
Additional Codes using Finite Difference Method

Benjamin Moll

1 HJB Equation for Consumption-Saving Problem With-

out Uncertainty

Before considering the case with stochastic income in http://www.princeton.edu/~moll/

HACTproject/HACT_Numerical_Appendix.pdf, it is useful to first really understand the case

without uncertainty:

ρv(a) = max
c

u(c) + v′(a)[w + ra− c] (1)

with a state constraint a ≥ a, and we assume r < ρ and w > 0 and a > −w/r. For future

reference denote by s(a) = w + ra − c(a) where c(a) is the optimal choice in (1). The state

constraint implies s(a) = w + ra − c(a) ≥ 0. Since u′(c(a)) = v′(a) and since u is concave

therefore

v′(a) ≥ u′(w + ra) (2)

As above, we use a finite difference method and approximate the function v at J discrete

points in the space dimension, aj, j = 1, ..., J . We use equispaced grids, denote by ∆a the

distance between grid points, and use the short-hand notation vj ≡ v(aj).

Again as before, one can implement either a so-called “explicit” method or an “implicit”

method. As usual, the implicit method is the preferred approach because it is both more

efficient and more stable/reliable. However, the explicit method is easier to explain so we turn

to it first.

1.1 Explicit Method

Simplest Possible Algorithm. See matlab program HJB_no_uncertainty_simple.m. Given

that there is no uncertainty and r < ρ, we know the following properties of the solution to (1):

first, savings will be negative everywhere, s(a) ≤ 0 all a; and the borrowing constraint will

always bind and hence (2) holds with equality. Given these properties, an extremely simple

algorithm can be used. In particular, use a backward difference approximation to v′ everywhere

v′j =
vj − vj−1

∆a
, j ≥ 2, v′1 = u′(w + ra1) (3)

1

and update the value function using

vn+1
j − vnj

∆
+ ρvnj = u(cnj) + (vnj)′[w + raj − cnj] (4)

where cnj = (u′)−1[(vnj)′]. As above ∆ is the step size of the explicit scheme which cannot

be too large (CFL condition). A small enough ∆ also guarantees that the Barles-Souganidis

conditions are satisfied. See http://www.princeton.edu/~moll/HACT.pdf and http://www.

princeton.edu/~moll/HACTproject/HACT_Numerical_Appendix.pdf for more discussion.

Summary of Algorithm. Summarizing, the algorithm for finding a solution to the HJB

equation (1) is as follows. Guess v0j , j = 1, ..., J and for n = 0, 1, 2, ... follow

1. Compute (vnj)′ from (3).

2. Compute cn from cnj = (u′)−1[(vnj)′]

3. Find vn+1 from (4).

4. If vn+1 is close enough to vn: stop. Otherwise, go to step 1.

Upwind Scheme. Note that (3) is an “upwind scheme”. As explained above, an upwind

scheme uses a forward difference approximation whenever the drift of the state variable (here,

savings snj = w + raj − cnj) is positive and a backwards difference whenever it is negative. In

the special case without uncertainty, we know that savings are negative everywhere and hence

that one should always use the backwards difference approximation.

Instead of imposing that the backwards difference is always used, we could have let the

upwind scheme “choose” the correct approximation as follows: first compute savings according

to both the backwards and forward difference approximations v′j,F and v′j,B

sj,F = w + raj − (u′)−1(v′j,F), sj,B = w + raj − (u′)−1(v′j,B)

where we suppress n superscripts for notational simplicity. Then use the following approxima-

tion for v′j:

v′j = v′j,F1{sj,F>0} + v′j,B1{sj,B<0} + v̄′j1{sj,F<0<sj,B} (5)

where 1{·} denotes the indicator function, and where v̄′j = u′(w+ raj). This scheme would find

that 1{sj,B<0} for all j ≥ 2 and hence would pick the approximation in (3) by itself. This slightly

more general solution algorithm is programmed up in HJB_no_uncertainty_explicit.m.

1.2 Implicit Method

See HJB_no_uncertainty_implicit.m and also see Section 1.2 of http://www.princeton.

edu/~moll/HACTproject/HACT_Numerical_Appendix.pdf for a detailed explanation in the

2

version with uncertainty.

Relative to the explicit scheme in (4), an implicit differs in how vn is updated. In particular,

vn+1 is now implicitly defined by the equation

vn+1
j − vnj

∆
+ ρvn+1

j = u(cnj) + (vn+1
j)′F (w + raj − cnj,F)+ + (vn+1

j)′B(w + ra− cnj,B)− (6)

where cnj = (u′)−1[(vnj)′] and (vnj)′ is given by (5). For any number x, the notation x+ means “the

positive part of x”, i.e. x+ = max{x, 0} and analogously x− = min{x, 0}, i.e. [w+raj−cnj,F]+ =

max{w + raj − cnj,F , 0} and [w + raj − cnj,B]− = min{w + raj − cnj,B, 0}.
Equation (6) constitutes a system of J linear equations, and it can be written in matrix

notation using the following steps. Substituting the finite difference approximations to the

derivatives, and defining snj,F = w + raj − cnj,F and similarly for snj,B, (6) is

vn+1
j − vnj

∆
+ ρvn+1

j = u(cnj) +
vn+1
j+1 − vn+1

j

∆a
(snj,F)+ +

vn+1
j − vn+1

j−1

∆a
(snj,B)−

Collecting terms with the same subscripts on the right-hand side

vn+1
j − vnj

∆
+ ρvn+1

j = u(cnj) + vn+1
j−1 xj + vn+1

j yj + vn+1
j+1 zj where

xj = −
(snj,B)−

∆a
, yj = −

(snj,F)+

∆a
+

(snj,B)−

∆a
, zj =

(snj,F)+

∆a

(7)

Note that importantly x1 = zJ = 0 so vn+1
0 and vn+1

J+1 are never used.

Equation (7) is a linear system which can be written in matrix notation as:

1

∆
(vn+1 − vn) + ρvn+1 = un + Anvn+1, An =



y1 z1 0 · · · 0

x2 y2 z2
. . . 0

0 x3 y3 z3 0
...

.

0
. xI yI


.

1.3 Results

Figure 1 plots the function s(a).

3

0 0.2 0.4 0.6 0.8 1
−9

−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

−3

a

s
(a

)

Figure 1: Savings Behavior in Model Without Uncertainty

2 Solving the Neoclassical Growth Model

See matlab codes HJB_NGM.m and HJB_NGM_implicit. Finally and for completeness, let us

solve the neoclassical growth model which is the prototypical dynamic programming problem

in macroeconomics. The HJB equation is

ρV (k) = max
c

U(c) + V ′(k)[F (k)− δk − c] (8)

As before s(k) = F (k) − δk − c(k) and c(k) = (U ′)−1(V ′(k)) denote optimal savings and

consumption. We approximate V at I discrete grids points and use the short-hand notation

Vi = V (ki). We first implement an explicit and then an implicit method. As usual, the implicit

method is preferable due to better efficiency and stability properties.

2.1 Explicit Method

See HJB_NGM.m. The explicit method starts with a guess V 0 = (V 0
1 , ..., V

0
I) and for n = 0, 1, 2, ...

updates V according to

V n+1
i − V n

i

∆
+ ρV n

i = U(cni) + (V n
i)′[F (ki)− δki − cni] (9)

cni = (U ′)−1[(V n
i)′] (10)

Upwind Scheme. The derivative V ′(ki) is again approximated using an upwind scheme.

That is compute savings according to both the backwards and forward difference approxima-

4

tions V ′i,F and V ′i,B

si,F = F (ki)− δki − (U ′)−1(V ′i,F), si,B = F (ki)− δki − (U ′)−1(V ′i,B)

and then use the following approximation for V ′i :

V ′i = V ′i,F1{si,F>0} + V ′i,B1{si,B<0} + V̄ ′i 1{si,F<0<si,B}

where V̄ ′i = u′(F (ki) − δki). Note again that the case si,F > si,B will not occur because V is

concave.

Remark. We know that the neoclassical growth model (8) has a steady state k∗ satisfying

F ′(k∗) = ρ + δ and that at this steady state V ′(k∗) = U ′(F (k∗)− δk∗). Note that the upwind

scheme in effect uses the condition on the value function at the steady state k∗ as a boundary

condition. It then uses a backward difference approximation below the steady state, and a

forward difference approximation above the steady state.

2.2 Implicit Method

See HJB_NGM_implicit.m. The algorithm is exactly the same as in Section 1.2. Also see Section

1.2 of http://www.princeton.edu/~moll/HACTproject/HACT_Numerical_Appendix.pdf.

2.3 Results.

Figure 2 plots the savings policy function in the neoclassical growth model.

1 2 3 4 5 6 7 8 9
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

k

s
(k

)

Figure 2: Savings Policy Function in Neoclassical Growth Model

5

