
Lifecycle Model
This note explains how to solve a simple finite-horizon life-cycle consumption-saving model

with stochastic labor income in continuous time. Section 1 lays out the model and explains

the algorithm. For comparison Section 2 references some cutting-edge methods for solving the

same problem in discrete time and shows that the continuous-time method performs favorably.

1 Lifecycle Model in Continuous Time

We focus on the problem of a given individual in partial equilibrium. The model can, in princi-

ple, be extended to general equilibrium with a continuum of individuals that form overlapping

generations. Denote wealth by a, age by t and idiosyncratic labor productivity by z. The

individual lives from age t = 0 to age t = T and solves

max
{ct}t≥0

E0

∫ T

0

e−ρtu(ct)dt s.t.

ȧt = wzt + rat − ct
dzt = µ(zt)dt+ σ(zt)dWt

at ≥ 0.

We assume that idiosyncratic productivity zt follows an Ornstein-Uhlenbeck process in logs,

i.e.

d log zt = −θ log ztdt+ σdWt ⇒ µ(z) =

(
−θ log z +

σ2

2

)
z, σ(z) = σz

and we impose reflecting barriers at some lower bound z and at some upper bound z̄. The

algorithm can easily be extended to allow for a lifecycle profile in idiosyncratic productivity

but we do not incorporate this here. The HJB equation is

ρv(a, z, t) = max
c

u(c) + ∂av(a, z, t)(wz + ra− c) + µ(z)∂zv(a, z, t) +
σ2(z)

2
∂zzv(a, z, t) + ∂tv(a, z, t)

with terminal condition

v(a, z, T ) = 0 all (a, z) (1)

and with state constraint

a ≥ 0.

As usual, the state constraint implies a state-constraint boundary condition

∂av(a, z, t) ≥ u′(wz + ra)

1



Challenge: terminal condition at death T . The terminal condition on the level of the

value function (1) implies that its derivative ∂av(a, z, T ) = 0 for all (a, z) which then implies

c(a, z, T ) = ∞. This actually makes sense: people should spend down everything when they

are about to die which requires an infinite consumption flow per infinitesimal unit of time. The

only problem is that this terminal condition is computationally ill-behaved since it involves

infinity.

A possible solution to this challenge is as follows:1 we impose a terminal condition cor-

responding to a “warm glow” bequest motif as in papers by Atkinson (1971) and De Nardi

(2004). In particular, we replace the individual’s objective function by

E0

[∫ T

0

e−ρtu(ct)dt+ e−ρTφε(aT )

]
where φε(a) = ε

(κ+ a)1−γ

1− γ

and where ε, κ ≥ 0 are constants. Our original problem corresponds to the limit ε→ 0 so that

φε(a) → 0 for all a. This problem is solved easily by solving the HJB equation with terminal

condition

v(a, z, T ) = φε(a) all (a, z) (2)

in place of (1) and where ε is a very small number, say ε = 10−8. Other approaches are possible

as well. One alternative is to impose a terminal condition directly on c(a, z, T ) or equivalently

∂av(a, z, T ) for instance ∂av(a, z, T ) = u′(1000) for a > 0 and ∂av(0, z, T ) = u′(wz).2 Another

possible solution is to work with an age-dependent discount rate ρ(t). That is, solve the model

slightly past age T and set the discount rate equal to a large value ρ(t) = 1, 000 for t ≥ T . All

of these solutions work nicely in practice.

Algorithm: The Matlab code can be found at http://www.princeton.edu/~moll/HACTproject/

lifecycle.m. The discretization follows the same steps as in Section 5 of http://www.

princeton.edu/~moll/HACTproject/HACT_Numerical_Appendix.pdf. In particular, we dis-

cretize (a, z, t) as ai, i =, ..., I, zj, j = 1, ..., J and tn, n = 1, ..., N and use the short-hand notation

vni,j = v(ai, zj, t
n). We stack all vni,j for a given n into a vector vn that is of dimension IJ . The

1We thank SeHyoun Ahn for suggesting this approach.
2What we know is that people consume everything at T . Let’s consider a discrete-time economy with time

periods of length ∆t and budget constraint at+∆t = ∆t(wzt + rat − ct) + at. Then we know aT+∆t = 0 which
implies c(a, z, T ) = wz + ra + a/∆t. Therefore, we have

c(a, z, T ) =

{
∞, a > 0

wz, a = 0

We cannot exactly impose c(a, z, T ) =∞ for a > 0. So we impose c(a, z, T ) = 1, 000 or some other large number
for a > 0. The proposed boundary condition is equivalent.

2



discretized HJB equation is then a system of difference equations

ρvn = u(vn+1) + A(vn+1)vn +
vn+1 − vn

∆t

This system of difference equations is simply solved backwards in time from a terminal condition

vN given by (2).

1.1 Results and Performance

The figure plots consumption and saving policy functions for particular income types and ages

under the assumption that death occurs at age T = 75. As expected, individuals decumulate

wealth faster as they approach the end of their lives. The speed of the algorithm depends on

Wealth
0 20 40 60 80

C
o

n
s
u

m
p

ti
o

n
, 

c
(a

,z
,t

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Age 1, Lowest Income
Age 1, Highest Income
Age 40, Lowest Income
Age 40, Highest Income
Age 70, Lowest Income
Age 70, Highest Income

Wealth
0 20 40 60 80 100

S
a

v
in

g
, 

s
(a

,z
,t

)

-5

-4

-3

-2

-1

0

1

2

Age 1, Lowest Income
Age 1, Highest Income
Age 40, Lowest Income
Age 40, Highest Income
Age 70, Lowest Income
Age 70, Highest Income

Figure 1: Policy Functions in Lifecycle Model

how finely age is discretized. With N = 75 age steps (and I = 300 and J = 15 grid points

for wealth and productivity), it takes 0.82 seconds on a Macbook Pro laptop computer. With

N = 300 time steps and the same number of grid points for wealth and productivity it takes

3.26 seconds.

3



2 Discrete Time Version for Comparison

Just to get a sense of the rough performance of the code relative to traditional discrete-time

methods, we compare the performance to discrete-time implementations in various program-

ming languages written by Jesus Fernandez-Villaverde and collaborators. In particular the

continuous-time model above is the analogue of the model on slide 12 of these lecture notes

https://www.sas.upenn.edu/~jesusfv/Lecture_HPC_9_Paralellization.pdf for which Je-

sus & co have also programmed up various numerical implementations. The notation is some-

what different:

1. labor productivity z is e in Jesus’ notation

2. wealth a is x in Jesus’ notation

Apart from that the two models are basically the same. Jesus & co use the same number of

grid points for wealth and labor productivity but considerably less grid points for age. We use

75 or 300 (see above) whereas they use 10.

Slide 38 of https://www.sas.upenn.edu/~jesusfv/Lecture_HPC_9_Paralellization.

pdf summarizes the performance of a Julia implementation.3 For example parallelizing with

4 cores takes 22 seconds. This can be compared with 0.82 and 3.26 seconds in our Matlab

implementation without parallelization.

Other comparisons:

• C++ code https://github.com/davidzarruk/Parallel_Computing/blob/master/Cpp_

main.cpp runs in 0.91 seconds

• C++ code with openMPI, i.e. parallelization, https://github.com/davidzarruk/Parallel_

Computing/blob/master/MPI_main.cpp takes 0.33 seconds.

Our preliminary conclusion is that our Matlab implementation of the continuous-time life-

cycle model without parallelization is competitive with both a Julia implementation with

parallelization and a C++ implementation without parallelization of the analogous discrete-time

problem. And it is almost competitive with a C++ implementation using parallelizations (with

a coarser discretization of age N = 10 the continuous-time code runs in 0.13 seconds, i.e. it is

competitive).

3The code is here https://github.com/davidzarruk/Parallel_Computing/blob/master/Julia_main_

parallel.jl or a slightly faster and more compact implementation here https://github.com/davidzarruk/

Parallel_Computing/blob/master/Julia_main_pmap.jl.

4


