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G Online Appendix: The Model in Discrete Time and with iid Shocks

This Appendix presents a version of the model that is set up in discrete time and features

productivity shocks that are iid over time. Its purpose is to make the paper more accessible to

readers who are perhaps unfamiliar with some of the mathematical tools used in the continuous

time model in the main text (in particular stochastic calculus). While the setup there is more

complicated in terms of the mathematics, it also allows me to derive more general results,

particularly with regard to the persistence of shocks which is the central theme in the paper.

In this Appendix, shocks are iid over time so persistence is ruled out by assumption - see the

last paragraph of this Appendix for more discussion. The model presented here is the exact

discrete time analogue to the model in the main text. I therefore confine myself to outlining the

model in the briefest possible fashion, only highlighting where the two setups differ; motivations

for modeling choices can be found in the main text.

Preferences and Technology. Time is discrete. There is a continuum of entrepreneurs that

are indexed by their productivity z and their wealth a. At each point in time t, the state of

the economy is some joint distribution gt(a, z). The marginal distribution of productivity is

denoted by ψ(z). Each period, entrepreneurs draw a productivity shock from this distribution.

Importantly, this productivity shock is not only iid across entrepreneurs but also iid across

time. Entrepreneurs have preferences

E0

∞∑
t=0

βt log ct. (1)

Each entrepreneur owns a private firm which uses k units of capital and l units of labor to

produce

y = f(z, k, l) = (zk)αl1−α

units of output, where α ∈ (0, 1). Capital depreciates at the rate δ. There is also a measure

one of workers. Each worker is endowed with one efficiency unit of labor which he supplies

inelastically.
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Budgets. Denote by at an entrepreneur’s wealth and by rt and wt the (endogenous) interest

and wage rates. Entrepreneurs can rent capital kt in a rental market at a rental rate Rt = rt+δ.

Then their wealth evolves according to

at+1 = f(zt, kt, lt)− wtlt − (rt + δ)kt + (1 + rt)at − ct (2)

As in the main text, the setup with a rental market is chosen solely for simplicity. As in

Appendix B of the paper, one can show that it is equivalent to a setup in which entrepreneurs

own and accumulate capital.1 Entrepreneurs face collateral constraints:

kt ≤ λat, λ ≥ 1. (3)

I assume that workers cannot save so that they are in effect hand-to-mouth workers who im-

mediately consume their earnings. Workers can therefore be omitted from the remainder of the

analysis.2

Individual Behavior. Entrepreneurs maximize the present discounted value of utility from

consumption (1) subject to their budget constraints (2). Their production and savings/consumption

decisions separate in a convenient way. Define the profit function

Π(a, z) = max
k,l
{f(z, k, l)− wl − (r + δ)k s.t. k ≤ λa} ,

and rewrite the budget constraint (2) as

at+1 = Π(at, zt) + (1 + rt)at − ct.

Lemma 1 in the main text shows that factor demands and profits are linear in wealth and there

is a productivity cutoff z for being active. The profit function is

Π(a, z) = max{zπ − r − δ, 0}λa,

implying a law of motion for wealth that is linear in wealth

at+1 = [λmax{ztπt − rt − δ, 0}+ 1 + rt] at − ct.
1All derivations in this Appendix apply after setting the length of time periods, ∆ = 1.
2Footnote 20 in the main text still applies. That is, even if I allowed workers to save, in the long-run they

would endogenously choose to be hand-to-mouth workers because the interest rate is smaller than the rate of
time preference.
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This linearity allows me to derive a closed form solution for the optimal savings policy function.

Lemma 3 Entrepreneurs save a constant fraction of their profits so that savings are linear in

wealth.

at+1 = β [λmax{ztπt − rt − δ, 0}+ 1 + rt] at. (4)

Equilibrium and Aggregate Dynamics. An equilibrium are sequences of prices {(rt, wt)}∞t=0

and corresponding quantities, such that (i) entrepreneurs maximize (1) subject to (2) taking

as given equilibrium prices, and (ii) the capital and labor markets clear at each point in time∫
kt(a, z)dGt(a, z) =

∫
adGt(a, z), (5)∫

lt(a, z)dGt(a, z) = L. (6)

The linearity of individual savings policy functions (Lemma 1) implies that the economy

aggregates nicely as in the main text. In fact, the assumption of iid productivity shocks makes

the analysis simpler than there. This assumption implies that, at each point in time, wealth at

and productivity zt are independent. This follows because an entrepreneur chooses his wealth

at one period before (at t− 1), when he does not know his productivity draw zt (see equation

(4)). By construction, therefore, at is correlated only with zt−1 but not with zt. The main

simplification implied by this independence is that it immediately delivers an expression for

the wealth shares that were my main tool for aggregation in the main text. Like there, these

wealth shares are defined as

ωt(z) ≡ 1

Kt

∫ ∞
0

agt(a, z)da.

Denoting the marginal distribution of wealth by ϕt(a), we have that gt(a, z) = ψ(z)ϕt(a),

which immediately implies that ωt(z) = ψ(z) for all t. That wealth shares simply equal the

marginal distribution of productivity is the main simplification obtained from the assumption

of iid shocks.3

The following Proposition is the analogue to Proposition 2 in the main text.

Proposition 6 Aggregate quantities satisfy

Yt = ZKα
t L

1−α, (7)

Kt+1 = β
[
αZtK

α
t L

1−α + (1− δ)Kt

]
, (8)

3See also section 2.7 in the main text where this was obtained as a limit result, more precisely when letting
the speed of mean reversion of the continuous time stochastic process (33 in main text) grow large, ν →∞.
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where K and L are aggregate capital and labor and

Z =

(∫∞
z
zψ(z)dz

1−Ψ(z)

)α

= E[z|z ≥ z]α (9)

is measured TFP. The productivity cutoff z is defined by λ(1 − Ψ(z)) = 1. Factor prices are

wt = (1− α)ZtK
α
t L
−α and rt = αζZtK

α−1
t L1−α − δ, where ζ ≡ z/E[z|z ≥ z] ∈ [0, 1].

The interpretation of this result is as in Proposition 2 in the main text. As already noted

there is one main difference: there, the statement took as given the evolution of wealth shares

ω(z, t), t ≥ 0. In contrast, here we have already solved for these wealth shares which are simply

given by ω(z, t) = ψ(z), all t. This implies that TFP (9) is a simple unweighted truncated

average of productivities. Because wealth shares are constant over time, also TFP is constant

over time.

Steady State Equilibrium. The following Corollary is the analogue to Corollary 1 in the

main text. The interpretation of most expressions there applies.

Corollary 2 Aggregate steady state quantities solve

Y = ZKαL1−α (10)

αZKα−1L1−α = ρ+ δ, (11)

where ρ is defined by β = (1 + ρ)−1, K and L are aggregate capital and labor and

Z =

(∫∞
z
zψ(z)dz

1−Ψ(z)

)α

= E[z|z ≥ z]α

is measured TFP. The productivity cutoff z is defined by λ(1 − Ω(z)) = 1. Factor prices are

w = (1−α)ZKαL−α and r = αζZKα−1L1−α−δ = ζ(ρ+δ)−δ, where ζ ≡ z/E[z|z ≥ z] ∈ [0, 1].

Discussion of iid Assumption Solving for wealth shares by assuming shocks to be iid is

convenient and is the approach typically taken in the literature. See for example the papers

by Angeletos (2007) and Kiyotaki and Moore (2008). In the present application, it is however

only a useful benchmark; the assumption’s biggest benefit in terms of tractability is also its

biggest drawback in terms of the economics: iid productivity shocks leave no scope for self-

financing which is the main theme of the paper. Because current productivity does not predict

future productivity, more productive types cannot align their wealth to their productivity even
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though they save more. It is precisely this fact that is reflected in the independence of wealth

and productivity in the cross section. For other applications the iid case may, however, be an

extremely useful simplification.

A Pareto Example. The following simple example illustrates some important features of

the model. Consider the expression for aggregate TFP (9). Since this expression does not

impose any restrictions on the productivity distribution ψ(z), one can pick the distribution of

one’s choice and compute TFP. Hence, let productivity be distributed Pareto on [1,∞), that

is Ψ(z) = 1− z−η, η > 1. The parameter η is an inverse measure of the thickness of the tail of

the distribution (a measure of the variance). Under this assumption, the productivity cutoff is

simply z = λ1/η, and TFP is therefore

Z =

(
η

η − 1
λ1/η

)α
. (12)

As already argued, TFP is strictly increasing in λ. More interesting is how TFP depends on the

the productivity distribution ψ(z), particularly the tail parameter η. Note that the elasticity

of TFP with respect to the quality of credit markets is

∂ logZ

∂ log λ
=
α

η
.

Figure 1 plots TFP against the parameter measuring the development of credit markets λ

for different values of the tail parameter η. TFP for λ = 10 is normalized to unity for sake
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Figure 1: Total Factor Productivity

Note: TFP (12) relative to TFP for λ = 10. TFP losses are larger, the fatter is the tail of the
productivity distribution (the smaller is η). The capital share is given by α = 0.3.

of comparison. It can be seen from the Figure and the elasticity of Z with respect to λ

that productivity losses from financial frictions are largest if the distribution of idiosyncratic
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productivities has a thick tail. This is intuitive. A thick tail implies that there are some

extremely high-productivity entrepreneurs and that it is highly desirable from the point of

view of society to direct capital towards them. With underdeveloped financial markets, this

is however not possible so that productivity losses are large. While this example is intended

to highlight the qualitative rather than quantitative implications of the model, I remark that

the productivity loss from shutting down credit markets, λ = 1, relative to having good credit

markets, λ = 10, varies considerably. It may be anywhere between ten and more than sixty

percent depending on the value of η.

The Pareto example also delivers a simple expression for the rental rate R. Since

ζ =
z

E[z|z ≥ z]
= 1− 1

η
< 1,

we have that

R = α

(
1− 1

η

)
ZKα−1L1−α < αZKα−1L1−α.

Note again the presence of the tail parameter η. A thicker tail of the productivity distribution

(lower η) lowers the rental rate. This is intuitive because a low rental rate is a symptom of

badly working credit markets, as discussed above.

Proofs

Proof of Lemma 3 The problem of an entrepreneur can be written in recursive form:

v(a, z) = max
a′

log[A(z)a− a′] + βEv(a′, z′)

where (from the linearity of profits – Lemma 1) A(z) = λmax{zπ− r− δ, 0}+ 1 + r. The proof proceeds with a
guess and verify strategy. Guess that the value function takes the form v(a, z) = V (z) +B log a, and substitute
into the Bellman equation. In particular, note that the Ev(a′, z′) = B log a′ + EV (z′). From the first order
conditions

a′ =
βB

1 + βB
A(z)a, c =

1

1 + βB
A(z)a.

The Bellman equation becomes

A(z) +B log a = log

[
1

1 + βB
A(z)a

]
+ β

[
EV (z′) +B log

βB

1 + βB
A(z)a

]
Collecting the terms involving log a, we can see that B = 1/(1− β) and a′ = βA(z)a as claimed.�

Proof of Proposition 6 As in the main text, the capital market clearing condition (5) can be written as

λ

∫ ∞
z

ψ(z)dz = 1 or λ(1−Ψ(z)) = 1. (13)

The law of motion for aggregate capital is derived by integrating (4) over all entrepreneurs:

Kt+1 = β

∫ ∞
0

[λmax{zπt − rt − δ, 0}+ 1 + rt]ψ(z)dzKt (14)
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Using that the distribution ψ(z) integrates to one and capital market clearing (13),

1

β

Kt+1

Kt
= λπtX + (1− δ), X ≡

∫ ∞
z

zψ(z)dz. (15)

Next, consider the labor market clearing condition. As in the main text (Proofs of Propositions 1 and 2), we
have that labor market clearing (6) implies πt = α(λX)α−1Kα−1

t L1−α. Substituting into (15) and rearranging,
we get

Kt+1 = β
[
αZKα

t L
1−α + (1− δ)Kt

]
, Z = (λX)α,

which is equation (8) in Proposition 6.�
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