
Two Assets and Kinked Adjustment Costs

Greg Kaplan, Benjamin Moll and Gianluca Violante

This note is based on Kaplan, Moll and Violante (2016). It describes a consumption-saving

problem with two assets and kinked adjustment costs, and the algorithm for solving this prob-

lem numerically. The code is two_asset_kinked.m with subroutines two_asset_kinked_

cost.m and two_asset_kinked_cost.m.

Note that this is just an example and not the code used in Kaplan, Moll and Violante

(2016). For that code, see here http://www.princeton.edu/~moll/HANK_replication.

zip (it’s in Fortran).

1 Model Setup

Households solve the following problem:

max
{ct,dt}t≥0

E0

ˆ ∞
0

e−ρtu(ct)dt s.t.

ḃt = (1− ξ)wzt + rb(bt)bt − dt − χ(dt, at)− ct
ȧt = raat + ξwzt + dt

zt = Poisson process with intensities λ(z, z′)

at ≥ 0, bt ≥ b

Here at denotes illiquid assets, bt liquid assets, ct consumption, zt idiosyncratic productivity,

dt deposits, and χ the transaction cost function. The wage is denoted by w, the return on

illiquid assets is ra and the return on liquid assets is rb. Finally, we assume that a fraction ξ

of income is automatically deposited in the illiquid account (e.g. capturing automatic payroll

deductions into a 401(k) account).

We assume the following functional form for the adjustment cost function:

χ(d, a) = χ0|d|+
χ1

2

(
d

a

)2

a (1)

with χ0, χ1 > 0. The adjustment cost function looks as in Figure 1. Note in particular

the kink at d = 0. The two components of the adjustment cost functions have different

1

Deposits/Withdrawal, % of Illiquid Stock
-0.05 0 0.05

C
o

s
t,

 %
 o

f
Il
liq

u
id

 S
to

c
k

×10
-3

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 1: Adjustment Cost Function

implications for household behavior: the kinked cost component implies inaction, and the

convex component implies finite deposit rates.

2 Recursive Formulation

The HJB equation is

ρV (a, b, z) = max
c

u(c) + Vb(a, b, z)((1− ξ)wz + rb(b)b− d− χ(d, a)− c)

+ Va(a, b, z)(raa+ ξwz + d)

+
∑
z′

λ(z, z′)(V (a, b, z′)− V (a, b, z))

(2)

The first-order conditions are

u′(c) = Vb(a, b, z)

Vb(a, b, z)(1 + χd(d, a)) = Va(a, b, z)

We have

χd(d, a) =

χ0 + χ1d/a, d > 0

−χ0 + χ1d/a, d < 0

Given that χd(d, a) = χ0+χ1d/a if d > 0 and χd(d, a) = −χ0+χ1d/a if d < 0, conditional

2

on paying the fixed cost, optimal deposits are given by

d =

(
Va
Vb
− 1 + χ0

)−
a

χ1

+

(
Va
Vb
− 1− χ0

)+
a

χ1

(3)

where we use the short-hand notation x+ = max{x, 0} and x− = min{x, 0} for any scalar x.

Note in particular that d = 0 if −χ0 <
Va
Vb
− 1 < χ0. Intuitively, households deposit into the

illiquid account when the marginal value of illiquid wealth is large relative to that of liquid

wealth and withdraw in the opposite case. Households do not deposit or withdraw when the

marginal values of the two assets are relatively similar.

Assumption 1: ra < 1/χ1. If this assumption were violated, households would accumulate

illiquid wealth to infinity. To see this, consider (3). As illiquid wealth a→∞, its marginal

value Va(a, b, z)→ 0. Therefore, for large a, deposits are negative and behave like d ∼ −a/χ1.

Similarly, the drift of illiquid wealth is given by

ȧ = wξz + raa+ d ∼ raa+ d ∼ (ra − 1/χ1)a

where the first ≈ uses the fact that as a → ∞. If Assumption 1 were violated i.e. ra −
1/χ1 > 0 this drift would be necessarily positive and households would accumulate to infinity.

Therefore Assumption 1 is necessary to rule out this behavior.

3 Numerical Solution

See two_asset_kinked.m with subroutines two_asset_kinked_cost.m and two_asset_

kinked_cost.m. To solve the HJB equation (2) we use an upwind finite difference method

along the lines of Achdou et al. (2014). We use an implicit upwind finite difference method.

For simplicity we here set ξ = 0, i.e. all labor income is paid into the liquid asset. Our upwind

method splits the drift of b, wzk + rb(b)b−d−χ(d, a)− c into two parts sc = wzk + rb(b)b− c
and sd = −d− χ(d, a) and upwinds these separately.

We denote grid points by bi, i = 1, ..., I, aj, j = 1, ..., J and zk, k = 1, ..., K and

Vi,j,k = V (aj, bi, zk)

We use non-equispaced grids and denote ∆b+i = bi+1 − bi and ∆b−i = bi − bi−1 and so

on. We approximate derivatives for a and b with either a forward or a backward-difference

3

approximation

Vb(aj, bi, zk) ≈ V F
b,i,j,k =

Vi+1,j,k − Vi,j,k
∆b+i

(4)

Vb(aj, bi, zk) ≈ V B
b,i,j,k =

Vi,j,k − Vi−1,j,k
∆b−i

(5)

and similarly for Va. The discretized version of (2) is

V n+1
i,j,k − V n

i,j,k

∆
+ ρV n+1

i,j,k = u
(
cni,j,k

)
+ V n+1

b,i,j,ks
b,n
i,j,k + V n+1

a,i,j,k(r
aaj + dni,j,k)

+
K∑
k′ 6=k

λk,k′(V
n+1
i,j,k′ − V

n+1
i,j,k)

(6)

sni,j,k = wzk + rb(bi)bi − dni,j,k − χ(dni,j,k, aj)− cni,j,k (7)

u′(cni,j,k) = V n
b,i,j,k (8)

V n
b,i,j,k(1 + χd(d

n
i,j,k, aj)) = V n

a,i,j,k (9)

where V n+1
b,i,j,k is either the forward difference approximation in (4) or the backward difference

approximation in (5), and similarly for V n+1
a,i,j,k. Given a guess for the value function V n

i,j,k

and a choice which finite difference approximation to use, (8) to (9) implicitly define optimal

choices cni,j,k and dni,j,k.

We use an upwind method to choose when to use backward and forward difference ap-

proximations. In the a-dimension, we use a forward difference approximation whenever the

drift of a is positive and a backward approximation otherwise. In the b-dimension, we addi-

tionally make use of the fact that the HJB equation features a lot of linearity. As mentioned,

we split the drift of b, si,j,k into two terms and upwind each term separately. To this end, de-

fine cBi,j,k to be optimal consumption calculated using the backward difference approximation

with respect to b, V B
b,i,j,k, and cFi,j,k to be optimal consumption calculated using the forward

difference approximation, V F
b,i,j,k. Similarly define

sc,Bi,j,k = wzk + rb(bi)bi − cB,ni,j,k (10)

sc,Fi,j,k = wzk + rb(bi)bi − cF,ni,j,k (11)

We then approximate

V (aj, bi, zk)s
c(ai, bj, zk) ≈ V B,n+1

b,i,j,k (sc,Bi,j,k)
− + V F,n+1

b,i,j,k (sc,Fi,j,k)
+

Here and elsewhere we use the short-hand notation x+ = max{x, 0} and x− = min{x, 0} for

4

any scalar x.

Define dBBi,j,k, d
BF
i,j,k, d

FB
i,j,k, d

FF
i,j,k in an analogous fashion. For example dBFi,j,k are optimal de-

posits calculated using the backward difference approximation with respect to b, V B
b,i,j,k and

the forward difference approximation with respect to a, V F
a,i,j,k, i.e. dBFi,j,k satisfies

V B
b,i,j,k(1 + χd(d

BF
i,j,k, aj)) = V F

a,i,j,k

Further define

dBi,j,k = (dBFi,j,k)
+ + (dBBi,j,k)

− (12)

dFi,j,k = (dFFi,j,k)
+ + (dFBi,j,k)

− (13)

sd,Bi,j,k = −dB,ni,j,k − χ(dB,ni,j,k, aj) (14)

sd,Fi,j,k = −dF,ni,j,k − χ(dF,ni,j,k, aj) (15)

di,j,k = dBi,j,k1{sd,Bi,j,k<0} + dFi,j,k1{sd,Fi,j,k>0} (16)

Then our upwind finite difference approximation is given by

V n+1
i,j,k − V n

i,j,k

∆
+ ρV n+1

i,j,k = u
(
cni,j,k

)
+ V B,n+1

b,i,j,k (sc,Bi,j,k)
− + V F,n+1

b,i,j,k (sc,Fi,j,k)
+

+ V B,n+1
b,i,j,k (sd,Bi,j,k)

− + V F,n+1
b,i,j,k (sd,Fi,j,k)

+

+ V B,n+1
a,i,j,k d

−
i,j,k + V B,n+1

a,i,j,k (d+i,j,k + raaj)

+
K∑
k′ 6=k

λk,k′(V
n+1
i,j,k′ − V

n+1
i,j,k)

(17)

Importantly, the scheme satisfies the Barles-Souganidis monotonicity condition. See Achdou

et al. (2017) for a definition.

To update V n+1 given V n requires solving a system of linear equations. As in the algo-

rithm for the one-asset case described in Achdou et al. (2017), (17) can be written in matrix

notation as
1

∆
(V n+1 − V n) + ρV n+1 = un + (An + Λ)V n+1 (18)

Here V n, V n+1 and un are vectors of length I × J ×K and An and Λ are matrices of size

(I×J×K)× (I×J×K). An has a similar structure as in Achdou et al, and Λ summarizes

the stochastic process for income. When the number of income grid points K is not too

large (e.g. with a two-state Poisson process K = 2), (18) can be solved very efficiently using

Matlab’s sparse matrix routines.

5

4 Handling Many Income Grid Points

The algorithm described above works well with a small number of income grid points K.

However, it runs into computational difficulties when there are a large number of income

grid points (say K = 30). This is because with large K, the matrix An+Λ starts has a large

“bandwidth” and so sparse matrix routines become slow. The case with a large number of

income grid points K can be handled as follows: instead of using a finite difference scheme

that is implicit in all of (a, b, z), use a scheme that is implicit in the a- and b-dimensions and

explicit in the z-dimension. To this end write (17) as

V n+1
i,j,k − V n

i,j,k

∆
+ ρV n+1

i,j,k = u
(
cni,j,k

)
+ V B,n+1

b,i,j,k (sc,Bi,j,k)
− + V F,n+1

b,i,j,k (sc,Fi,j,k)
+

+ V B,n+1
b,i,j,k (sd,Bi,j,k)

− + V F,n+1
b,i,j,k (sd,Fi,j,k)

+

+ V B,n+1
a,i,j,k d

−
i,j,k + V B,n+1

a,i,j,k (d+i,j,k + raaj)

+
∑
k′ 6=k

λk,k′(V
n
i,j,k′ − V n

i,j,k)

(19)

Note in particular the n+ 1 superscripts on the parts of the HJB equation capturing move-

ments in a and b (the scheme is implicit in the a- and b-dimensions) and n superscripts on

those parts capturing movements in y (the scheme is explicit in the y-dimension). In matrix

notation
1

∆
(V n+1 − V n) + ρV n+1 = un + AnV n+1 + ΛV n (20)

Given that we use an explicit scheme in the z-dimension and hence V n in ΛV n has a n-

subscript, the problem (20) can be broken up into K smaller problems and we can take

advantage of parallelization to solve it. In particular, (18) is equivalent to

1

∆
(V n+1

k − V n
k) + ρV n+1

k = unk + An
kV

n+1
k +

∑
k′ 6=k

λk,k′(V
n
k′ − V n

k), k = 1, ..., K (21)

where V n
k , V

n+1
k and unk are K vectors of length I×J and An

k are K matrices of size (I×J)×
(I × J). Given that the scheme is explicit in the z-dimension, the updating/time steps ∆

cannot be “too large” (CFL condition). Finally, we note that the “implicit-explicit scheme”

in (21) is also very amenable to parallelization (though in practice, the code is fast enough

without implementing this).

6

40

Liquid Wealth, b

20

Consumption, Low Type

00

20

Illiquid Wealth, a

40

60

10

2

4

12

8

6

40

Liquid Wealth, b

20

Consumption, High Type

00

20

Illiquid Wealth, a

40

60

8

4

2

10

12

6

Figure 2: Consumption

Liquid Wealth, b

40

20

0

Deposits, Low Type

0
20

Illiquid Wealth, a

40
60

-20

5

0

-5

-10

-15

Liquid Wealth, b

40

20

0

Deposits, High Type

0
20

Illiquid Wealth, a

40
60

-15

-10

0

5

-5

Figure 3: Deposits

5 Results

References

Achdou, Yves, Jiequn Han, Jean-Michel Lasry, Pierre-Louis Lions, and Benjamin

Moll. 2017. “Income and Wealth Distribution in Macroeconomics: A Continuous-Time

Approach.” Princeton University Working Papers.

Kaplan, Greg, Benjamin Moll, and Giovanni L. Violante. 2016. “Monetary Policy

According to HANK.” National Bureau of Economic Research Working Paper 21897.

7

40

Liquid Wealth, b

Liquid Savings, Low Type

20

00

20

Illiquid Wealth, a

40

60

10

-10

-5

15

5

0

40

Liquid Wealth, b

Liquid Savings, High Type

20

00

20

Illiquid Wealth, a

40

60

10

0

-5

15

5

Figure 4: Liquid Savings

Liquid Wealth, b

40

20

0

-20

Illiquid Savings, Low Type

0
20

Illiquid Wealth, a

40
60

80

-20

5

0

-5

-10

-15

Liquid Wealth, b

40

20

Illiquid Savings, High Type

0
0

20
Illiquid Wealth, a

40
60

-6

-8

-10

4

-2

0

2

-4

Figure 5: Illiquid Savings

86

Liquid Wealth, b

Stationary, Low Type

420-2
0

10

20

×10
-3

Illiquid Wealth, a

15

10

5

0

20

8

Stationary Distribution, High Type

6

Liquid Wealth, b

420-2
0

10

20

×10
-3

Illiquid Wealth, a

10

0

2

4

6

8

Figure 6: Stationary Distributions

8

