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Rising asset prices
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Rising asset prices ... relative to income = rising valuations
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Welfare consequences of rising asset valuations?

• Rising asset valuations had large effects on distribution of wealth

Q: But what are welfare consequences of rising valuations?

• Answer is not obvious. Two polar views regarding effect of P ↑:

1. Shift of real resources towards wealthy (Piketty-Zucman, Saez-Yagan-Zucman)

2. Welfare-irrelevant paper gains (Cochrane, Krugman)

2



What We Do: Theory
• Formula for money-metric welfare gains/losses (= compensating variation)
from asset price changes here for case of one asset and no borrowing

Welfare Gaini =
∞∑
t=0

Discountingt ×
(
Asset salesit × Price deviationt

)
+ ...

• price deviations holding cashflows constant⇒ pure valuation effects
• envelope theorem⇒ first-order approximation
• +... captures other effects (collateral,GE,..) but 1st term is always there

• Two main lessons: higher valuations ...

1. benefit sellers, not holders

2. are purely redistributive in terms of welfare (for every seller there is a buyer)

• Implication: both polar positions from previous slide are wrong
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What We Do: Empirics

• Implement as sufficient statistic using Norwegian admin data (1994–2019)

Welfare Gaini =
T∑
t=0

Discountingt

(
K∑
k=1

(
Asset salesikt × Price deviationkt

)
+ Borrowingit × Rate deviationt

)
+ Terms from generalizations

• measure net asset sales, borrowing (housing, stocks, debt, deposits)
• measure price deviations = deviations from constant price-dividend
ratios (Gordon growth model) to isolate valuation effect

• Document large redistributive effects of rising asset valuations
• in cross section
• from young towards old
• from poor towards wealthy
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Rising asset valuations generate large welfare gains & losses
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Example: large redistribution from young to old ...
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... mostly due to house price changes
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Plan

1. Theory: Intuition in two-period model

2. Theory: Sufficient statistic in full dynamic model with multiple assets

3. Empirics: implementation using Norwegian administrative data

4. Empirics: redistribution across households

5. Empirics: generalizations of baseline sufficient statistics approach
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Intuition in two-period model

• Periods t = 0 and t = 1, endowments Y0 and Y1
• Can trade shares N at time t = 0 that pay dividend D at time t = 1

V = max
{C0,C1}

U(C0) + βU(C1)

C0 + (N0 − N−1)P0 = Y0, C1 = Y1 + N0D1

• Comparative static: effect of P0 on welfare V ?

dV = U ′(C0)︸ ︷︷ ︸
marginal utility

× (N−1 − N0)︸ ︷︷ ︸
asset sales

× dP0︸︷︷︸
price deviation

• Rising asset prices benefit sellers (N−1 − N0 > 0), not holders (N−1 > 0)

• Note: D1 held constant, else additional term +βU
′(C1)

U ′(C0)
N0 dD1
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Intuition in two-period model

• Rising asset prices benefit sellers (N−1 − N0 > 0), not holders (N−1 > 0)

• How can initial holders not benefit from P0 ↑? Two counteracting effects:

(t = 0) High initial return R0 = P0/P−1 ↑
(t = 1) Low future returns R1 = D1/P0 ↓

• For sellers, high initial returns dominate ...

• For buyers, low future returns dominate
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Graphical intuition: welfare effect of P0 ↑
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Graphical intuition: welfare effect of P0 ↑

Effect of P0 ↑ on seller Effect of P0 ↑ on buyer
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Full dynamic model with multiple assets

• Infinite horizon, no risk

• One-period bond {Bi ,t}∞t=0 with prices {Qt}∞t=0 (deposits)

• one-period return: Rt+1 = 1/Qt
• return from 0 to t: R0�t ≡ R1 · R2 · · ·Rt

• K long-duration assets {Nik,t}∞t=0, prices {Pk,t}∞t=0 & dividends {Dk,t}∞t=0
• adjustment cost χik

(
Nik,t − Nik,t−1

)
, potentially kinked (inaction)

• asset returns: Rk,t+1 ≡ Dk,t+1+Pk,t+1
Pk,t
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Extensions: see paper, show you two of these today

1. Borrowing and collateral constraints

2. Incomplete markets

3. Bequests

4. Consolidating businesses with their owners.

5. Government sector

6. Taxes on assets

7. Housing and wealth in the utility function

8. General equilibrium
14



Welfare gains/losses in full dynamic model

• Households solve

Vi = max
{Ci ,t ,Bi ,t ,{Nik,t}Kk=1}

∞
t=0

∞∑
t=0

βtU(Ci ,t) s.t.

Ci ,t +

K∑
k=1

(Nik,t − Nik,t−1)Pk,t + Bi ,tQt +
K∑
k=1

χik =

K∑
k=1

Nik,t−1Dk,t + Bi ,t−1 + Yi ,t

• Proposition: welfare effect of perturbation {dP1,t , ..., dPK,t , dQt}∞t=0 is

dVi = U
′(Ci ,0)×

∞∑
t=0

R−10�t
(
K∑
k=1

(Nik,t−1 − Nik,t) dPk,t − Bi ,t dQt

)
︸ ︷︷ ︸

Welfare Gaini
• As in two-period model, rising asset prices benefit net sellers

... but portfolio choice + timing of purchases also matters
15



Aggregation

• Corollary: Suppose that initial prices clear all asset markets, i.e. asset
sales and purchases add up to zero for each asset class. Then

I∑
i=1

Welfare Gaini = 0

so that asset price deviations are purely redistributive
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Extension: general equilibrium
• Claim: in GE, our formula does not capture full welfare effect but rather
welfare effect working through equilibrium asset price changes

• Fundamental drivers of asset prices: vector zt = z̄t + θ∆zt
• Equilibrium prices: Γt(θ) = {{Pk,t(θ), Dk,t(θ)}k , Qt(θ), Yt(θ)}

• Welfare V ({Γt(θ)}∞t=0, θ). Hence

dV =

∞∑
t=0

(
K∑
k=1

∂V

∂Pk,t

∂Pk,t
∂θ
+
∂V

∂Qt

∂Qt
∂θ

)
dθ︸ ︷︷ ︸

Welfare gain through asset prices = our main formula

+

∞∑
t=0

(
K∑
k=1

∂V

∂Dk,t

∂Dk,t
∂θ

+
∂V

∂Yt

∂Yt
∂θ

)
dθ︸ ︷︷ ︸

Welfare gain through dividends, labor income, ...

+
∂V

∂θ
dθ︸ ︷︷ ︸

Direct effect 17



Extension: collateral constraints −Bi ,t ≤ θNi ,tPt
• With collateral constraint, money-metric welfare gains are

Welfare Gaini =
∞∑
t=0

βtU ′(Ci ,t)

U ′(Ci ,0)

(
(Ni ,t−1 − Ni ,t) dPt−Bi ,t dQt

)
+

∞∑
t=0

βtµi ,t
U ′(Ci ,0)

θNi ,t dPt

where µi ,t is Lagrange multiplier on collateral constraint

• Alternatively, household-specific rate schedule Qi ,t = QtF (Ni ,tPt , Bi ,t):
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where µi ,t is Lagrange multiplier on collateral constraint

• Alternatively, household-specific rate schedule Qi ,t = QtF (Ni ,tPt , Bi ,t):

Welfare Gaini =
∞∑
t=0

βtU ′(Ci ,t)

U ′(Ci ,0)

(
(Ni ,t−1 − Ni ,t) dPt − Bi ,tQi ,t

dQt
Qt

)
+

∞∑
t=0

βtU ′(Ci ,t)

U ′(Ci ,0)

(
−Bi ,t

∂Qi ,t
∂(Ni ,tPt)

Ni ,t dPt

)

• Later: implement by taking interest rate schedule from data
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Empirics
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Implementation

1. Replace infinitesimal changes dPk,t by discrete changes ∆Pk,t
• robustness: second-order effects

2. Consider deviations in prices away from constant price-dividend ratios

∆Pk,t = Pkt − PDk ×Dk,t ⇔ ∆Pk,t
Pk,t
=
PDk,t−PDk
PDk,t

3. Truncate formula at finite date T (end of sample)
• robustness: extrapolate trading and price deviations beyond T (later)

• ⇒ Formula we implement empirically

Welfare gaini ≈
T∑
t=0

R−10�t
(
K∑
k=1

(Nik,t−1 − Nik,t)Pk,t ×
PDk,t − PDk
PDk,t

− Bi ,tQt ×
Qt −Q
Qt

)
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Data on Holdings and Transactions

• Administrative data covering the universe of Norwegians over 1993–2019

• Focus on 4 broad asset categories that cover most of household wealth
1. deposits (15%)

2. debt (mortgage, student loan, ..., −35%)

3. equity (individual stocks, mutual funds, private businesses, ..., 10%)

4. housing (110%)

• For deposits/debt, we only need to measure holdings

• For equities/housing, we use data on individual transactions

• Take into account indirect transactions/holdings through equity ownership
20



Rising valuations, declining yields in all asset classes
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Data on housing and equity transactions
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Data on debt and deposits
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Rising asset valuations generate large welfare gains & losses
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Large gains and losses as % of initial wealth
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Welfare vs wealth gains (revaluation gains)
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Joint distribution of welfare and revaluation gains
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Redistribution from the young to the old
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Redistribution from the young to the old

-50K

-25K

0K

25K

50K
W

el
fa

re
 g

ai
n

10 20 30 40 50 60 70 80
Initial age

Total Housing Debt Deposits Equity
29



Redistribution from the poor to the rich
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Welfare vs revaluation gains across wealth distribution
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Redistribution across sectors

• Households welfare gains aggregate to ≈ $10K per capita

• Who is the losing counterparty?

Welfare GainHouseholds = −Welfare GainGovernment −Welfare GainForeigners
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Redistribution across sectors
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Generalizations of baseline
sufficient statistics approach

33



Collateral effects

• Recall extension: interest rate schedule Qi ,t = QtF (Bi ,t , Ni ,tPt)

Welfare Gaini =
∞∑
t=0

βtU ′(Ci ,t)

U ′(Ci ,0)

(
(Ni ,t−1 − Ni ,t) dPt − Bi ,tQi ,t

dQt
Qt

)

+

∞∑
t=0

βtU ′(Ci ,t)

U ′(Ci ,0)

(
−Bi ,t

∂Qi ,t
∂(Ni ,tPt)

Ni ,t dPt

)

• Estimate second term by measuring effect of LTV on mortgage rates
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Mortgage interest rates increase with loan-to-value ratio
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Collateral effects
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Valuations changes beyond end of our sample period

• We extend our baseline formula to account for future valuation changes:

Welfare Gaini ≈
T∑
t=0

R−10�t (Ni ,t−1 − Ni ,t)∆Pt+
∞∑

t=T+1

R−10�t (Ni ,t−1 − Ni ,t)∆Pt︸ ︷︷ ︸
future valuation changes

• Estimate second term assuming: for t ≥ T

∆Pt
Pt
=
PDt − PDt
PDt

with log

(
PDt

PD

)
= ϕt−T log

(
PDT

PD

)
, ϕ < 1

Na,t−1 − Na,t = Na,T−1 − Na,T where a = age
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Valuations changes beyond end of our sample period
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Conclusion

• Simple framework to quantify welfare effects of asset price deviations
• Framework can be extended to take into account collateral effects,
incomplete markets, …
• Application to Norway (1994–2019)

1. large heterogeneity in welfare gains across households
2. welfare gains ̸= revaluation gains
3. redistribution from young to old and from poor to rich
4. negative “welfare gain” for government⇒ future net transfers ↓

• Could apply in other contexts, e.g. collapsing asset prices in recessions

• Optimal taxation? (Aguiar-Moll-Scheuer)
39


