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This note describes a continuous-time version of the model in Kaplan and Violante (2014)

in which a household optimally splits his wealth between liquid and illiquid assets. Because

adjustments are subject to a fixed cost, the model has a stopping-time element. We here

describe how such model can be solved numerically using a finite difference method. Based

on ongoing research (Kaplan and Moll, 201?). Note that the problem is different from

that in Kaplan, Moll and Violante (2018). The problem presented here features a non-

convex adjustment cost whereas the problem in Kaplan, Moll and Violante (2018) features

a kinked but strictly convex adjustment cost. Both types of cost functions give rise to an

inaction region. However, the mathematical structure is fundamentally different: a non-

convex adjustment cost results in a stopping-time or impulse-control problem whereas a

strictly convex cost function does not.

These impulse control problems can be formulated as so-called Hamilton-Jacobi-Bellman

Variational Inequalities (HJBVIs) or Hamilton-Jacobi-Bellman Quasi-Variational Inequali-

ties (HJBQVIs). See Bensoussan and Lions (1982, 1984) and Bardi and Capuzzo-Dolcetta

(1997). More recently, Bertucci (2017, 2018) analyzes Mean Field Games with stopping and

impulse control, with the prototypical problem featuring a coupled system of an HJBVI

or HJBQVI for agents’ problems and the corresponding variant of a Kolmogorov Forward

equation for the evolution of the distribution of agents.

1 Model Setup

Households can invest in two assets: an illiquid asset a, and a liquid asset b. The liquid asset

pays a real return rb and can be freely traded subject to a borrowing limit. The illiquid

asset pays a return ra > rb. Deposits and withdrawals can be made into and out of the

illiquid asset only upon payment of a transaction cost κ. The households receive an income

flow z where z can take a finite number of values. Productivity shocks arrive according to a

stochastic process which is either Poisson or a diffusion process.

1We thank Alberto Polo for help with cleaning up this document and improving the corresponding code.
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1.1 Households’ Problem

Households solve the following problem

vk(a, b) = max
{ct},τ

E0

ˆ τ

0

e−ρtu(ct)dt+ e−ρτ
E0v

∗
k(aτ + bτ )

ȧt = raat, ḃt = rbbt + wzt − ct

at ≥ 0, bt ≥ 0, (a0, b0, z0) = (a, b, zk)

(1)

where zt ∈ {z1, z2} is a two-state Poisson process with intensities λ1, λ2, and where

v∗k(a+ b) = max
a′,b′

vk(a
′, b′) s.t. a′ + b′ = a+ b− κ, a′ ≥ 0, b′ ≥ 0. (2)

For future reference, denote the optimal adjustment decisions conditional on adjustment by

a∗k(a, b) and b∗k(a, b). Note that these only depend on the total amount of assets a+ b (rather

than a and b separately). The HJB equation is

ρvk(a, b) = max
c

u(c)+∂avk(a, b)raa+∂bvk(a, b)(wzk+ rbb− c)+λk(v−k(a, b)− vk(a, b)) (3)

for k = 1, 2, and with state-constraint boundary condition

∂bvk(a, 0) ≥ u′(wzk) (4)

and a constraint that

vk(a, b) ≥ v∗k(a+ b) all a, b. (5)

This can also be written compactly as follows

min{ρvk(a, b)−max
c

u(c)− ∂avk(a, b)raa− ∂bvk(a, b)(wzk + rbb− c)− λk(v−k(a, b)− vk(a, b)),

vk(a, b)− v∗k(a+ b)} = 0

(6)

In mathematics, (6) is called an “HJB variational inequality” (HJBVI for short), or more

precisely an “HJB quasi-variational inequality” (HJBQVI). See e.g. Bensoussan and Lions

(1982, 1984), Barles, Daher and Romano (1995), Bardi and Capuzzo-Dolcetta (1997) and

Tourin (2013).

Note that we can also write the adjustment value v∗k as v∗k = Mvk where M is known as

the “intervention operator” (see e.g. Oksendal and Sulem, 2002; Azimzadeh, Bayraktar and
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Labahn, 2018) so that (suppressing dependence on (a, b)) the HJBQVI equation becomes

min{ρvk −max
c

u(c)− raa∂avk − (wzk + rbb− c)∂bvk − λk(v−k − vk), vk −Mvk} = 0

2 Numerical Solution

See http://www.princeton.edu/~moll/HACTproject/liquid_illiquid_LCP.m.

2.1 Household’s Problem: Linear Complementaritsy Problem +

Finite Differences

We use an analogous approach to the simple model of exercising an option as in these notes

http://www.princeton.edu/~moll/HACTproject/option_simple.pdf. Once discretized

the HJBVI (6) becomes

min{ρv − u(v)−A(v)v, v − v∗(v)} = 0 (7)

The main difference to the “exercising an option” problem laid out above is that the HJB

equation without adjustment (the left branch of (7)) is non-linear in v and hence some

iteration is necessary. Related also the value of having a reoptimized portfolio v∗ depends

on the value function as can be seen from (2). We proceed as follow:

1. as an initial guess v0 use the solution to

ρv − u(v)−A(v)v = 0 (8)

i.e. the problem without adjustment, i.e. in which the fixed cost κ is infinite.

2. Given vn, find vn+1 by solving

min

{

vn+1 − vn

∆
+ ρvn+1 − u(vn)−A(vn)vn+1, vn+1 − v∗(vn)

}

= 0

Exactly as in http://www.princeton.edu/~moll/HACTproject/option_simple.pdf,

this problem can be written as a linear complementarity problem (LCP).

3. Stop when vn+1 is sufficiently close to vn.
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2.2 Household’s Problem: Alternative (Inferior) Approach

We have also tried another approach to solve the household’s problem (6). This approach

combines the finite-difference method with a so-called “operator splitting method” to take

care of the constraint (5).2 However, this method seems to be inferior to the LCP-algorithm

developed above, particularly in terms of speed.

Denote vi,j,k = vk(aj , bi). The algorithm works as follows. Start with an initial guess v0i,j,k

and for n = 1, 2, ... compute vni,j,k as follows

1. given vni,j,k, obtain v
n+ 1

2

i,j,k by solving a discretized HJB equation that is the same as if

there were no adjustment decision:

v
n+ 1

2

i,j,k − vni,j,k

∆
+ ρv

n+ 1

2

i,j,k =u(cni,j,k) + ∂av
n+ 1

2

i,j,k raaj + ∂bv
n+ 1

2

i,j,k (wzk + rbbi − cni,j,k)

+ λk(vi,j,−k − vi,j,k),

cni,j,k =(u′)−1(∂bv
n
i,j,k).

Here ∂avi,j,k and ∂bvi,j,k denote the finite-difference approximation of the partial deriva-

tive of v with respect to a and b (either forward- or backward-difference approxima-

tions), and where ∆ is the size of the updating step. In particular, one can write the

corresponding system of equations

1

∆

(

vn+
1

2 − vn
)

+ ρvn = un +Avn+
1

2 (9)

where vn is a vector of length L = I × J × 2 with the stacked value function as

its entries, and A is the L × L transition matrix corresponding to the discretized

process summarizing the evolution of (at, bt, zt). See http://www.princeton.edu/

~moll/HACTproject/HACT_Numerical_Appendix.pdf for details in a similar model

(but with one asset only).

2. Compute

(v∗i,j,k)
n+ 1

2 = max
a′,b′

v
n+ 1

2

k (a′, b′) s.t. a′ + b′ = aj + bi − κ, a′ ≥ 0, b′ ≥ 0.

where v
n+ 1

2

k (a′, b′) is v
n+ 1

2

i,j,k interpolated at points (a′, b′).

2Note that this splitting method has nothing to do with the “splitting the drift” trick in http://www.

princeton.edu/~moll/HACTproject/two_asset_nonconvex.pdf.
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3. given v
n+ 1

2

i,j,k by setting

vn+1

i,j,k = max{v
n+ 1

2

i,j,k , (v
∗
i,j,k)

n+ 1

2}. (10)

4. If vn+1

i,j,k is “close to” vni,j,k, stop.

The algorithm is called a “splitting algorithm” because the “operator” on v defined by (6)

is split into two steps: that of going from vn to vn+
1

2 and that of going from vn+
1

2 to vn+1. It

can be shown that the algorithm converges if the discretization of the HJB equation in step

1 satisfies the monotonicity, consistency and stability conditions of Barles and Souganidis

(1991). See Achdou et al. (2017) for a discussion in the context of a model without a

stopping-time decision. See e.g. Barles, Daher and Romano (1995) and Tourin (2013) for a

discussion of convergence of numerical schemes for models with a stopping-time decision.

2.3 Kolmogorov Forward Equation

Without adjustment the KF equation is

0 = −∂a(s
a
k(a, b)gk)− ∂b(s

b
k(a, b)gk)− λkgk + λ−kg−k

for all (a, b) and k = 1, 2. Here sak and sbk are the illiquid and liquid saving policy func-

tions. With adjustment there are extra terms. The mathematical formulation of Kol-

mogorov Forward equations with stopping and/or impulse control is not straightforward.

See Bertucci (2017, 2018) for a treatment. However, this is not an obstacle for the numer-

ical solution. In particular, it turns out to be quite easy to work with the discretized

process as captured by the matrix A constructed in section 2.1 (or 2.2). See section

2 here http://www.princeton.edu/~moll/HACTproject/HACT_numerical_appendix.pdf

for a more detailed explanation of this logic in a model without an adjustment decision.

If there were no adjustment, things would be very simple. In particular, the vector of

stacked finite difference of the distribution, gℓ for ℓ = 1, ..., L where L = I × J × 2, would

satisfy a linear system

0 = ATg

where AT is the transpose of the transition matrix A from the HJB equation (8).

We now explain how to deal with the fact that there is adjustment. We first introduce

some additional notation. Denote by a∗i,j,k = a∗k(aj , bi) and b∗i,j,k = b∗k(aj, bi) the optimal

“adjustment targets” conditional on adjustment. Switching notation to the stacked and

discretized state space, ℓ = 1, ..., L, denote by k∗(ℓ) the grid point k = 1, ..., L that is

reached from point ℓ = 1, ..., L upon adjustment. Finally, denote by I the set of grid points
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in the inaction region. This set is defined by the requirement that vℓ > v∗ℓ for all ℓ ∈ I,

whereas vℓ = v∗ℓ for all ℓ 6∈ I (i.e. vℓ = v∗ℓ for points in the adjustment region).

The problem with using transition matrix A alone is that it does not capture adjustment.

To introduce adjustment, we now define a binary matrix M which we term the “intervention

matrix”. The elements of M, denoted by Mℓ,k for ℓ = 1, ..., L and k = 1, ..., L are given by

Mℓ,k =



















1, if ℓ ∈ I and ℓ = k

1, if ℓ 6∈ I and k∗(ℓ) = k

0, otherwise

(11)

This matrix moves points that are in the adjustment region to their corresponding adjustment

targets. For instance, note that for points in the adjustment region the outside option v∗(v)

in the discretized HJBVI equation (7) satisfies v∗(v) = Mv. Therefore, the intervention

matrix is the natural discretization of the intervention operator M discussed in Section 1.

To see how we use M to solve the Kolmogorov Forward equation with adjustment, con-

sider a time-dependent KF equation but with fixed policy rules given by A andM. Denoting

gn = g(tn), n = 1, ..., N , the goal is to find a mapping from gn to gn+1. Motivated by the

“operator splitting method” in section 2.2 and using the same notation as there, we split

the step of finding gn+1 given gn into two sub-steps:

1. Given gn find gn+
1

2 from

gn+
1

2 = MTgn (12)

2. Given gn+
1

2 find gn+1 from3

gn+1 − gn+
1

2

∆t
= (AM)Tgn+1 (13)

Adjustment introduces two related but distinct questions: (i) how should we treat the density

at grid points in the adjustment region? (ii) how should we treat the density at grid points

in the inaction region but from which the stochastic process for idiosyncratic state variables

ends up in the adjustment region?

The two parts of the operator splitting scheme show how we answer these questions. Step

1 answers question (i) by simply moving any mass from the adjustment region to the inaction

region. Step 2 answers question (ii). Instead of using matrix A as the transition matrix as

in the case without adjustment, we now use matrix AM as the transition matrix.4 To

3This is an implicit scheme. The analogous explicit scheme is gn+1
−g

n+1
2

∆t
= (AM)Tgn+

1
2 .

4Without adjustment (i.e., I = {1, ..., L}), matrix M would be an identity matrix.
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understand this, recall that A is a Poisson transition matrix with rows corresponding to the

starting position of a Poisson process and columns corresponding to the finishing position.

For each row ℓ, the purpose of matrix M is to take the entries of Aℓ,k that finish in the

adjustment region (i.e. columns k 6∈ I) and move them to columns k∗(ℓ) corresponding to the

adjustment target. So, whereas transition matrixA can switch a process into the adjustment

region, our updated transition matrix AM instead switches the process immediately to its

corresponding adjustment target. Note that AM is still a valid Poisson transition matrix for

all rows ℓ ∈ I. In particular, the rows sum to zero and diagonal elements are non-positive

(capturing outflows) whereas off-diagonal elements are non-negative (capturing inflows).5

Some readers may wonder why the first step is necessary? To see this, consider an

initial distribution g0 with mass in the adjustment region. Essentially, without step 1, the

distribution at all future points in time gn, n = 1, ..., N would always keep mass in the

adjustment region. This is because matrix M is specifically constructed so that the columns

of AM contain only zeros for k 6∈ I. Therefore the corresponding rows of its transpose

(AM)T will contain only zeros and hence gn+1−g
n+1

2

∆t
= (AM)Tgn+1 = 0 for all points in the

adjustment region, meaning that any mass that starts there will stay there.

How can we find a stationary distribution g? The simplest strategy is to simply run (12)

and (13) forward in time until convergence. This works well in practice. Alternatively, a

stationary distribution satisfies

(i) g = MTg, and

(ii) 0 = (AM)Tg
(14)

or

(i) gℓ = 0 if ℓ 6∈ I, and

(ii) 0 = (AM)Tg

Condition (i) simply ensures g has no mass in the adjustment region. This additional condi-

tion is needed because the rows of matrix (AM)T corresponding to points in the adjustment

region will contain only zeros.6

5For rows ℓ 6∈ I, matrix AM may have negative off-diagonal elements. However, this will not affect
calculations using AM so long as the density g has no mass at points ℓ 6∈ I.

6To implement this numerically, we define matrix D whose elements Dℓ,k are given by

Dℓ,k =

{

1, if ℓ 6∈ I and ℓ = k

0, otherwise

Matrix D contains zeros everywhere except for the elements of the diagonal corresponding to points in the
adjustment region, where it contains a 1 (any constant will work). Matrix D is used to ensure that condition
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Finally, consider the case where the policy rules change over time, that is A(t) M(t) are

time-dependent. In this case, the time dependent KF equation can be solved by solving the

fully time-dependent analogue of (12) and (13), namely

1. Given gn find gn+
1

2 from gn+
1

2 = (Mn)Tgn

2. Given gn+
1

2 find gn+1 from gn+1−g
n+1

2

∆t
= (AnMn)Tgn+1

where An = A(tn) and Mn = M(tn), n = 1, ..., N .

3 Results

Figure 1 plots the “adjustment region”, i.e. the region of the state space (a, b) in which indi-

viduals adjust their portfolios. The adjustment region is in yellow and the non-adjustment

region is in blue. Figures 2 and 3 plot the adjustment targets for liquid assets b and illiquid

assets a conditional on adjusting. Finally Figure 4 plots the stationary distribution.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

20
Low Productivity

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

20
High Productivity

Figure 1: Adjustment and Non-Adjustment Regions
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