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Abstract

What are the implications of cross-country interdependencies for capital accumulation?

I tackle this question by introducing bilateral international externalities into a neoclassical

growth model with n otherwise standard economies. In particular, I ask under which

conditions there exists a unique steady state and when such a steady state is locally

stable. I present a stability proof that uses results from “Inertia Theory”, a field in linear

algebra. To my knowledge this is the first paper in economics to make use of these results.

In contrast to stability results for n-sector growth models, the conditions guaranteeing

local stability do not depend on the discount rate.

JEL codes: D90, C62

Introduction

The aggregate growth model by Ramsey (1928), Cass (1965) and Koopmans (1965) is a

workhorse of modern macroeconomics. This paper studies an extension of this model to n

interdependent economies. The production technologies in each country display positive ex-

ternalities within and across countries. Growth models with externalities were first analyzed

by Romer (1983,1986) and Lucas (1988) and an extension to a multi-country setting seems

∗I am grateful to Fernando Alvarez, Robert Lucas, Harald Uhlig, and in particular Nancy Stokey for very

useful comments. bmoll@uchicago.edu.
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natural.1 Firms or households in a given country benefit in the form of increased production

if firms/households in a neighboring country have high capital stocks. Firms or households in

each country choose their capital stocks taking as given the average capital stocks throughout

the world. Production technologies are allowed to vary across countries.

I analyze the dynamics of the vector of capital stocks describing a competitive equilibrium

in the world. In particular, I establish a sufficient condition for the existence and uniqueness of

a steady state of world capital stocks. This condition says that production in each country as a

function of both internal and external capital stocks must exhibit decreasing returns. Another

way of putting this is that diminishing returns in production with respect to a country’s own

capital stock must dominate relative to the positive externalities from all other countries.

I next analyze the local stability of the system of ordinary differential equations describing

a competitive equilibrium in the world. I use the linearized version of this system of differential

equations. Since there are n heterogeneous countries, with a state and a costate for each, the

problem boils down to analyzing the eigenvalues of a matrix of dimension 2n×2n. The linearized

system is saddle-path stable if n of the eigenvalues have negative real parts. The proof uses a

result from a field of linear algebra known as “Inertia Theory”. The results I use are from Datta

(1999).2 The inertia of a matrix is defined as the triplet of the numbers of eigenvalues with

positive, negative, and zero real parts, and there is a well-developed mathematical theory for

examining this inertia triplet. I mainly use an “Inertia Theorem” which is a generalization of

the Lyapunov Theorem for matrices. See Gantmacher (1985) for the latter. To my knowledge

this is the first paper in economics to make use of these results.3

Using this Inertia Theorem, I derive sufficient conditions for the vector of steady state

capital stocks to be locally stable. These sufficient conditions do not depend on the discount

rate. The same diminishing returns restriction that guarantees existence and uniqueness of a

steady state is made use of. Two additional restrictions are needed for proving local stability:

first, that spillovers between any pair of countries be symmetric; second, that spillovers be

“small” in a sense made precise below. For ease of exposition, the analysis is split into two

1This paper can be regarded as a follow-up on Romer’s papers. His focus is on a single country with external

effects. Both of Romer’s papers informally discuss an example with two countries, but he does not formally

analyze dynamics in a multi-country setting.
2This excellent and easily accessible survey of the field also discusses some examples.
3Benhabib and Nishimura (1981) use a similar but less general result by Wielandt (1973) in a stability proof

for n-sector growth models.
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steps: I first treat a special Cobb-Douglas case, and then extend the results to more general

production functions. The Cobb-Douglas case carries most of the intuition while the analysis

is considerably easier and cleaner.

It should be possible to establish a more general stability result. The additional restrictions

of spillover “symmetry” and “smallness” are sufficient but not necessary conditions for local

stability. This is revealed in an “unsuccessful” attempt to find numerical counterexamples to

stable behavior when imposing only the diminishing returns assumption. I leave the task of

proving stability for the more general case for further research.

International capital spillovers of the form postulated here can be motivated in at least

two different ways. First, capital can be interpreted as knowledge capital. Externalities in

knowledge capital were first analyzed by Romer (1983, 1986) and Lucas (1988). My paper

can be regarded as a follow-up on Romer’s paper. He argues that knowledge or technology is

nonrival and only partially excludable in the sense that it can be used by several agents at the

same time, and cannot be perfectly patented or kept secret. Romer makes this argument in

the context of a closed economy. An extension to a multi-country setting seems plausible: If

technology or knowledge is nonrival and partially excludable it will also hardly be confined to

national borders.

Second, even if capital is interpreted as physical capital, spillovers can arise as byproducts of

its accumulation. Romer as well as Acemoglu (2008) discuss this possibility. Suppose that due

to learning-by-doing, the stock of knowledge capital in each country is some increasing function

of that country’s stock of physical capital (for example, they are used in fixed proportions).

Then, knowledge is essentially “embodied” in physical capital. Even if there are only knowledge

spillovers, production in a given country will depend on other countries’ physical capital stocks.4

The model presented here is also related to the existing literature on international exter-

nalities and growth. The theoretical literature is summarized by Klenow and Rodriguez-Clare

(2005), for example. Usually, a “world technology frontier” is assumed from which countries

receive spillovers according to whether they have high or low barriers to technology adoption.

4In this context, a model with two state variables - physical capital and knowledge - may be more natural.

McGrattan and Prescott (2007) refer to knowledge as technology capital, and while their motivation is different,

they end up analyzing a world of n countries with aggregate production functions that depend on each country’s

own physical capital stocks and all the stocks of technology capital throughout the world. A model with two

types of state variables is clearly more difficult to analyze than the model in the present paper.
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Often, the progress on this frontier is modeled as being purely exogenous.5 In these models,

there is therefore an intrinsic asymmetry. There are positive spillovers from the world tech-

nology frontier but where does this frontier come from in the first place? Other approaches

endogenize progress on the frontier by assuming that the research effort of all countries is bun-

dled in the frontier and then is “spilled back over” to all countries. This latter case can be

seen as a special case of the model outlined here: Relabel the technology frontier as country

n+ 1 and restrict bilateral knowledge spillovers between all countries 1 to n to be zero. In my

opinion, it seems more realistic to see spillovers as bilateral and specific to pairs of countries.

There is also some empirical evidence that international externalities, in particular, are

important empirically. See, for example, Klenow and Rodriguez-Clare (2005) and Conley and

Ligon (2002).

Whatever the motivation, international spillovers represent the simplest possible form of

cross-country interdependencies. As such, spillovers can simply be regarded as a convenient

but mechanical reduced form for other kinds of cross-country interdependencies, for example

international trade or international capital flows.6 I regard the model here as a useful pro-

totype for a variety of phenomena related to accumulation of different types of capital with

interdependent countries. Hence the title.

The paper is organized as follows. Section 1 spells out the Cass model with n interdependent

countries. Section 2 analyzes the dynamics of the model for a special Cobb-Douglas case.

Section 3 extends the results from Section 2 to more general production functions. Section 4

concludes.

1 The Model

1.1 Preferences and Technology

There are n countries indexed by i = 1, ..., n. In each country, there is a continuum of identical

households indexed by h ∈ [0, 1]. There is no population growth. Time is continuous and all

5See for example, Parente and Prescott (1994).
6In a companion paper, Moll (2007), I show that the model outlined here is isomorphic with a model of

international trade and capital accumulation, namely the Eaton-Kortum model with capital as analyzed by

Alvarez and Lucas (2007). Terms-of-trade effects make countries interdependent in a way very similar to capital

spillovers.
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variables are in per capita terms. Preferences are identical for all households and across all

countries and are given by
∫ ∞

0

e−ρtu(cih)dt, (1)

where u is strictly increasing and strictly concave and satisfies the Inada condition limc→0 u
′(c) =

+∞.

The capital stock of household h in country i is κih. I denote the average capital stock in a

country by ki =
∫ 1

0
κihdh. The vector k = (k1, ..., kn) denotes the state of the world economy.

I choose some compact state space X = [x, x]n ⊂ R
n
+ for k. I postpone the discussion of

convenient choices for the lower and upper bounds x and x until Section 2 when analyzing the

dynamics of the model. For now, it is sufficient to assume that the state space X is compact.

In the following section, I will look at the problem of a typical household in a given country i.

For notational convenience, I will therefore drop the h subscripts on a household’s own capital

stock and write κi instead of κih. The state for the household is therefore (κi, k). This state

summarizes all necessary information for the household. Production of consumption goods yi is

a function of each household’s own capital stock κi and the vector of all average capital stocks

k. The production technology of a household in country i is given by

yi = Ai(k)f i(κi).

The functions f i and Ai are bounded and continuous. The scale factor Ai depends on the

vector of average capital stocks throughout the world. There is a positive externality from

country j to country i if Ai(k) is strictly increasing in its jth argument. I assume that there

are positive externalities between all countries, and also within each country. The production

technology is a natural generalization to n countries of the production technology in Romer

(1986). The particular functional form is very similar to the one used in Azariadis and Drazen

(1990). Note that the production functions are indexed by i and hence may take different

forms across countries. All f i are strictly increasing and concave in κi and satisfy the following

conventional Inada conditions

f i(0) = 0, lim
κi→∞

f i
κ(κi) = 0, lim

κi→0
f i

κ(κi) = +∞, (2)

where f i
κ denotes the first derivative of f i.
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1.2 Competitive Equilibrium

In each country, households can convert production into either consumption or investment on

a one-for-one basis. No international borrowing or lending is allowed. And there is no motive

for borrowing or lending within a country. Hence households in a given country can only use

their own resources. The law of motion for capital is then

κ̇i = Ai(k)f i(κi) − δκi − ci (3)

where δ is the depreciation rate. In each country i, each household maximizes (1) by choice of

its consumption ci taking as given the vector of average capital stocks in the world k and the

law of motion (3). Households across countries solve the following problem.

max
ci

∫ ∞

0

e−ρtu(ci)dt subject to

κ̇i = Ai(k)f i(κi) − δκi − ci, κi(0) = κi0, i = 1, ..., n.

(P)

Definition 1 Given k0 = (k10, ..., kn0), the allocation c(t), k(t), t ≥ 0 is a competitive equilib-

rium if

(i) k(0) = k0, and

(ii) ci(t), κi(t) = ki(t), t ≥ 0 solves (P), given k and κi0 = ki0, for each i = 1, ..., n.

In equilibrium, κi = ki, all i. Hence it is convenient to let

F i(k) ≡ Ai(k)f i(ki) and Ri(k) ≡ Ai(k)f i
κ(ki)

denote production and marginal product of capital respectively. Much of the remaining analysis

will be concerned with the properties of the functions F i and Ri. Denoting by λ = (λ1, ..., λn)

a vector of costates, and using that in equilibrium κi = ki, we obtain a system of 2n ordinary

differential equations in (λ, k) that characterize a competitive equilibrium.

λ̇i = [ρ+ δ − Ri(k)]λi

k̇i = F i(k) − δki − (u′)−1(λi), i = 1, ..., n.
(4)

In addition, any competitive equilibrium must satisfy the n transversality conditions

lim
t→∞

e−ρtλi(t)ki(t) = 0, i = 1, ..., n. (5)
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A competitive equilibrium may not exist. The issue is broadly that the positive externalities

may be too big. A competitive equilibrium requires that for each i = 1, ..., n, κi(t) = ki(t) solves

(P), given k and κi0 = ki0. The question of existence can therefore be viewed as the following

fixed point problem. The path of external (average) capital stocks is described by a function

k(t), t ≥ 0. For any such k, the solution to (P) defines an operator on this function, κ = Tk. A

competitive equilibrium is a fixed point of this operator ke = Tke. For a given k, we expect the

optimal choice Tk to be bigger (in some sense), the bigger are the externalities (the derivatives

∂Ai(k)/∂kj). It is not hard to imagine a situation where externalities are so big that it is never

possible to find a fixed point.

Romer (1983, 1986) proves existence of a competitive equilibrium for the one-country case

n = 1 of the model outlined here. He takes a slightly different route because he notes that

the existence of equilibrium is very closely linked with a candidate equilibrium’s qualitative

behavior. In a special case, the model outlined here essentially collapses to Romer’s model so

that I can apply his results. Let k−i = (k1, ..., ki−1, ki+1, ..., kn) and suppose that the the scale

factors can be written in a separable and symmetric way as

Ai(k) = A[b(ki), B(k−i)], i = 1, ..., n.

Also, assume that f i(·) = f(·), i = 1, ..., n and that all countries have the same initial conditions,

ki0 = x0, i = 1, ..., n. With these assumptions the identity of a country is immaterial, and all

countries will choose the same capital paths ki(t) = x(t), t ≥ 0 all i. Therefore, the system

of 2n ODEs (4) collapses to a system of only two ODEs. Defining F(x) ≡ F (x, x, ..., x) and

R(x) = R(x, x, ..., x), we have

λ̇ = [ρ+ δ −R(x)]λ

ẋ = F(x) − δx− (u′)−1(λ).
(6)

This is a simplified version of the Euler equations in Romer’s analysis.7 Romer then notes

that the question of existence of a competitive equilibrium is closely linked to the qualitative

behavior of trajectories described by (6). This is because a solution to (6) is a competitive

equilibrium, if and only if it satisfies the transversality condition

lim
t→∞

e−ρtλ(t)x(t) = 0. (7)

7Romer’s analysis is slightly more complicated because he postulates a non-linear accumulation technology

ẋ = xh(I/x) where I is investment and h(·) is concave. In my analysis, h(·) is linear.
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Romer notes that standard results concerning the existence of solutions to differential equa-

tions can be used to show that (6) determines a unique trajectory through any point (x, λ) in

the phase plane. If one can then show that for any given value of k0 there exists a λ0 such

that the transversality condition (7) is satisfied, one has proven the existence of a competitive

equilibrium. A sufficient condition for this to be the case, is not hard to find. The ODEs in (6)

are like those for the neoclassical growth model, except for the modification that they feature

the private marginal product of capital R(k) as opposed to the social marginal product F ′(k).

Nevertheless, a simple phase-diagram analysis proves that the system is globally saddle-path

stable if F(·) is concave and R(·) is decreasing. This implies immediately that there is a λ0

satisfying the transversality condition.8 In Section 3, I will discuss in more detail conditions

under which F and R are, respectively, concave and decreasing. We then have

Proposition 1 Consider the special case of identical countries, Ai(k) = A[b(ki), B(k−i)] and

f i = f all i. If F(x) ≡ F (x, x, ..., x) is concave and R(x) = R(x, x, ..., x) is decreasing, then

there exists a competitive equilibrium for any symmetric initial condition ki0 = x0, i = 1, ..., n.

The case of identical countries above suggests that also in the general case with heteroge-

neous countries, the question of existence is closely tied to the global stability of the system of

ODEs in (4). In the next Section, I analyze the stability of this system. However, my argument

is local in nature. A local stability proof has two implications for the question of existence of a

competitive equilibrium. First, conditions for local stability are suggestive for global stability

and hence for the existence of a competitive equilibrium. Second, local stability yields a local

theorem for the existence of equilibrium. That is, a competitive equilibrium exists if countries’

initial capital stocks are sufficiently close to their steady state values. For a similar result

see Section 18.2 in Stokey et al. (1989). Proving the existence of equilibrium for the case of

heterogeneous countries and arbitrary initial conditions is left for further research.

2 Cobb-Douglas Technologies

I now focus on the following two questions: (i) existence and uniqueness of a steady state, (ii)

local stability of this steady state. I first consider a special case with Cobb-Douglas technologies

8Could a competitive equilibrium exist in the borderline case R(x) = r and F(x) = φx? In this case, we

essentially have an AK model. Under the assumption that utility is of the CRRA form with parameter σ, we

could ensure that the transversality condition is satisfied by imposing ρ > (1−σ)(φ− δ). See Acemoglu (2008).
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and CRRA utility. The Cobb-Douglas case is instructive because it carries all the intuition while

the analysis is considerably easier and cleaner. The generalization to the functional form used

in Section 1 then follows in Section 3.

Consider the case, in which

f i(κi) = καi

i , Ai(k) =

n
∏

j=1

k
θij

j , all i,

which implies

F i(k) = καi

i

(

n
∏

j=1

k
θij

j

)

, Ri(k) = αik
αi−1
i

(

n
∏

j=1

k
θij

j

)

, all i, (8)

where αi ∈ (0, 1), θij > 0 for all i, j. The term αi captures the curvature of the production

technology in country i with respect to a typical household’s own capital stock. The term θij

measures the spillover from the average capital stock in countries j to production in country i.

Define the two n× n matrices

α ≡ diag(αi), and θ ≡ [θij ].

I will also refer to θ as the spillover matrix. I impose

Assumption 1

(1.a) αi ∈ (0, 1), θij > 0 i, j = 1, ..., n.

(1.b) αi +
∑n

j=1 θij < 1, i = 1, ..., n.

Part 1.a has already been discussed. Part 1.b is a diminishing returns assumption which will

be of central importance.

2.1 Steady State

Setting (λ̇i, k̇i) = (0, 0) for all i in (4), we find that a steady state is a vector of capital stocks

k∗ = (k∗1, ..., k
∗
n) that satisfies

Ri(k∗) = ρ+ δ, i = 1, ..., n. (9)

Next consider appropriate bounds for the state space X. Let X = [x, x]n. Assumption 1.b

implies that there are x sufficiently small and x sufficiently big, such that

Ri(x, ..., x) > ρ+ δ and Ri(x, ..., x) < ρ+ δ, i = 1, ..., n. (10)
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Condition (10) is crucial for establishing the existence of a steady state. The bounds must also

satisfy

F i(x, ..., x) ≤ x, i = 1, ..., n and x > 0. (11)

Upper bounds x satisfying the first part of equation (11) imply that the capital stocks remain

within the state space.9 The second restriction on the lower bounds x in (11) is made for the

purely technical reason that it will be convenient below to work with the log of capital stocks.

The point ki = 0 is uninteresting in any case because an economy that starts with no capital,

ki0 = 0, can never produce any output f i(0) = 0. I focus on the question of existence and

uniqueness of a positive steady state.

The next Lemma derives the implications of assumption 1 for the matrices α ≡ diag(αi)

and θ ≡ [θij ]. It is an application of the Gershgorin Disc Theorem, stated in the Appendix.

Lemma 1 Let assumption 1 be satisfied. Then all eigenvalues of I − α − θ have positive real

parts.

Proof Apply Corollary 2 in the Appendix to Q = I−α−θ and choose Λ = I−α and P = −θ.�

Proposition 2 Under assumption 1, there is a unique steady state k∗ ∈ X ⊂ R
n
+ defined by

(9).

Proof Use (8) to rewrite (9) as a system of linear equations,

(1 − αi) log k∗i −
n
∑

j=1

θij log k∗j = ai, where ai = log

(

αi

ρ+ δ

)

, i = 1, ..., n.

Define h∗ ≡ log k∗ and rewrite this in matrix notation as

(I − α− θ)h∗ = a. (12)

By Lemma 1, all eigenvalues of the matrix I−α−θ are positive. The Levy-Desplanque theorem

states that such matrices are invertible. Hence (12) and equivalently (9) has a unique solution.�

Note that associated with the unique vector of steady state capital stocks k∗, there is a

unique vector of steady state shadow prices λ∗. For each i, λ∗i is implicitly defined by setting

k̇i = 0 in (4).

9The vector of capital stocks k satisfying F i(k) = ki, i = 1, ..., n is the “maximum maintainable capital

stock”. See for example, Section 6.1. in Stokey et al. (1989).
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2.2 Local Stability

Next consider the local stability of this steady state. Assume preferences have the CRRA form

with parameter σ. Recall the system of 2n ODEs in (4) that characterizes the evolution of

capital stocks in the world. For the Cobb-Douglas functional form in (8) and CRRA preferences

this specializes to

d log λi

dt
=
λ̇i

λi
= ρ+ δ − Ri(k) = ρ+ δ − αi

(

∏

j 6=i

k
θij

j

)

kαi+θii−1
i

d log ki

dt
=
k̇i

ki
=
F i(k)

ki
− δ −

(u′)−1(λi)

ki
=

(

∏

j 6=i

k
θij

j

)

kαi+θii−1
i − δ −

λ
−1/σ
i

ki
, i = 1, ..., n.

Define z1 = log λ − log λ∗ and z2 = log k − log k∗ and log-linearize this system around the

steady state (λ∗, k∗), to get

ż = Az, A =





0 X

Y Z



 , (13)

where

X = −diag(Ri)

















α1 + θ11 − 1 θ12 · · · θ1n

θ21 α2 + θ22 − 1 · · · θ2n

...
...

. . .
...

θn1 θn2 · · · αn + θnn − 1

















= diag(Ri) (I − α− θ)

Y = diag

(

1

σ

ci
ki

)

Z = diag

(

F i

ki

)

(α + θ − I) + diag

(

ci
ki

)

.

If there are no spillovers (θ = 0), then X, Y and Z are diagonal. In this case we can rearrange

the equations so that A is block diagonal, and separately look at 2×2 blocks of A corresponding

to the state and costate for each country. This is not surprising: without spillovers, the model

here is simply n unconnected Cass economies. Since we know that the Cass model features a

stable steady state, this special case is a useful benchmark.

The stability proof makes use of the following result taken from Datta (1999).

Definition 2 The inertia of a matrix A, denoted by In(A), is the triplet (π(A), ν(A), δ(A))

where π(A), ν(A) and δ(A) are, respectively, the number of eigenvalues of A with positive,

negative, and zero real parts, counting multiplicities.
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A linear system of 2n differential equations such as (13), is saddle path stable if exactly half of

the eigenvalues of A have negative real parts. Saddle path stability is therefore equivalent to

the statement

In(A) = (n, n, 0).

The following theorem is very useful in establishing sufficient conditions under which indeed

In(A) = (n, n, 0).10 In the following, M ≥ 0 means that the matrix M is positive semidefinite.

Theorem 1 (Inertia Theorem) Let δ(A) = 0, and let W be a nonsingular symmetric matrix

such that

WA+ ATW = M ≥ 0. (14)

Then In(A) = In(W ).

Proof See Theorem 4.4. in Datta (1999). The theorem is originally due to Carlson and

Schneider (1963).�

This Theorem is a generalization of the Lyapunov Stability Theorem for matrices (see Theorem

3.2. in Datta (1999) or Gantmacher (1985)). It is used in the same way, and its advantages and

disadvantages are similar. In particular, the exercise boils down to finding a matrix W whose

inertia we can easily determine.

Adding the following assumption to assumption 1 is sufficient to guarantee the existence of

such a matrix W .

Assumption 2

(2.a) θij = θji, all i, j = 1, ..., n.

(2.b) The matrix α−1θ is symmetric and positive semi-definite.

Part 2.a imposes a symmetry restriction on spillovers: The spillover from country i to country

j must be of the same size as the spillover from country j to country i. The economics of

this symmetry assumption are discussed below. Part 2.b unfortunately does not have an easy

economic interpretation. It holds for example if αi = α for all i and if within-country spillovers

10It is natural to ask whether corresponding techniques are also available for systems of difference equations.

Datta (1999) also defines a unit circle inertia as the triplet of the number of eigenvalues outside, inside and on

the unit circle. Theorem 4.5. in this paper is the analogue of Theorem 1 for the unit circle inertia.
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are sufficiently big so that θii >
∑n

j=1 θij all i (to prove this claim formally, apply the Gershgorin

Disc Theorem, Theorem 2 in the Appendix). More generally, it should hold if spillovers are

symmetric and sufficiently small, θ ≈ 0. Note that neither assumption involves the discount

rate ρ.

Proposition 3 Let assumptions 1 and 2 be satisfied. Then In(A) = (n, n, 0) and hence k∗ is

locally saddle-path stable.

Proof I first show that all of X, Y, Z are symmetric and positive definite. From Lemma 1, all

eigenvalues of (I−α−θ) have positive real parts. Together with symmetry from assumption 2,

this implies that (I − α− θ) is symmetric and positive definite. In steady state Ri = ρ+ δ, all

i so that X is also symmetric and positive definite. Y is diagonal and hence trivially positive

definite. Rewrite Z in terms of parameters only. In steady state

ci
ki

=
F i

ki
− δ and

F i

ki
=
ρ+ δ

αi
,

so that

Z = ρI + (ρ+ δ)α−1θ,

which is symmetric and positive definite under assumption 2.

Next define

W =





−Y 0

0 X



 , M =





0 0

0 XZ + ZX



 .

We have that

WA+ ATW = M ≥ 0.

Applying Theorem 1 we see that

In(A) = In(W ) = (n, n, 0)

where the second equality follows because W is block diagonal and its eigenvalues are those of

−Y and X. �

Unfortunately, I have not been able to prove the stability of k∗ for the case in which assump-

tion 2 does not hold. If assumption 2 is violated, the matrix W in the proof of proposition 3 is

not symmetric and the Inertia Theorem does not apply. Is symmetry of the spillover matrix θ

a natural restriction? One would expect cross-country spillovers to depend on, say, geographic
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distance between two countries and on their relative population sizes. While distance affects

two countries symmetrically, population size does not: the spillover from a big to a small coun-

try is likely bigger than the spillover from a small to a big country. Hence, symmetry is not a

natural restriction on cross-country spillovers.

I briefly argue that it should be possible to establish a stability theorem under assumption

1 only. I have tried to find numerical counterexamples to stable behavior of the linearized

system (13). In particular, I have considered the case n = 4 countries implying that A is of

dimension 8× 8. Using a random number generator, I generated 100, 000 matrices A imposing

only assumption 1 but not assumption 2. I then calculated their eigenvalues numerically. In

all of these cases, I obtained In(A) = (4, 4, 0). The code is available on request. Establishing a

stability proof under assumption 1 only is left for future research.

3 More General Production Functions

In this Section, I argue that the results established in the preceding Section for a Cobb-Douglas

production technology are not really special at all. Under appropriate generalizations of the

assumptions used there, they carry over easily to the general form of the production function

used in Section 1. Define

αi(ki) ≡ 1 +
∂ log f i

κ(ki)

∂ log ki
and θij(k) ≡

∂ logAi(k)

∂ log kj
. (15)

These elasticities are the natural generalizations of the parameters αi and θij from the Cobb-

Douglas example. Essentially none of the analysis in the preceding section has to be changed

as long as one pays special attention to the fact that these elasticities are no longer constant

and instead are functions of the capital stocks k. I will keep the discussion as brief as possible

and emphasize where the analysis in the preceding section has to be altered.

3.1 Steady State

The following is the appropriate generalization of assumption 1 from the Cobb-Douglas case.

Assumption 3

(3.a) All f i are strictly increasing and strictly concave. All Ai are strictly increasing in all their

arguments.
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(3.b) Each F i is homogeneous of degree s < 1,

F i(ψk) = ψsF i(k), all ψ > 0 i = 1, ..., n.

(3.c) limx→0R
i(x, ..., x) = +∞, limx→∞Ri(x, ..., x) = 0, i = 1, ..., n.

Part 3.b is the appropriate generalization of the diminishing returns assumption 1.b from the

Cobb-Douglas case. Because F i is homogeneous of degree s, all its partial derivatives are

homogeneous of degree s− 1.11 That is

Ri(ψk) = ψs−1Ri(k), all ψ > 0 i = 1, ..., n. (16)

With the definitions in (15)

∂ logRi(k)

∂ log ki
= αi(k) + θii(k) − 1,

∂ logRi(k)

∂ log kj
= θij(k), j 6= i

Differentiating (16) with respect to ψ, we see that assumption 1.b implies

αi(ki) +
n
∑

j=1

θij(k) < 1, i = 1, ..., n

This last way of expressing assumption 3.b shows that it is the appropriate generalization of

assumption 1.b from the Cobb-Douglas case.

Part 3.c is an Inada condition. It is needed to ensure the existence of a steady state.

That diminishing returns are generally not sufficient for the existence of a steady state has

been demonstrated by Jones and Manuelli (1990) whose model features sustained growth in

the presence of decreasing returns. I have already imposed some Inada conditions on f i, i =

1, ..., n in (2) that guarantee that the first order conditions hold with equality. These are only

restrictions on the functions f i but not on the scale factors Ai. Instead a joint restriction is

needed. In the Cobb-Douglas example, the Inada condition 3.c was automatically satisfied as

part of assumption 1.b. Here, it is important to ensure that we can pick bounds x, x that satisfy

(10).

Proposition 4 Under assumption 3, there is a unique steady state k∗ ∈ X ⊂ R
n
+ defined by

(9).

11The sufficient condition for the existence of an equilibrium in Proposition 1 was that F is concave and R

is decreasing. As the argument here shows, both restrictions are immediately implied if F is homogeneous of

degree s < 1.
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Proof Define h = log(k), i = 1, ..., n and define the operator T ∗(h) = [T ∗
1 (h), ..., T ∗

n(h)]′ by

f i
κ(expT ∗

i (h))Ai(exph) = ρ+ δ. (17)

The logarithm of the steady state h∗ is then a fixed point of T ∗. Figure 1 features a graphical

representation of equation (17). My goal here is to show that T ∗ is a contraction under the

expT ∗
i (h)

f i
κ(·)A

i(exph)

exph

ρ+ δ

f i
κ(·)A

i(exph)

expT ∗
i (h) ki

f i
κ(·)A

i(k)

exph

Figure 1: The operator T ∗

sup-norm ||h|| = maxi |hi| by verifying Blackwell’s sufficient conditions. First, note that by

assumption the state space X = [x, x]n is compact. Therefore, also H = [h, h]n is compact

where h = log x and h = log x. Furthermore, since H ⊂ R
n it is a space on which the sup-norm

is well defined. I next show that T ∗ : H → H . Define h = (h, ..., h) and h = (h, ..., h), and

rewrite (10) as

f i
κ(exp h)Ai(exp h) > ρ+ δ, i = 1, ..., n,

f i
κ(exp h)Ai(exp h) < ρ+ δ, i = 1, ..., n.

It follows immediately from (17) that (in vector form) T ∗(h) > h and T ∗(h) < h, which implies

that T ∗ : H → H .

Using the definition of the elasticities in (15), the derivatives ∂T ∗
i (h)/∂hj are defined by

(αi(expT ∗
i (h)) − 1) ×

∂T ∗
i (h)

∂hj

+ θij(exp h) = 0.
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These derivatives are positive because by assumption αi(ki) < 1 and θij(k) > 0, for all k. This

establishes monotonicity of the operator T ∗. Summing over j,

(1 − αi(exp T ∗
i (h)))

n
∑

j=1

∂T ∗
i (h)

∂hj

=
n
∑

j=1

θij(exp h). (18)

Equations (18) and assumption 3.b together imply that
∑n

j=1 ∂T
∗
i (h)/∂hj < 1, for all h. Now

let d > 0 and apply the mean value theorem to obtain

T ∗
i (h+ d) = T ∗

i (h) +

n
∑

j=1

∂T ∗
i (hd)

∂hj
d,

where hd = h + d(1 − v), for some v ∈ (0, 1).12 Because β ≡
∑n

j=1
∂T ∗

i (ha)

∂hj
∈ (0, 1), T ∗ has

the discounting property

T ∗
i (h+ d) ≤ T ∗

i (h) + dβ.

The contraction mapping theorem then implies the existence of a unique fixed point h∗ for

T ∗. �

3.2 Local Stability

As in the Cobb-Douglas case, the stability Proposition is a local argument. Generalizing it to

non-constant elasticities αi(ki) and θij(k) is trivial. This is because, a local argument is only

concerned with the behavior of the system at the steady state. All results go through, when

we replace αi and θij by the steady state values αi(k
∗
i ) and θij(k

∗). For completeness, I also

allow any functional form for the utility function u(c). I define its elasticity by

σ(c) ≡ −
u′′(c)c

u′(c)
.

The reader can verify that the log-linearization of (4), also produces a 2n× 2n system of linear

ODEs which takes the form in (13). Using αi(k
∗
i ), θij(k

∗) and σ(c∗i ), the matrices X and Y

remain unaltered. We need to change Z slightly to

Z = diag(Ri) + diag

(

F i

ki

)

(θ − I) + diag

(

ci
ki

)

.

The equivalent of assumption 3 is

12Notice that the notation h + d is slightly misleading here because h ∈ H ⊂ R
n, but d is a scalar. It means

that the scalar d is added to each element of h. This notation only follows the conventional way of defining the

discounting property as part of Blackwell’s conditions. T ∗ : H → H can be seen as an operator on a function

h : {1, ..., n} → R where above we write hi = h(i) for notational convenience. Then (h + d)(i) is the function

defined by (h + d)(i) = h(i) + d. See Stokey et al. (1989) p.54.
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Assumption 4

(2.a) θij(k) = θji(k), all k, all i, j = 1, ..., n.

(2.b) The matrix diag
(

F i(k)
ki

)

θ(k) is symmetric and positive semi-definite for all k.

We then have the following Proposition that is stated without proof.

Proposition 5 Let assumptions 3 and 4 be satisfied. Then In(A) = (n, n, 0) and hence k∗ is

locally saddle-path stable.

4 Conclusion

I have presented an extension of the Cass model to an n-country world in which there are positive

bilateral externalities within and across countries. A sufficient condition for the existence and

uniqueness of a steady state is that production in each country exhibit diminishing returns as a

function of both internal and external capital stocks. This steady state is locally stable under

the same restriction and an additional one imposing “symmetry” and “smallness” of spillovers.

In contrast to stability results for n-sector growth models (Benhabib and Nishimura, 1981;

Boldrin and Montrucchio, 1986), the conditions guaranteeing local stability do not depend on

the discount rate.

The stability theorem made use of a field of linear algebra known as Inertia Theory. The

result used here should generally be useful when analyzing the stability of higher-order differen-

tial equations in economics. “Higher order” here means of order higher than only three. Closed

form solutions for roots of characteristic polynomials are either not available or extremely

messy (quartic). Another method for determining the inertia of a matrix is the Routh-Hurwitz

method that has, for example, been used for a three-dimensional matrix by Benhabib and Perli

(1994). This method becomes difficult to apply in higher-dimensional cases simply because

it requires writing down the characteristic polynomial (and solving for the coefficients). The

Inertia Theorem used here does not require writing down a polynomial and instead directly

examines the matrix of interest. One drawback is that one must find symmetric matrices W

and M that satisfy equation (14) to apply the Inertia Theorem. For this reason the Inertia

Theorem might actually be more attractive for standard optimal control problems, such as op-

timal n-sector growth models. In those models the matrix of interest typically features blocks

of Hessian matrices which are necessarily symmetric. See Moll (2008) for such an application.
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Because the model presented above features external effects, the competitive equilibrium

will in general not be Pareto optimal. This begs for a comparison of the capital paths obtained

from the analysis above to the solution to a social planner’s problem as in Romer (1986). In the

case of n countries the analysis of a planner’s problem actually becomes rather complicated.

One cannot simply compare the value of the private and social marginal product of capital

as in Romer’s paper. This is because the social marginal value of country i’s capital now

depends also on the shadow prices and production technologies in all other countries in the

world. Because the social planner can choose in which country to invest, she faces a more

complicated resource allocation problem than a household/firm who will always only invest in

its own capital. In fact, the planning problem is equivalent to an n-sector growth model. We

know that optimal solutions to such problems can display unstable and chaotic behavior for

high discount rates.13 Somewhat surprisingly, this implies that for the same parameter values,

the competitive equilibrium may feature a stable steady state while the Pareto optimum may

not.

Growth models with interdependent countries may help answer some important questions

in development economics. For example, consider the following puzzles raised by Lucas (1990)

and Hall and Jones (1999): “Why doesn’t capital flow from rich to poor countries?” and “Why

do some countries produce so much more output per worker than others?” As the authors note,

these two puzzles are essentially two sides of the same coin, namely that capital shares are only

about 1/3. A higher capital share of, say, 2/3 would make both puzzles disappear. Some authors

have argued that the effective capital share is higher than 1/3 if capital is interpreted more

broadly and externalities in knowledge capital are taken into account. To reach an effective

capital share of 2/3 from a physical capital share of 1/3, however, the spillover effect would have

to equal the capital share. In the context of a closed economy this seems unnaturally high. If

one starts thinking in a multi-country context this is not naturally true anymore. For example,

suppose there are n = 100 identical countries and that the spillover effect from each is 1/300

(which is clearly low relative to a physical capital share of 1/3). The combined spillover effect

is then 100 × 1/300 = 1/3 which increases the effective capital share to 2/3. This calculation

is of course overly simplistic. The main point I would like the reader to take away from it is

that some puzzles in growth theory may arise precisely because each country is treated as an

13See for example Benhabib and Nishimura (1981) and Boldrin and Montrucchio (1986).
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isolated island. An analysis of an n-country world might provide more satisfactory answers -

after all there are n = 194 countries in the world.

Appendix - The Gershgorin Disc Theorem and Corollaries

In what follows I state the Gershgorin disc theorem and useful corollaries. All results except

corollary 2 are more or less directly copied from Horn and Johnson (1985) (Theorems 6.1.1 and

Section 6.3). Some general notation is useful:

• C: the complex numbers

• Mm: m-by-m complex matrices

Theorem 2 Let B = [bij ] ∈Mm, and let

r′i(B) ≡
∑

j 6=i

|bij |, 1 ≤ i ≤ m

denote the deleted absolute row sums of B. Then all eigenvalues of B are located in the

union of m discs

G(B) ≡

m
⋃

i=1

{z ∈ C : |z − bii| ≤ r′i(B)} .

Furthermore, if a union of k of these n discs forms a connected region that is disjoint from

all the remaining m− k discs, then there are precisely k eigenvalues of B in this region.

Proof see Horn and Johnson (1985), pp. 344-345. �

Corollary 1 Let Λ = diag(λ1, ..., λm), let P = [pij ] ∈ Mm, and consider the perturbed matrix

Q = Λ + P . Then all the eigenvalues of Q are contained in the union of m discs

G(Q) ≡

m
⋃

i=1

{z ∈ C : |z − λi| ≤ ri(P )} , ri(P ) =

m
∑

j=1

|pij |.

Proof By Theorem 2, the eigenvalues of Q = Λ + P are contained in the discs
{

z ∈ C : |z − λi − pii| ≤ r′i(P ) =
∑

j 6=i

|pij|

}

, i = 1, ..., m

which are contained in the discs
{

z ∈ C : |z − λi| ≤ ri(P ) =
m
∑

j=1

|pij|

}

, i = 1, ..., m. �
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Corollary 2 Let Λ = diag(λ1, ..., λm), let P = [pij ] ∈ Mm, and consider the perturbed matrix

Q = Λ + P . Assume that λ1, ..., λm are positive real numbers and that

λi > ri(P ) =

m
∑

j=1

|pij|, i = 1, ..., m. (19)

Then all eigenvalues of Q have positive real parts.

Proof Corollary 1 states that the eigenvalues of Q = Λ + P are contained in the m discs

around λi with radius ri(P ). (19) ensures that all m discs lie entirely within the right half of

the complex plane. Hence all eigenvalues of Q have positive real parts. �
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