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In the lecture notes we defined the CES production function

Y =
(
α

1
σ (AKK)

σ−1
σ + (1− α)

1
σ (ANN)

σ−1
σ

) σ
σ−1

, σ = elasticity of substitution

and asserted that there are three special cases

1. Case σ = 1: Cobb-Douglas

Y =

(
AKK

α

)α(
ANN

1− α

)1−α

2. Case σ →∞: perfect substitutes

Y = AKK + ANN

3. Case σ = 0: perfect complements, fixed proportions, or “Leontief”

Y = min

{
AKK

α
,
ANN

1− α

}

This supplement to the lecture notes provides the corresponding derivations.

1 Case σ = 1: Cobb-Douglas

In order to make computations easier, we can define ρ = 1
σ
− 1⇔ σ = 1

1+ρ
:

Y =
(
α1+ρ(AKK)−ρ + (1− α)1+ρ(ANN)−ρ

)− 1
ρ

Therefore studying the case of σ = 1 is the same as ρ = 0. Taking the limit as ρ→ 0:

Y = exp

{
lim
ρ→0
− 1

ρ
ln
(
α1+ρ(AKK)−ρ + (1− α)1+ρ(ANN)−ρ

)}
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Taking the limit yields 0
0
. Therefore we use L’Hôpital’s rule:

Y = exp

{
lim
ρ→0
−
α1+ρ ln(α)(AKK)−ρ − α1+ρ(AKK)−ρ ln(AKK) + (1− α)1+ρ ln(1− α)(ANN)−ρ − (1− α)1+ρ(ANN)−ρ ln(ANN)

α1+ρ(AKK)−ρ + (1− α)1+ρ(ANN)−ρ

}

Taking the limit and using a bit of algebra:

Y = exp

{
−α ln(α)− α ln(AKK) + (1− α) ln(1− α)− (1− α) ln(ANN)

α + (1− α)

}
=

(
AKK

α

)α(
ANN

1− α

)1−α

.

2 Case σ →∞: perfect substitutes

Again, taking the limit:

Y = lim
σ→∞

(
α

1
σ (AKK)

σ−1
σ + (1− α)

1
σ (ANN)

σ−1
σ

) σ
σ−1

Y =
(

lim
σ→∞

[
α

1
σ (AKK)

σ−1
σ + (1− α)

1
σ (ANN)

σ−1
σ

]) lim
σ→∞

σ
σ−1

Y = AKK + ANN

3 Case σ = 0: perfect complements, fixed proportions, or

“Leontief”

Going back to the alternative representation of the CES as a function of ρ and taking the limit

as ρ→∞:

Y = exp

{
lim
ρ→∞

− 1

ρ
ln
(
α1+ρ(AKK)−ρ + (1− α)1+ρ(ANN)−ρ

)}
This time taking the limit ρ→∞ yields ∞∞ . Therefore again using L’Hôpital’s rule:

Y = exp

{
lim
ρ→∞

−
α1+ρ ln(α)(AKK)−ρ − α1+ρ(AKK)−ρ ln(AKK) + (1− α)1+ρ ln(1− α)(ANN)−ρ − (1− α)1+ρ(ANN)−ρ ln(ANN)

α1+ρ(AKK)−ρ + (1− α)1+ρ(ANN)−ρ

}

Let x = min
{
AKK
α
, ANN

1−α

}
, θK = AKK

αx
and θN = ANN

(1−α)x . Take the previous expression and

divide the numerator and denominator by x−ρ. Simplifying, we get:

Y = exp

{
lim
ρ→∞

− α ln(α)θ−ρK − α ln(AKK)θ−ρK + (1− α) ln(1− α)θ−ρN − (1− α) ln(ANN)θ−ρN
αθ−ρN + (1− α)θ−ρN

}
Using the definitions of x, θK and θN we have 1 = min {θK , θN}. Therefore we must have either

θK = 1⇔ x = AKK
α

or θN = 1⇔ x = ANN
1−α , since one of θK or θN has to be the smaller of the
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two. It also follows that θi ≥ 1,∀i = {K,N}, given that one of θK or θN has to be the smaller

of the two. We have that:

lim
ρ→∞

θ−ρi =

1 if θi = 1

0 if θi > 1

Applying this result to the limit of interest:

Y =

exp
{
−α ln(α)−α ln(AKK)

α

}
if θK = 1

exp
{
− (1−α) ln(1−α)−(1−α) ln(ANN)

1−α

}
if θN = 1

=


AKK
α

if x = AKK
α

ANN
α

if x = ANN
α

= x = min

{
AKK

α
,
ANN

1− α

}
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