
Hopenhayn Model in Continuous Time

This note translates the Hopenhayn (1992) model of firm dynamics, exit and entry in a

stationary equilibrium to continuous time. For a brief summary of the original Hopenhayn

model, see slides 17 to 20 of these lecture notes https://web.stanford.edu/~jdlevin/Econ%

20257/Industry%20Dynamics.pdf. We also build on Shaker Akhtekhane (2017).

The model features incumbent and entrant firms. Before proceeding to writing down and

solving the full model, we first consider a simplified version with mechanical entry. In this

version, firms choose optimally when to exit and for each exiting firm there is a new entrant

such that the mass of firms stays exactly constant. This is inspired by the “return process”

in Luttmer (2007) and the model with “exit and reinjection” in Gabaix et al. (2016). We

then endogenize entry: firms not only choose optimally when to exit but also choose optimally

whether to enter the industry.

Mathematically, firms in the Hopenhayn model solve stopping time problems. These can

be formulated as so-called Hamilton-Jacobi-Bellman Variational Inequalities (HJBVIs). See

Bensoussan and Lions (1982, 1984) and Bardi and Capuzzo-Dolcetta (1997). More recently,

Bertucci (2017) analyzes Mean Field Games with stopping, with the prototypical problem fea-

turing a coupled system of an HJBVI for agents’ stopping time problem and the corresponding

variant of a Kolmogorov Forward equation for the evolution of the distribution of agents.

1 Mechanical Entry

The only interesting problem is that of incumbent firms. Their productivity zt evolves according

to an exogenous diffusion process on a bounded intervals zt ∈ [0, 1], with reflecting barriers at

z = 0 and z = 1. Any other productivity process that can be written in terms of an infinitesimal

generator, e.g. a jump-diffusion, is possible as well. Incumbent firms choose employment nt

each period and a stopping time τ at which to exit. In a stationary equilibrium, their problem

is:

v(z) = max
{nt}t≥0,τ

{
E0

∫ τ

0

e−ρt(pf(zt, nt)− wnt − cf )dt+ e−ρτv∗
}

dzt = µ(zt)dt+ σ(zt)dWt, z0 = z.

Here f(z, n) is the firm’s production function, p is the price of final goods, w is the wage rate,

cf is a per-period operating cost and v∗ is a scrap value. For each exiting firm, there is a new

entrant that starts with some initial productivity z0 drawn from a distribution ψ(z). Hence the

total mass of active firms is constant. We therefore normalize it to one. We also assume that
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the support of ψ is such that firms do not immediately exit again after entering, i.e. any draw

from ψ is sufficiently high.

For future reference, it is useful to define firm profits as

π(z) = max
n
{pf(z, n)− wn} − cf

so that an incumbent firm’s problem can be written as

v(z) = max
τ

{
E0

∫ τ

0

e−ρtπ(zt)dt+ e−ρτv∗
}

dzt = µ(zt)dt+ σ(zt)dWt, z0 = z.

(1)

Similarly, denote the optimal labor demand and output policy functions by n(z) and q(z). We

denote by g(z) the stationary density of firms with productivity z. g is the state of the economy.

We close the model by assuming – as in Hopenhayn’s orginal model – that there is an

exogenous product demand and labor supply to the industry. Hence p and w are determined by

the inverse product demand and labor supply curves that are functions of the total production

and employment in the industry

p = D(Q), w = W (N), Q =

∫ 1

0

q(z)g(z)dz, N =

∫ 1

0

n(z)g(z)dz.

1.1 Equilibrium System

The firm’s problem (1) can be characterized in terms of an HJB variational inequality (HJBVI)

min

{
ρv(z)− v′(z)µ(z)− 1

2
v′′(z)σ2(z)− π(z), v(z)− v∗

}
= 0, all z ∈ (0, 1).

See http://www.princeton.edu/~moll/HACTproject/option_simple.pdf for background on

HJBVI’s. Denote by Z the set of productivities such that firms remain in the industry, i.e.

the inaction region. For standard production functions, the exit decision is characterized by

a simple threshold rule: remain active as long as zt ≥ x and so Z = [x, 1]. That being said,

in general, the inaction region Z could be a more complicated set. At the upper boundary,

v satisfies the boundary conditions for a reflecting barrier v′(1) = 0. The same condition is

satisfied if there is no exit

As long as firms remain active, i.e. when productivity zt ∈ Z, zt evolves according to the

diffusion process in (1). Therefore the evolution of g is characterized by a standard Kolmogorov

Forward (KF) equation with a correction for firm entry. To this end, we denote by m the rate

at which firms enter the industry. By assumption m is equal to the exit rate (so as to ensure
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a constant mass of firms). Considering for the moment the non-stationary distribution g(z, t),

the KF equation is:

∂tg(z, t) = −∂z(µ(z)g(z, t)) +
1

2
∂zz
(
σ2(z)g(z, t)

)
+m(t)ψ(z), all z ∈ Z (2)

where m(t) is the entry rate which is pinned down by the requirement that the total mass of

firms is constant
∫ 1

0
g(z, t)dz = 1 for all z and t. The exact expression for m(t) depends on the

shape of the inaction region Z, i.e. on the exit rule.

If there is a simple threshold rule for exit, i.e. exit whenever z falls below x, then

m(t) =
1

2
∂z
(
σ2(x)g(x, t)

)
(3)

To see this, integrate (2) from z = x to z = 1 using that
∫ 1

x
g(z, t)dz = 1 and hence∫ 1

x
∂tg(z, t)dz = 0 to get

0 = −
∫ 1

x

∂z(µ(z)g(z, t))dz +
1

2

∫ 1

x

∂zz
(
σ2(z)g(z, t)

)
dz +m(t)

∫ 1

x

ψ(z)dz

= µ(x)g(x, t)− 1

2
∂z
(
σ2(x)g(x, t)

)
+m(t)

Next note that the density of firms exactly at the exit threshold has to be zero, g(x, t) = 0.

Using this we have (3).

Formula (3) generalizes to more general inaction regions Z as follows. Denote by A the

infinitesimal generator of the diffusion process Av := µ(z)∂zv+ 1
2
σ2(z)∂zzv and by A∗ its adjoint

A∗g = −∂z(µ(z)g) + 1
2
∂zz(σ

2(z)g) so that the KF equation (2) is ∂tg = A∗g +m(t)ψ. We then

have

m(t) = −
∫
Z

(A∗g)(z, t)dz (4)

Analogous to the derivation with a threshold rule, this expression is found by integrating the

KF equation ∂tg = A∗g +m(t)ψ over all z in the inaction region Z and rearranging.

In a stationary equilibrium, the stationary versions of (2) and (3) (or (4)) hold.
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Summary of Equilibrium System. Summarizing, a stationary equilibrium are thus func-

tions v and g (from [0, 1] to R) and scalars (p, w,Q,N) such that

0 = min

{
ρv(z)− v′(z)µ(z)− 1

2
v′′(z)σ2(z)− π(z), v(z)− v∗

}
, all z ∈ (0, 1), (5)

0 = −(µ(z)g(z))′ +
1

2

(
σ2(z)g(z)

)′′
+mψ(z), all z ∈ Z, (6)

m = −
∫
Z

(A∗g)(z)dz, (7)

p = D(Q), w = W (N), Q =

∫
Z
q(z)g(z)dz, N =

∫
Z
n(z)g(z)dz. (8)

where the inaction region in (6), (7) and (8) is determined from (5). The system (5) to (8)

constitutes a Mean Field Game with optimal stopping. See Bertucci (2017) for a rigorous

analysis of such systems using an equivalent variational formulation.

1.2 Numerical Solution

We numerically solve the model under the assumptions that

f(z, n) = znα, D(Q) = Q−ε, w(N) = Nφ, v∗ = 0, ψ(z) = U([p, 1])

with α ∈ (0, 1), ε > 0, φ > 0, p = 1/2.

We use a finite difference method on an equi-spaced grid with I points, zi, i = 1, ..., I and

grid spacing ∆z. We use the notation vi = v(zi) and gi = g(zi) and denote the vector of all vi’s

and gi’s by v and g.

The numerical solution of the HJBVI (5) is as explained in http://www.princeton.edu/

~moll/HACTproject/option_simple.pdf and implemented in http://www.princeton.edu/

~moll/HACTproject/option_simple.m. The discretized HJBVI equation can be written as

0 = min {ρv −Av − π,v − v∗} (9)

and can then be solved as a linear complementarity problem (LCP). In particular (9) is equiv-

alent to

(v − v∗)T(ρv −Av − π) = 0

v − v∗ ≥ 0

ρv −Av − π ≥ 0.

(10)

Let’s denote the “excess value” x = v−v∗ and B = ρI−A. Then the second equation is x ≥ 0
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and the third equation is

Bx + q ≥ 0

where q = −π + Bv∗. Summarizing

xT(Bx + q) = 0

x ≥ 0

Bx + q ≥ 0

This is the standard form for LCPs https://en.wikipedia.org/wiki/Linear_complementarity_

problem so can solve it with an LCP solver.

The numerical solution of the KF equation in the presence of entry and exit is more involved.

Denote by I the set of grid points in the inaction region Z, i.e. grid points at which firms do

not exit and by Ai,j the entries of the transition matrix A from the discretized HJBVI equation

(and note that because A is a transition matrix its sum to zero,
∑I

j=1Ai,j = 0). Then the

discretized KF equation (6) is

0 =
I∑
j=1

Aj,igj +mψi, all i ∈ I (11)

Summing over all i ∈ I and using that
∑

i∈I ψi∆z = 1, we obtain the following discretized

version of (7)

m = −
∑
i∈I

I∑
j=1

Aj,igj∆z

Using the fact that
∑I

j=1Ai,j = 0 and hence
∑

k∈I Aj,k = −
∑

k 6∈I Aj,k, this can be usefully

rewritten as

m =
∑
i 6∈I

I∑
j=1

Aj,igj∆z, (12)

i.e. the exit/entry rate m is the mass of firms that the process sends into the exit region.

Finally, for all grid points in the exit region the density is necessarily zero: gi = 0 all i 6∈ I.

Let us manipulate the discrete KF equation a bit more to generate some further insights.

Substitute (12) into (11) to write

0 =
I∑
j=1

Bj,igj, all i ∈ I with Bi,j := Ai,j + ψj∆z
∑
k 6∈I

Ai,k

gi = 0, all i 6∈ I

(13)

5



The first line of this equation says that the process induced by the transition matrix A

with entry and exit equals the transition matrix B of another process with entries Bi,j = Ai,j +

ψj∆z
∑

k 6∈I Ai,k. That is, whenever the A-process leads into the exit region, we simply move

the corresponding entries of the transition matrix and spread them across the inaction region

in proportion to the entry distribution ψi∆z. In particular, note that the entries of B sum to

zero when summed over the inaction region
∑

j∈I Bi,j =
∑

j∈I Ai,j +
∑

j∈I ψj∆z
∑

k 6∈I Ai,k = 0,

thereby guaranteeing mass preservation in the inaction region.

Finally, for numerical convenience, we can write (13) in matrix notation as follows

0 = B̃Tg

where B̃i,j = Bi,j for all columns in the inaction region j ∈ I and the columns in the exit region

j 6∈ I are replaced by a column of zeros everywhere except for 1 on the diagonal. The latter

case means that rows of B̃T corresponding to the exit region i 6∈ I are rows of zeros except for

1 on the diagonal and hence 0 = B̃Tg implies that gi = 0 for all i 6∈ I.
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2 Optimal Entry

We now endogenize entry as in the original paper by Hopenhayn (1992). Rather than the entry

rate m being determined mechanically such that the total mass of firms is constant, it is now

determined from a free-entry condition:∫ 1

0

v(z)ψ(z)dz = ce (14)

where ce denotes the entry cost. To make the problem better behaved numerically, we change

this equation slightly to have an elastic supply of entry:

m = m̄ exp

(
η

(∫ 1

0

v(z)ψ(z)dz − ce
))

(15)

where m is the entry rate and η is the elasticity of the supply of entrant and m̄ is a parameter.

The free-entry condition (14) is the special case η → ∞, i.e. the Hopenhayn model has an

infinitely elastic supply of entrants.1

The fact that entry is now chosen optimally also means that the condition (7) now needs to

be dropped from the set of equilibrium conditions. Finally, note that the total mass of active

firms will, in general, not be constant over time or with respect to parameter changes. We

therefore no longer normalize
∫
g(z, t)dz to one anymore.

2.1 Equilibrium System

A stationary equilibrium is therefore (v, g, w, p,m) and an exit region Z that solves

0 = min

{
ρv(z)− v′(z)µ(z)− 1

2
v′′(z)σ2(z)− π(z), v(z)− v∗

}
, all z ∈ (0, 1), (16)

0 = −(µ(z)g(z))′ +
1

2

(
σ2(z)g(z)

)′′
+mψ(z), all z ∈ Z, (17)

m = m̄ exp

(
η

(∫ 1

0

v(z)ψ(z)dz − ce
))

, (18)

p = D(Q), w = W (N), Q =

∫
Z
q(z)g(z)dz, N =

∫
Z
n(z)g(z)dz. (19)

Note that the system is identical to before with the exception that we have replaced (7) by

(14). The logic is that the entry rate m is pinned down by this condition. To see this note that

from (17) a higher entry rate m means a larger mass of active firms
∫ 1

0
g(z)dz. This in turn

1We have log(m/m̄)
η =

∫ 1

0
v(z)ψ(z)dz − ce. And hence taking the limit η →∞ yields (15).
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means larger (Q,N) which in turn means lower p and higher w. This depresses the value of a

firm v. The equilibrium entry rate m is such that these forces balance out and the free-entry

condition (18) holds.

2.2 Numerical Solution

See hopenhayn.m which was written by Riccardo Cioffi. Analogously to above, the discretized

version of (17) is

0 =
I∑
j=1

Aj,igj +mψi, all i ∈ I

gi = 0, all i 6∈ I

This can be written in matrix form as

0 = ÃTg +mψ (20)

where Ãi,j = Ai,j for all columns in the inaction region j ∈ I and the columns in the exit region

j 6∈ I are replaced by a column of zeros everywhere except for 1 on the diagonal. The latter

case means that rows of ÃT corresponding to the exit region i 6∈ I are rows of zeros except

for 1 on the diagonal and hence 0 = ÃTg + mψ implies that gi = 0 for all i 6∈ I. Since ÃT

constructed in this fashion is non-singular, we can simply solve g = −(ÃT)−1mψ.

Algorithm:

i. Guess w0

ii. 1. Guess p0

2. Given (pj, wk) solve the HJBVI equation (16). This yields v and an exit region Z.

3. Given v, compute m from the supply of entrants (18). To approximate the case of

a perfectly elastic supply of entrants (14), we choose a large value of η.

4. Given the exit region Z, and the entry rate m, solve the KF equation (17) to get g

(numerically, solve (20)). Note that g will, in general, not integrate to one.

5. Given g, compute Q and update p: pj+1 = (1− λp)pj + λpQ
−ε

6. If pj+1 and Q−ε are close enough, go to iii., otherwise back to 2.

iii. Given g, compute N and update w: wk+1 = (1− λw)wk+1 + λwN
φ

iv. If wk+1 and Nφ are close enough, exit, otherwise back to ii.
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2.3 Results

Figure 1 plots the value function v(z) and the size distribution of active firms g(z). The mass

of active firms equals 0.28.

(a) Value function v(z)

(b) Size distribution of active firms g(z)

Figure 1: Value Function and Size Distribution in Hopenhayn Model
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