$ :



Extension: collateral constraints  $-B_{i,t} \leq \theta N_{i,t} P_t$ 

• With collateral constraint, money-metric welfare gains are

Welfare Gain<sub>i</sub> = 
$$\sum_{t=0}^{\infty} \frac{\beta^t U'(C_{i,t})}{U'(C_{i,0})} \Big( (N_{i,t-1} - N_{i,t}) \, \mathrm{d}P_t - B_{i,t} \, \mathrm{d}Q_t \Big) + \sum_{t=0}^{\infty} \frac{\beta^t \mu_{i,t}}{U'(C_{i,0})} \theta N_{i,t} \, \mathrm{d}P_t$$

where  $\mu_{i,t}$  is Lagrange multiplier on collateral constraint

• Alternatively, household-specific rate schedule  $Q_{i,t} = Q_t F(N_{i,t}P_t, B_{i,t})$ :

Welfare Gain<sub>i</sub> = 
$$\sum_{t=0}^{\infty} \frac{\beta^{t} U'(C_{i,t})}{U'(C_{i,0})} \left( (N_{i,t-1} - N_{i,t}) dP_{t} - B_{i,t} Q_{i,t} \frac{dQ_{t}}{Q_{t}} \right)$$
  
+  $\sum_{t=0}^{\infty} \frac{\beta^{t} U'(C_{i,t})}{U'(C_{i,0})} \left( -B_{i,t} \frac{\partial Q_{i,t}}{\partial (N_{i,t}P_{t})} N_{i,t} dP_{t} \right)$ 

Later: implement by taking interest rate schedule from data

# **Empirics**

- 1. Replace infinitesimal changes  $dP_{k,t}$  by discrete changes  $\Delta P_{k,t}$ 
  - robustness: second-order effects
- 2. Consider deviations in prices away from constant price-dividend ratios

$$\Delta P_{k,t} = P_{kt} - \overline{PD}_k \times D_{k,t} \quad \Leftrightarrow \quad \frac{\Delta P_{k,t}}{P_{k,t}} = \frac{PD_{k,t} - PD_k}{PD_{k,t}}$$

- 1. Replace infinitesimal changes  $dP_{k,t}$  by discrete changes  $\Delta P_{k,t}$ 
  - robustness: second-order effects
- 2. Consider deviations in prices away from constant price-dividend ratios

$$\Delta P_{k,t} = P_{kt} - \overline{PD}_k \times D_{k,t} \quad \Leftrightarrow \quad \frac{\Delta P_{k,t}}{P_{k,t}} = \frac{PD_{k,t} - PD_k}{PD_{k,t}}$$



- 1. Replace infinitesimal changes  $dP_{k,t}$  by discrete changes  $\Delta P_{k,t}$ 
  - robustness: second-order effects
- 2. Consider deviations in prices away from constant price-dividend ratios

$$\Delta P_{k,t} = P_{kt} - \overline{PD}_k \times D_{k,t} \quad \Leftrightarrow \quad \frac{\Delta P_{k,t}}{P_{k,t}} = \frac{PD_{k,t} - \overline{PD}_k}{PD_{k,t}}$$

- 3. Truncate formula at finite date T (end of sample)
  - robustness: extrapolate trading and price deviations beyond T (later)

- 1. Replace infinitesimal changes  $dP_{k,t}$  by discrete changes  $\Delta P_{k,t}$ 
  - robustness: second-order effects
- 2. Consider deviations in prices away from constant price-dividend ratios

$$\Delta P_{k,t} = P_{kt} - \overline{PD}_k \times D_{k,t} \quad \Leftrightarrow \quad \frac{\Delta P_{k,t}}{P_{k,t}} = \frac{PD_{k,t} - \overline{PD}_k}{PD_{k,t}}$$

- 3. Truncate formula at finite date T (end of sample)
  - robustness: extrapolate trading and price deviations beyond T (later)
- $\Rightarrow$  Formula we implement empirically

Welfare gain<sub>i</sub> 
$$\approx \sum_{t=0}^{T} R_{0 \to t}^{-1} \left( \sum_{k=1}^{K} (N_{ik,t-1} - N_{ik,t}) P_{k,t} \times \frac{PD_{k,t} - \overline{PD}_{k}}{PD_{k,t}} - B_{i,t}Q_{t} \times \frac{Q_{t} - \overline{Q}}{Q_{t}} \right)$$

### Data on Holdings and Transactions

- Administrative data covering the universe of Norwegians over 1993–2019
- Focus on 4 broad asset categories that cover most of household wealth
  - 1. deposits (15%)
  - 2. debt (mortgage, student loan, ..., -35%)
  - 3. equity (individual stocks, mutual funds, private businesses, ..., 10%)
  - 4. housing (110%)
- For deposits/debt, we only need to measure holdings
- For equities/housing, we use data on individual transactions
- Take into account indirect transactions/holdings through equity ownership

### Rising valuations, declining yields in all asset classes



Gross real interest rate (debt/deposits); Rents/Price (housing); Cashflows/EV (equity)

Data on housing and equity transactions



### Data on debt and deposits



### Rising asset valuations generate large welfare gains & losses



| Average |        | Average by percentile groups of welfare gains |        |        |        |         |  |
|---------|--------|-----------------------------------------------|--------|--------|--------|---------|--|
|         | p0-1   | p1-10                                         | p10-50 | p50-90 | p90-99 | p99-100 |  |
| 10.1    | -546.2 | -94.5                                         | -13.7  | 16.7   | 100.2  | 701.5   |  |

### Large gains and losses as % of initial wealth



Welfare vs wealth gains (revaluation gains)



### Joint distribution of welfare and revaluation gains



# Redistribution from the young to the old



# Redistribution from the young to the old



## Redistribution from the poor to the rich



### Welfare vs revaluation gains across wealth distribution



• Households welfare gains aggregate to  $\approx$  \$10K per capita

• Who is the losing counterparty?

 $Welfare \ Gain_{Households} = -Welfare \ Gain_{Government} - Welfare \ Gain_{Foreigners}$ 

## Redistribution across sectors



# Generalizations of baseline sufficient statistics approach

## Collateral effects

• Recall extension: interest rate schedule  $Q_{i,t} = Q_t F(B_{i,t}, N_{i,t}P_t)$ 

Welfare Gain<sub>i</sub> = 
$$\sum_{t=0}^{\infty} \frac{\beta^t U'(C_{i,t})}{U'(C_{i,0})} \left( \left( N_{i,t-1} - N_{i,t} \right) \mathrm{d}P_t - B_{i,t}Q_{i,t} \frac{\mathrm{d}Q_t}{Q_t} \right) + \sum_{t=0}^{\infty} \frac{\beta^t U'(C_{i,t})}{U'(C_{i,0})} \left( -B_{i,t} \frac{\partial Q_{i,t}}{\partial (N_{i,t}P_t)} N_{i,t} \mathrm{d}P_t \right)$$

• Estimate second term by measuring effect of LTV on mortgage rates

Mortgage interest rates increase with loan-to-value ratio



### Collateral effects



Valuations changes beyond end of our sample period

• We extend our baseline formula to account for future valuation changes:

Welfare Gain<sub>i</sub> 
$$\approx \sum_{t=0}^{T} R_{0 \to t}^{-1} \left( N_{i,t-1} - N_{i,t} \right) \Delta P_t + \underbrace{\sum_{t=T+1}^{\infty} R_{0 \to t}^{-1} \left( N_{i,t-1} - N_{i,t} \right) \Delta P_t}_{\text{future valuation changes}}$$

• Estimate second term assuming: for  $t \ge T$ 

$$\frac{\Delta P_t}{P_t} = \frac{PD_t - \overline{PD}_t}{PD_t} \quad \text{with} \quad \log\left(\frac{PD_t}{\overline{PD}}\right) = \phi^{t-T} \log\left(\frac{PD_T}{\overline{PD}}\right), \ \phi < 1$$
$$N_{a,t-1} - N_{a,t} = N_{a,T-1} - N_{a,T} \text{ where } a = \text{age}$$

### Valuations changes beyond end of our sample period



# Conclusion

- Simple framework to quantify welfare effects of asset price deviations
- Framework can be extended to take into account collateral effects, incomplete markets, ...
- Application to Norway (1994–2019)
  - 1. large heterogeneity in welfare gains across households
  - 2. welfare gains  $\neq$  revaluation gains
  - 3. redistribution from young to old and from poor to rich
  - 4. negative "welfare gain" for government  $\Rightarrow$  future net transfers  $\downarrow$
- Could apply in other contexts, e.g. collapsing asset prices in recessions
- Optimal taxation? (Aguiar-Moll-Scheuer)