Consumption and Saving with an Indivisible Durable!

1 Model Description

Individuals have flow utility over non-durable consumption ¢; and durable consumption d,
u(cy) + Kdy.

Durable consumption is indivisible: d; € {0,1}. For instance, d; could present car ownership:
individuals either own a car, d; = 1, or they do not, d; = 0. For concreteness we will therefore
refer to the durable as “car.” Individuals who do not own a car can purchase it at price py.
Individuals who already own a car can sell it at price p; with p; < pg. At any time when they
do not buy or sell a car, individuals’ wealth a; accumulates according to a; = y + ra; — ¢; where
y is their constant labor income and r is the interest rate. If they buy a car their wealth jumps
down by pg, and if they sell their car their wealth jumps up by p;.

Denote by vg(a) the value of having wealth a and car ownership state d € {0,1}. Individuals
in state d = 0, optimally choose consumption and the stopping time 7 at which to purchase

the car:

vo(a) = max /e‘ptu(ct)dt%—e_”TvS(aT)
0

{ct}t>0,7

@ =y+ra—c, a>a, a =a.
where v§(a) is the value of buying a car given by:

’U*(a) o Ul(a_pO)a ifa—pyo>a
o(a) =
—00, ifa—py<a

The second branch takes care of the borrowing constraint: individuals cannot buy a car if doing
so would lead them to violate the borrowing constraint. The problem for individuals already

owning a car is symmetric:

vi(a) = max / e P (u(cy) + k)dt + e vl (a,)
0

{ct}t>0,7

ag =y -+ra—c, a>a, ay=da.

"'We thank Victor Rios-Rull for suggesting this Problem



where v}(a) is the value of selling a car given by:
vi(a) = vo(a+ p1)

Because we will solve the problem on a bounded grid a < a < .y, we will make the simplifying
assumption that v} (a) = vo(max{a+pi, amax}), i-e. if selling the car would take the individual’s
wealth above a,., then she receives a smaller price.

The individual’s problem boils down to a system of “HJB Variational Inequalities” (HJBVISs)

0 = min{pvy(a) — max {u(c) + vy(a)(y +ra —¢)},vo(a) — vy(a)}, (1)

0 = min{pvy(a) — max {u(c) + K+ v (a)(y+ra—c)},vi(a) —vi(a)} (2)

See http://www.princeton.edu/~moll/HACTproject/option_simple.pdf for an explanation
of HIBVIs.

2 Algorithm

The Matlab code at http://www.princeton.edu/~moll/HACTproject/car.m solves the sys-
tem (3) and (4) under the assumption of CRRA utility «'(¢) = ¢™7. It uses a similar algo-
rithm as in http://www.princeton.edu/~moll/HACTproject/option_simple.pdf and http:
//www.princeton.edu/~moll/HACTproject/option_simple.m.

A sketch is as follows: the discretized HJBVIs are basically:

0 = min{pvy — u(vo) — A(vg)vo, vo — v5(v1)}, (3)
0 = min{pv; — u(vy) — A(vy)vy, v — vj(vo)} (4)

These can then be converted into a Linear Complementarity Problem (LCP) that can be solved

with readily available solvers.

3 Results

Figure 1 plots the value and policy functions. As is intuitive, poor individuals sell their cars
and rich individuals buy a car. The policy functions in panels (c) and (d) are only plotted for
wealth levels at which individuals neither buy or sell a car, i.e. for which the indicators in panel
(c) equal zero. The policy functions at other wealth levels are irrelevant because individuals

immediately jump from state d = 0 to d = 1 or vice versa.
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Figure 1: Value and Policy Functions



