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In this note we introduce a consumption-savings model where we give agents the option to file for
bankruptcy, which is characterized as an optimal stopping problem. This is a simple version of the
households’ problem found in the consumer bankruptcy economy described in Mellior and Shibayama
(2018). As shown in Moll (2016) we can solve real options by formulating them as a linear complemen-
tarity problem (LCP) or with the use of the so-called splitting method. The LCP approach is much
faster and will be adopted here. The codes for running this example are cTsolver.m, mainfile.m and
LCP.m. Let’s first describe the problem, then move on to a discussion of the appropriate boundary
condition and finally look at the implementation of the algorithm.

The problem

As in Achdou et al. (2017) agents maximize utility subject to a flow budget constraint. The only
idiosyncratic shock affects income z, which is a two point jump process, where λL and λH are the
Poisson rates of jumps from low to high and high to low income, respectively. Agents can save by
accumulating wealth a. Negative values of a mean agents are in debt. Additionally, the agent can now
choose a time T where it files for bankruptcy1. Upon filing for bankruptcy the agent obtains the value
of default V D and loses the value of not being in default V N . In order to keep things simple we do not
explain where V D comes from, we just take it as given. Moreover, V D may or may not depend on2 a.
Hence, our problem is shown next.

V N
i (at) = max

c,T
Et

[∫ T

t

e−ρ(s−t)u(c)ds+ e−ρ(T−t)V D(aT )

]
(1)

s.t.
da

dt
= zi + ra− c (2)

Furthermore, we impose the following:

• There is an exogenous debt limit a ≥ a where −∞ < a < 0.

• z is a jump process where zH > zL and i = L,H.

• CRRA utility function - u(c) = c1−σ−1
1−σ

• For the sake of simplicity assume that only the low income type can file for bankruptcy.

Following Moll (2016) we can show that the HJB equation3 is

ρV N
i = max

c
u(c) +

∂V N
i

∂a
Si + λi[V

N
j − V N

i ] i = L,H i 6= j (3)

with the constraint that

V N
i (a) ≥ V D(a). (4)

We can express it as a variational inequality

1Assume that filing is immediately followed by a discharge of all debts. Also, note that in this note default and
bankruptcy are used interchangeably.

2More on this further below.
3For notational convenience I will be denoting the drift as S instead of da

dt .

1

http://gustavomellior.com/research/
http://gustavomellior.com/research/
https://www.princeton.edu/~moll/HACTproject/option_simple.pdf
https://www.princeton.edu/~moll/HACT.pdf
https://www.princeton.edu/~moll/HACTproject/option_simple.pdf


min

{
ρV N

i − u(c)− ∂V N
i

∂a
Si − λi[V N

j − V N
i ], V N

i − V D

}
= 0. (5)

Equation (5) can be conveniently solved as a LCP. In reality, instead of looking for the optimal stopping
time T , we will be solving for the threshold value a∗ where the agent optimally chooses to default (the
area where a < a∗ is the default region). At the default threshold a∗, the value function V N satisfies
the following optimality conditions4:

• Value matching

V N
L (a∗) = V D(a∗) (6)

• Smooth pasting

V N ′
L (a∗) = V D′(a∗) (7)

Finally, in the no default region we have the standard first order condition in consumption given by

u′(ci) =
∂V N

i

∂a
. (8)

Introducing bankruptcy choice requires 2 modifications of Ben Moll’s Huggett model; these are discussed
next in two steps.

Step 1: Boundary condition at a

The approach taken in this note will require us to think about the boundary condition at a∗ and
consumption at a. The reason is that, unlike other methods, we will fix the asset grid and keep it the
same throughout our computations. If we find that the optimal default threshold is a∗ > a we will still
have to compute how agents behave in the space a < a∗. We illustrate this by first considering the case
of a value function of default V D that is flat (it does not depend on a). We then show what happens
when the slope becomes positive.
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Figure 1: Corner solution
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Figure 2: Smooth pasting

4See Dixit and Pindyck (1994). If the default threshold is at a, smooth pasting may not be satisfied (more on this
below).
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Bankruptcy when the value of default is flat

In Figures (1) and (2) V H
L depicts the value function of a low-income-type agent that is not allowed

to file for bankruptcy (a Huggett value function). V N
L and V D represent the values of the low income

type when bankruptcy is allowed and that of default, respectively. Figure (1) illustrates how a flat
value of default gives rise to a corner solution. A flat value function implies that the marginal penalty
of more debt in the default regime is zero. Using the smooth pasting condition would imply infinite
consumption5 at a. When bankruptcy occurs at the debt limit and the slope of V D(a) is too small, we
will not be able to rely on smooth pasting. However, we can still use value matching, equation (6). In
order to do so, define F (c(a)) as the discrepancy in value matching at a. Let c = c(a) = c(a∗).

F (c) = V N
L (a)− V D (9)

Plug the HJB equation for V N
L , equation (3), along with the FOC6 to obtain the next expression.

F (c) =
u(c) + u′(c)SL + λLV

N
H (a)

(ρ+ λL)
− V D (10)

Let c∗ represent the level of consumption at a that yields F (c) = 0, or, if F (c) does not have a solution,
the value of c such that F (c) is minimized. If default is optimal then F (c∗) = 0 and value matching is
satisfied. Otherwise, F (c) > 0 and we revert back to a Huggett model. To stress the link, consider the
slope of (10) with respect to c and Figure (3).

∂F (c)

∂c
=
∂2u (c)

∂c2
(zL + ra− c)

Because ∂2u (c) /∂c2 < 0, it is obvious that F (c) is U-shaped and that it takes its minimum at c = zL+ra
(i.e., at SL = 0). The minimum of F (c) is precisely the boundary condition of a Huggett model where
default is not allowed/not optimal. Therefore, one can think of the standard Huggett model as having
F (c∗) > 0, as depicted in Figure (3)7. When the agent files for bankruptcy the drift will be negative
and c(a) > z + ra.
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Figure 3

5This consumption spike never takes place when agents optimize; infinite consumption at a very short span of time

violates consumption smoothing. Hence, if ∂V D(a)
∂a is too flat, agents will increase borrowing (i.e., pushing a∗ to the

left). The agent will increase its consumption level for all time periods from t0 until the moment of bankruptcy filing,
thus spreading out the consumption spike. As a result, the level of V N

L (a) shifts up for the entire state space. For an
exposition on why smooth pasting is not satisfied when the value function of default is flat see the appendix in Mellior
and Shibayama (2018).

6Note that when bankruptcy is optimal, the FOC is still satisfied at a. For a discussion beyond this note, see Mellior
and Shibayama (2018).

7We make explicit the dependence of the drift on c to highlight the connection between the sign of savings and
bankruptcy choice.
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We can see in Figure (3) that when bankruptcy is optimal, F (c∗) will have two roots8. We can
immediately discard the smaller root since it yields positive savings at the debt limit. Positive savings
at a imply we are moving away from the default boundary and runs into a contradiction with exercising
the option to default. That is why the drift and F (c) function are dashed and greyed out for consumption
below zL + ra. The matlab file cTsolver.m will take care of finding this root at a.

Animating the boundary condition

Anything that relatively increases the option value of bankruptcy raises consumption at the moment
of default c∗. Hence, increasing V D and ρ and decreasing λL make consumption at the boundary go
up. When the value of bankruptcy goes up there are downwards vertical shifts in the value matching
equation - see Figure (3) and the animation9 in Figure (4).

Figure 4

As we can see in the figures, the unique minimum of (10) is situated where the drift SL(c) is equal
to zero. This is the standard boundary condition for c(a) in the Huggett model without bankruptcy.
In that case the agent can no longer issue more debt when it reaches the exogenous debt limit. Our
method will capture this boundary condition when F (c) does not cross the zero line. Furthermore,
when bankruptcy becomes attractive equation (10) has two roots. One implies a positive drift - located
in the greyed out area. As mentioned above we discard this case. Thus we keep the other root, which
yields a negative drift (consumption larger than zL + ra) and is consistent with exercising the option
to default.

Non-flat value of default

If the marginal penalty of more debt in the default region is positive and small, we should not expect
the results to change. The agent will push a∗ towards a for the same reasons outlined above. This can
be seen in Figure (5). The relative difference in curvature of V D(a) and V N

L (a) will determine whether
default takes place in the interior of the state space. Figure (2) shows a case where both V N

L (a) and

8This reveals a connection with what Klaus Wälde described as the so-called twin solutions of HJB equations, developed
in further detail in Wälde (2010). Essentially, the HJB equation for a standard problem has two roots in consumption,
but one of them imply a value function that is not concave; for standard problems we should focus only on the root that
gives us a concave value function. In our bankruptcy model we pick the root that gives us a negative drift at a∗.

9You need to open this note with a good PDF reader (Adobe Acrobat reader works fine) in order to play the animation.
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V D(a) display more curvature and where a∗ > a. The relative curvature of the two value functions
can be affected by many factors not considered on this note for the sake of brevity. These could be
bankruptcy laws and risk premia, for instance.
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Figure 5

The message is that if V D(a) is high enough to meet value matching and has a positive slope, then
a∗ may be in the interior of the state space or at a. Smooth pasting will be satisfied in the former
but generally not in the latter10, as shown in Figures (2) and (5). Regardless of which case takes
place, we still have to compute consumption at a. Our solver takes care of finding consumption at this
point, following the approach outlined above. Checking value matching and smooth pasting at a∗ will
not require a solver when default occurs in the interior; the LCP algorithm takes care of this11. The
approach taken in this note is general enough to catch both cases.

Putting everything together

The discussion above is summarized in Table (1).

Table 1: Boundary Conditions

Default Boundary Value matching Smooth pasting Drift at a

Yes, at a∗ > a interior solution yes yes -

Yes, at a∗ = a corner solution yes no,
∂V NL (a)

∂a
> ∂V D(a)

∂a
-

No Huggett-Achdou no, V N
L (a) > V D(a) no 0

The final step is to fix the entries of the A matrix, consistent with the drift at a.

Step 2: The modified A matrix

The A matrix describes the flows from one point to another in the state space12. We can compactly
write the HJB equation as

ρv = u(c) + Av

where we solve implicitly for the value function as shown next.

10Of course, there may be cases where the slopes of V N
L (a) and V D(a) coincide at a.

11As mentioned in Moll (2016), one can show that the HJBVI implies smooth pasting and value matching. One can
also verify that this holds in our numerical results.

12In order to decrease notational burden the A matrix shown here ignores income transitions. The superscript n on A
represents the nth step of the iteration.
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V n+1
i − V n

i

∆t
+ ρV n+1

i = u(cn) +
∂V n+1

i

∂a
[z + rai − cni ] (11)

V n+1
i =

[
I

(
ρ+

1

∆t

)
−An

]−1 [
u(cn) +

V n
i

∆t

]
(12)

As in Achdou (2017) et al. and Nuño and Thomas (2015) let the the outflows and inflows be represented
as follows13.

xi = −min

{
z + rai − cBi

∆a
, 0

}
inflow from ai to ai−1

yi = min

{
z + rai − cBi

∆a
, 0

}
−max

{
z + rai − cFi

∆a
, 0

}
outflow from ai

zi = max

{
z + rai − cFi

∆a
, 0

}
inflow from ai to ai+1

where these flows are captured by the matrix A.

A =


y1 z1 0 · · · · · · · · · 0
x2 y2 z2 0 · · · · · · 0
0 x3 y3 z3 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · · · · · · · ximax yimax


The last modification concerns the very first entry, y1. In the benchmark case we set the backward based
drift as zero, which effectively imposes the debt limit and forbids accumulating more debts at a. In our
setting the agent will be allowed to optimize at this very last instant prior to exiting. Augmenting the
A matrix to capture such a feature would leave us with a x1 capturing the backward drift as shown
next. Let I and I denote the number of points in the asset grid and the identity matrix of size I × I.

Aaugmented︸ ︷︷ ︸
(I+1)×(I+1)

=


y0 z0 0 · · · · · · · · · 0
x1 y1 z1 0 · · · · · · 0
0 x2 y2 z2 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · · · · · · · ximax yimax

 Amodified︸ ︷︷ ︸
I×I

=


y1 − x1 z1 0 · · · · · · · · · 0
x2 y2 z2 0 · · · · · · 0
0 x3 y3 z3 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · · · · · · · ximax yimax

 (13)

We can trim the augmented matrix and work with a Amodified, by subtracting x1 from the first entry
of A and adding u′(c∗)x1∆a to the right of expression (11). Notice that when we show this in (14) it
is clear that we are adding the same terms to both sides of the expression. We know what x1 is since
we know c(a) from the value matching equation (10). Subtracting x1 from y1 makes the first entry of
Amodified equal to zero. Now, let Amodified be represented as Am This leaves us with the following system
of equations.

V n+1
i =

[
I

(
ρ+

1

∆t

)
−An

m + x11i=1

]
−1

[
u(cn) +

V n
i

∆t
+ u′(c∗)x1∆a1i=1

]
V n+1
i =

[
I

(
ρ+

1

∆t

)
−An

m + x11i=1

]−1 [
u(cn) +

V n
i

∆t
+ u′(c∗)[z + ra1 − c∗]1i=1

]
(14)

Recall that u′(c∗) =
V n+1
1 −V n+1

0

∆a
= u′(c(a)). Hence, the RHS has an extra term in the first grid point

capturing the utility flow from moving into bankruptcy. Remember that c∗ is the value such F (c) = 0

13This follows from the upwind scheme. See the numerical appendix in Achdou (2017) et al.
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(default) or, if there is no solution, the minimum of F (c) (Huggett). In the latter case, the zero drift
eliminates the extra term on the RHS and we are back in the standard case of no default. Remark that
the Am matrix is ill suited for obtaining the wealth distribution if default does take place. For further
reference see Ben Moll’s treatment of the KFE in the liquid-illiquid note on the HACT project website
and Nuño and Thomas (2015).

The algorithm

The main file is mainfile.m. It first runs a standard Huggett model, which will be used as a starting
guess for the HJBVI. The second part, which compares the values of V N

i (a) and V D(a), calls on
cTsolver.m (for getting consumption at a) and the LCP.m function. In order to illustrate how to solve
for the bankruptcy choice we have set V D(a) and interest payments on debt as given. Note that the
shape of these will have a major impact on whether it is optimal to file for bankruptcy at a or at the
interior of the state space. Hence, the algorithm lets you use different, arbitrarily defined, risk premium
and V D(a) functions. You may affect these choices by setting risk-premium and Vstarflat to 1 or 0.
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