Saving Behavior Across the Wealth Distribution: The Importance of Capital Gains

Andreas Fagereng Martin Holm Benjamin Moll Gisle Natvik

Banco de España, 8 September 2021

Do wealthier households save larger share of income than poorer ones?

Motivation:

- Growing interest in possible feedback loops between shifting income and wealth distributions and macro economy
 - Aggregate saving rate, debt level, interest rate,...
 - Transmission of monetary and fiscal policy
- Key model ingredient: saving behavior across wealth distribution
- How do saving rates actually vary with wealth in the data?

• Use Norwegian administrative data on income & wealth to examine saving behavior across the wealth distribution

- 1. Q: Do rich save larger share of income than poor? A: "No and Yes" Answer depends on whether saving includes capital gains:
 - (a) saving rates net of capital gains ("net" or "active saving")

- 1. Q: Do rich save larger share of income than poor? A: "No and Yes" Answer depends on whether saving includes capital gains:
 - (a) saving rates net of capital gains ("net" or "active saving")
 - (b) saving rates including capital gains ("gross saving")

- 1. Q: Do rich save larger share of income than poor? A: "No and Yes" Answer depends on whether saving includes capital gains:
 - (a) saving rates net of capital gains ("net" or "active saving")

- 1. Q: Do rich save larger share of income than poor? A: "No and Yes" Answer depends on whether saving includes capital gains:
 - (a) saving rates net of capital gains ("net" or "active saving")
 - (b) saving rates including capital gains ("gross saving")

- 1. Q: Do rich save larger share of income than poor? A: "No and Yes" Answer depends on whether saving includes capital gains:
 - (a) saving rates net of capital gains ("net" or "active saving")
 - (b) saving rates including capital gains ("gross saving")

No, rich people don't have higher saving rates in traditional sense. But, yes, they still accumulate more wealth through capital gains.

- 1. Q: Do rich save larger share of income than poor? A: "No and Yes" Answer depends on whether saving includes capital gains:
 - (a) saving rates net of capital gains ("net" or "active saving")
 - (b) saving rates including capital gains ("gross saving")

Rich people hold assets that experience persistent capital gains, do not sell these to consume \Rightarrow "saving by holding"

Our Findings: "Saving by Holding" - Back-of-Envelope

Back-of-envelope example to clarify:

- assume net saving rate = 10%, capital gains on all assets = 2%
- Paul: income (excluding cap gains) = \$100,000, assets = \$0
 Richie: income (excluding cap gains) = \$100,000, assets = \$1,000,000
- gross savings are \$10,000 and \$10,000 + \$20,000 = \$30,000
- gross saving rates are 10% and $\frac{30,000}{100,000+20,000} = 25\%$

To be clear: statement is about how saving rates vary with wealth and not income

- 2. A simple model (class) that fits the data with 2 key ingredients:
 - 1. homothetic preferences
 - 2. rising asset prices accompanied by declining returns (not rising cash flows)

Alternative explanations:

- Multiple assets + portfolio adjustment frictions
- Non-homothetic preferences, behavioral,... (see paper)
- 3. Macro implication: Capital gains have been important for evolution of aggregate saving and inequality
 - ... net saving rate heterogeneity not important

Related Literature

Empirics:

- 1. saving across wealth distribution Bach-Calvet-Sodini
- 2. saving across permanent income distribution Dynan-Skinner-Zeldes, Straub
- 3. rates of return across wealth distribution Fagereng et al, Bach-Calvet-Sodini

Macro:

- aggregate implications of income & wealth heterogeneity Krusell-Smith, Krueger-Mitman-Perri, Quadrini-RiosRull, Kaplan-Violante, Auclert-Rognlie, Straub, Mian-Sufi-Straub,...
- Consumption response to asset price changes Poterba, Paiella-Pistaferri Christelis-Georgarakos-Jappelli, Berger-Guerrieri-Lorenzoni-Vara, Kaplan-Mitman-Violante, Guren et al,...

Inequality:

- theories of wealth inequality at point in time Benhabib-Bisin, DeNardi-Fella, Jones, Piketty-Zucman, ...
- wealth inequality dynamics, type/scale dependence?
 Gabaix-Lasry-Lions-Moll, Kaymak-Poschke, Hubmer-Krusell-Smith, Garbinti-GoupilleLebret-Piketty, Gomez, ...

Other areas:

- public finance, particularly capital taxation Saez-Stantcheva, Jakobsen-Kleven-Zucman
- household finance Campbell, Calvet-Campbell-Sodini

- 1. Theoretical benchmark
- 2. Data
- 3. Results
- 4. Macroeconomic implications

Theory

Saving Decision with Constant Asset Prices

• Households solve:

$$\max_{\substack{\{c_t\}_{t\geq 0}}} \int_0^\infty e^{-\rho t} \frac{c_t^{1-\gamma}}{1-\gamma} dt \qquad \text{s.t.}$$
$$\dot{a}_t = w + ra_t - c_t, \qquad a_t \ge -w/r$$

• Saving policy function:

$$\dot{a} = s(a) = \frac{r-\rho}{\gamma} \left(\frac{w}{r} + a\right)$$

Constant saving rate out of income

$$\frac{s}{y} = \frac{s}{w + ra} = \frac{r - \rho}{\gamma r}$$

• Asset k_t with time-varying price p_t and dividend D_t

$$c_t + p_t \dot{k}_t = w + D_t k_t$$

• Two sources of returns: dividends (D) + capital gains (p)

$$r_t := \frac{D_t + \dot{p}_t}{p_t}$$

• Two sources of price changes: dividends (D) + return (r)

$$p_t = \int_t^\infty e^{-\int_t^s r_\tau d\tau} D_s ds$$

- Mapping to previous slide: wealth a := pk where k = quantity
 - Household problem as before, only time-varying r_t

Saving Decision with Changing Asset Prices

Useful distinction when $\dot{p}_t \neq 0$: net vs gross saving

• Two ways of writing consumption + saving = income

- Net saving rate: $\frac{p\dot{k}}{w+Dk}$
- Gross saving rate: $\frac{p\dot{k}+\dot{p}k}{w+(D+\dot{p})k}$

Saving Decision with Changing Asset Prices

$$p_t = \int_t^\infty e^{-\int_t^s r_\tau d au} D_s ds$$

- · Saving response to rising asset price depends on whether
 - *p* associated with growing *D* (and *r* constant)

or

p associated with declining *r* (and *D* constant)

Saving Decision with Changing Asset Prices

Intuition: sell off assets to enjoy additional future k-income

- ... but only if there actually is additional income
 - only if \dot{p}_t comes with extra cash flows, there are income effects
- declining *r* might trigger substitution effects, but these are unrelated to wealth

Income effects from D vary with wealth, substitution effects from r don't

Extensions

- (a) Housing not just an asset, but also consumption good:
 - flat net saving rate if rising house prices associated with declining returns (implied rent = constant)
- (b) Asset price risk
 - flat net saving rate if persistent p changes due to declining r
- (c) Income risk and borrowing constraints:
 - elevated saving rates close to borrowing constraints
 - approximately flat saving rate conditional on labor income
- (d) Realistic life cycle earnings profile:
 - flat saving rate conditional on age and income
- (e) Discount rate or return heterogeneity:
 - flat saving rate conditional on individual inclination to save

 \approx flat net saving rate if price growth comes with declining returns

Data

- Norwegian population tax record data with supplements
 - Panel, 2005 to 2015 (11 years)
 - \approx 3.3M persons per year
- Tax records include (third-party reported):
 - asset holdings by broad asset class (e.g. deposits, housing)
 - income (labor, business, capital, and transfers)

Definition of Wealth and Asset Categories

- Wealth = deposits + stocks + stock funds + informal loans + bonds + housing + privately-held firms + vehicles/boats - liabilities
- For most categories: tax value = market value
- Privately-held firms: individuals get share of firm balance sheet
- Housing: use transaction data and house characteristics to estimate market values
- Pensions: not today (in appendix)
 - · Baseline: excluded from wealth and saving
 - Extension: estimated from earnings history and public pension code

Portfolio Shares

Notes: Wealth = assets - liabilities, pensions: not today (in appendix) 12th pctile = 0 net worth

Portfolio Shares

Notes: Wealth = assets - liabilities, pensions: not today (in appendix) 12th pctile = 0 net worth

Portfolio Shares

Notes: Wealth = assets - liabilities, pensions: not today (in appendix) 12th pctile = 0 net worth

Net and Gross Saving

• Two ways of writing consumption + saving = income

- Neither net nor gross saving rates are *directly* observable
 - 1. Separate gross saving into net saving and capital gains (use housing transaction data and shareholder registry)
 - 2. Construct Haig-Simons income using estimated capital gains

Results

Median Saving Rates

Saving Rates by Year

(a) Net saving rates across years

Saving by holding

- Slope of net saving rate: flat every year (only level shifts)
- Slope of gross saving rate: varies with capital gains
 - Upward when $\dot{p}_t > 0$
 - Downward when $\dot{p}_t < 0$ (2008/09)

How important is it that saving & wealth are correlated with:

1. Age:

"old people have high saving rates & high wealth"

2. Current income:

"high-income people have high saving rates & high wealth"

3. Education:

"educated people have high saving rates & high wealth"

4. Past saving rates:

"savers have high current saving rates & are rich"

(b) Education, gross s-rate

the part SR Quintie 2nd Part SR Quintie 4th Part SR Quintie 5th Pa

(c) Past saving, net saving rate

(d) Past saving, gross s-rate

- 1. Saving rates within groups
- 2. Saving rates across within-cohort wealth percentiles

1. Saving rates within groups

2. Median regression with controls \mathbf{x}_{it} = age, earnings, education

$$\frac{S_{it}}{y_{it}} = \sum_{p=1}^{100} \phi_p D_{it,p} + f(\mathbf{x}_{it}) + \mu_t + \varepsilon_{it}$$

Zooming in on right tail of wealth distribution

Question: what if we "take out" housing?

- similar patterns for net and gross saving rates?
- how do households treat capital gains on other assets?

Challenge: Norwegians hold few other assets with capital gains . portfolios

Solution: restrict to households with stocks > 25% of financial wealth

Is this exclusively a story about housing? No

Is this exclusively a story about housing? No

- Caveat: cannot use shareholder registry for stock fund holdings, use aggregate index \Rightarrow net saving biased if $Cov(a_i, \dot{p}_i) \neq 0$.
- Not just about housing. But smaller capital gains for other assets.

Additional exercises

- Impute pensions and include in household wealth
- Saving as share of wealth instead of income,
- Saving rates across income distribution

To what extent do households "save by holding"?

• In theory, if asset price changes come with changing returns:

$$\frac{p_t \dot{k}_t}{w + r_t p_t k_t} = \phi_t - \phi_t \frac{\dot{p}_t k_t}{w + r_t p_t k_t}$$
$$\frac{p_t \dot{k}_t + \dot{p}_t k_t}{w + r_t p_t k_t} = \phi_t + (1 - \phi_t) \frac{\dot{p}_t k_t}{w + r_t p_t k_t}$$

... where ϕ is the net saving rate (expected to be ca 0.05 - 0.1)

• Predictions for net and gross saving relative to gross income!

To what extent do households "save by holding"?

• In theory, if asset price changes come with changing returns:

$$\frac{p_t \dot{k}_t}{w + r_t p_t k_t} = \phi_t - \phi_t \frac{\dot{p}_t k_t}{w + r_t p_t k_t}$$
$$\frac{p_t \dot{k}_t + \dot{p}_t k_t}{w + r_t p_t k_t} = \phi_t + (1 - \phi_t) \frac{\dot{p}_t k_t}{w + r_t p_t k_t}$$

... where ϕ is the net saving rate (expected to be ca 0.05 - 0.1)

To what extent do households "save by holding"?

• In theory, if asset price changes come with changing returns:

$$\frac{p_t \dot{k}_t}{w + r_t p_t k_t} = \phi_t - \phi_t \frac{\dot{p}_t k_t}{w + r_t p_t k_t}$$
$$\frac{p_t \dot{k}_t + \dot{p}_t k_t}{w + r_t p_t k_t} = \phi_t + (1 - \phi_t) \frac{\dot{p}_t k_t}{w + r_t p_t k_t}$$

... where ϕ is the net saving rate (expected to be ca 0.05 - 0.1)

Dependent	variable:	Net sa Gross in	ving come
Constant	0.07 (0.0000)	70 8)	
Capital gains Gross income	-0.08 (0.0001)	38 3) (0	-0.090).00013)

Macro Implications

Importance for Evolution of Aggregate Wealth

Importance for Evolution of Aggregate Wealth

Source: WID.world

Counterfactuals:

- what if net saving rates were homogenous?
- what if there were no capital gains?

Counterfactuals:

- what if net saving rates were homogenous?
- what if there were no capital gains?

Saving-by-holding matters, heterogeneity in net saving rates does not

Counterfactuals:

- what if net saving rates were homogenous?
- what if there were no capital gains?

Saving-by-holding matters, heterogeneity in net saving rates does not

	1995 Data	2015 No capital gains	2015 Data
Wealth Ratios			
P99/P90	2.08	3.33	2.24
P90/P50	2.91	4.42	3.42
P50/P25	3.93	11.26	4.08
Wealth Difference	es (\$1,000):		
P99 - P90	357	1,427	1,337
P90 - P50	216	474	765
P50 - P25	84	127	239

Conclusions

We provide evidence on how saving rates vary across the wealth distribution using population tax records from Norway

- 1. Capital gains are key to relation between saving and wealth
 - rich people don't have higher saving rates in traditional sense (net saving rates ≈ flat across wealth distribution)
 - but they still accumulate more wealth through capital gains (gross saving rates increasing with wealth)
- 2. Saving rates pattern consistent with simple model where
 - preferences are homothetic
 - asset prices rise while returns fall (not dividends increase)
- 3. Saving by holding on to capital gains important for aggregate saving and wealth distribution

Theories of wealth accumulation should include changing asset prices! 32