Supplement to Lecture 3: Derivation of CES Special Cases

Macroeconomics, EC2B1

Benjamin Moll
In the lecture notes we defined the CES production function

$$
Y=\left(\alpha^{\frac{1}{\sigma}}\left(A_{K} K\right)^{\frac{\sigma-1}{\sigma}}+(1-\alpha)^{\frac{1}{\sigma}}\left(A_{N} N\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}, \quad \sigma=\text { elasticity of substitution }
$$

and asserted that there are three special cases

1. Case $\sigma=1$: Cobb-Douglas

$$
Y=\left(\frac{A_{K} K}{\alpha}\right)^{\alpha}\left(\frac{A_{N} N}{1-\alpha}\right)^{1-\alpha}
$$

2. Case $\sigma \rightarrow \infty$: perfect substitutes

$$
Y=A_{K} K+A_{N} N
$$

3. Case $\sigma=0$: perfect complements, fixed proportions, or "Leontief"

$$
Y=\min \left\{\frac{A_{K} K}{\alpha}, \frac{A_{N} N}{1-\alpha}\right\}
$$

This supplement to the lecture notes provides the corresponding derivations.

1 Case $\sigma=1$: Cobb-Douglas

In order to make computations easier, we can define $\rho=\frac{1}{\sigma}-1 \Leftrightarrow \sigma=\frac{1}{1+\rho}$:

$$
Y=\left(\alpha^{1+\rho}\left(A_{K} K\right)^{-\rho}+(1-\alpha)^{1+\rho}\left(A_{N} N\right)^{-\rho}\right)^{-\frac{1}{\rho}}
$$

Therefore studying the case of $\sigma=1$ is the same as $\rho=0$. Taking the limit as $\rho \rightarrow 0$:

$$
Y=\exp \left\{\lim _{\rho \rightarrow 0}-\frac{1}{\rho} \ln \left(\alpha^{1+\rho}\left(A_{K} K\right)^{-\rho}+(1-\alpha)^{1+\rho}\left(A_{N} N\right)^{-\rho}\right)\right\}
$$

Taking the limit yields $\frac{0}{0}$. Therefore we use L'Hôpital's rule:
$Y=\exp \left\{\lim _{\rho \rightarrow 0}-\frac{\alpha^{1+\rho} \ln (\alpha)\left(A_{K} K\right)^{-\rho}-\alpha^{1+\rho}\left(A_{K} K\right)^{-\rho} \ln \left(A_{K} K\right)+(1-\alpha)^{1+\rho} \ln (1-\alpha)\left(A_{N} N\right)^{-\rho}-(1-\alpha)^{1+\rho}\left(A_{N} N\right)^{-\rho} \ln \left(A_{N} N\right)}{\alpha^{1+\rho}\left(A_{K} K\right)^{-\rho}+(1-\alpha)^{1+\rho}\left(A_{N} N\right)^{-\rho}}\right\}$

Taking the limit and using a bit of algebra:
$Y=\exp \left\{-\frac{\alpha \ln (\alpha)-\alpha \ln \left(A_{K} K\right)+(1-\alpha) \ln (1-\alpha)-(1-\alpha) \ln \left(A_{N} N\right)}{\alpha+(1-\alpha)}\right\}=\left(\frac{A_{K} K}{\alpha}\right)^{\alpha}\left(\frac{A_{N} N}{1-\alpha}\right)^{1-\alpha}$.

2 Case $\sigma \rightarrow \infty$: perfect substitutes

Again, taking the limit:

$$
\begin{gathered}
Y=\lim _{\sigma \rightarrow \infty}\left(\alpha^{\frac{1}{\sigma}}\left(A_{K} K\right)^{\frac{\sigma-1}{\sigma}}+(1-\alpha)^{\frac{1}{\sigma}}\left(A_{N} N\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} \\
Y=\left(\lim _{\sigma \rightarrow \infty}\left[\alpha^{\frac{1}{\sigma}}\left(A_{K} K\right)^{\frac{\sigma-1}{\sigma}}+(1-\alpha)^{\frac{1}{\sigma}}\left(A_{N} N\right)^{\frac{\sigma-1}{\sigma}}\right]\right)^{\lim _{\sigma \rightarrow \infty} \frac{\sigma}{\sigma-1}} \\
Y=A_{K} K+A_{N} N
\end{gathered}
$$

3 Case $\sigma=0$: perfect complements, fixed proportions, or "Leontief"

Going back to the alternative representation of the CES as a function of ρ and taking the limit as $\rho \rightarrow \infty$:

$$
Y=\exp \left\{\lim _{\rho \rightarrow \infty}-\frac{1}{\rho} \ln \left(\alpha^{1+\rho}\left(A_{K} K\right)^{-\rho}+(1-\alpha)^{1+\rho}\left(A_{N} N\right)^{-\rho}\right)\right\}
$$

This time taking the limit $\rho \rightarrow \infty$ yields $\frac{\infty}{\infty}$. Therefore again using L'Hôpital's rule:
$Y=\exp \left\{\lim _{\rho \rightarrow \infty}-\frac{\alpha^{1+\rho} \ln (\alpha)\left(A_{K} K\right)^{-\rho}-\alpha^{1+\rho}\left(A_{K} K\right)^{-\rho} \ln \left(A_{K} K\right)+(1-\alpha)^{1+\rho} \ln (1-\alpha)\left(A_{N} N\right)^{-\rho}-(1-\alpha)^{1+\rho}\left(A_{N} N\right)^{-\rho} \ln \left(A_{N} N\right)}{\alpha^{1+\rho}\left(A_{K} K\right)^{-\rho}+(1-\alpha)^{1+\rho}\left(A_{N} N\right)^{-\rho}}\right\}$
Let $x=\min \left\{\frac{A_{K} K}{\alpha}, \frac{A_{N} N}{1-\alpha}\right\}, \theta_{K}=\frac{A_{K} K}{\alpha x}$ and $\theta_{N}=\frac{A_{N} N}{(1-\alpha) x}$. Take the previous expression and divide the numerator and denominator by $x^{-\rho}$. Simplifying, we get:
$Y=\exp \left\{\lim _{\rho \rightarrow \infty}-\frac{\alpha \ln (\alpha) \theta_{K}^{-\rho}-\alpha \ln \left(A_{K} K\right) \theta_{K}^{-\rho}+(1-\alpha) \ln (1-\alpha) \theta_{N}^{-\rho}-(1-\alpha) \ln \left(A_{N} N\right) \theta_{N}^{-\rho}}{\alpha \theta_{N}^{-\rho}+(1-\alpha) \theta_{N}^{-\rho}}\right\}$
Using the definitions of x, θ_{K} and θ_{N} we have $1=\min \left\{\theta_{K}, \theta_{N}\right\}$. Therefore we must have either $\theta_{K}=1 \Leftrightarrow x=\frac{A_{K} K}{\alpha}$ or $\theta_{N}=1 \Leftrightarrow x=\frac{A_{N} N}{1-\alpha}$, since one of θ_{K} or θ_{N} has to be the smaller of the
two. It also follows that $\theta_{i} \geq 1, \forall i=\{K, N\}$, given that one of θ_{K} or θ_{N} has to be the smaller of the two. We have that:

$$
\lim _{\rho \rightarrow \infty} \theta_{i}^{-\rho}= \begin{cases}1 & \text { if } \theta_{i}=1 \\ 0 & \text { if } \theta_{i}>1\end{cases}
$$

Applying this result to the limit of interest:

$$
\begin{aligned}
Y & = \begin{cases}\exp \left\{-\frac{\alpha \ln (\alpha)-\alpha \ln \left(A_{K} K\right)}{\alpha}\right\} & \text { if } \theta_{K}=1 \\
\exp \left\{-\frac{(1-\alpha) \ln (1-\alpha)-(1-\alpha) \ln \left(A_{N} N\right)}{1-\alpha}\right\} & \text { if } \theta_{N}=1\end{cases} \\
& = \begin{cases}\frac{A_{K} K}{\alpha} & \text { if } x=\frac{A_{K} K}{\alpha} \\
\frac{A_{N} N}{\alpha} & \text { if } x=\frac{A_{N} N}{\alpha} \\
& =x=\min \left\{\frac{A_{K} K}{\alpha}, \frac{A_{N} N}{1-\alpha}\right\}\end{cases}
\end{aligned}
$$

