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Abstract

I study the implications of the limited enforceability of credit contracts for inequality

and economic growth. I introduce limited enforcement into a deterministic neoclassical

growth model. Two types of entrepreneurs differ in their initial wealth, ability and pa-

tience and each operate a private firm. The entrepreneurs can borrow and lend to each

other but face enforcement constraints. This results in capital being misallocated across

entrepreneurs. Three main conclusions are obtained from this model. First, capital mis-

allocation disappears in the long run when entrepreneurs are equally patient. In contrast,

when entrepreneurs’ discount rates differ, capital misallocation persists asymptotically.

Second, poor creditor rights magnify the effect of heterogeneity in ability on long run

wealth inequality, because wealth accumulation functions as a substitute for poor creditor

rights. Third, the interest rate is generally lower than in an economy without enforce-

ment constraints, which has implications for the ability of the neoclassical growth model

to explain sustained growth.

Introduction

The main purpose of this paper is to understand the implications of the limited enforceability

of credit contracts for inequality and economic growth. Limited enforceability of contracts in

general, and of credit contracts in particular, seems to be an important component of modern

economies. Legal creditor rights, that is how easy it is to enforce a credit contract in court, differ

∗I am grateful to Daron Acemoglu, Philippe Aghion, Fernando Alvarez, Abhijit Banerjee, Francisco Buera,
William Fuchs, Guido Lorenzoni, Robert Lucas, Raghuram Rajan, Nancy Stokey, Robert Townsend, Harald
Uhlig and seminar participants at the University of Chicago and MIT for very helpful comments.
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substantially across countries and are important determinants of private credit (e.g. La Porta

et al., 1997, 1998; Djankov, McLiesh and Shleifer, 2007). Poor creditor rights in turn imply

that capital markets don’t function smoothly which potentially results in the misallocation of

capital.1 A growing body of work has been interested in the effects of misallocation on aggregate

output and Total Factor Productivity (e.g. Banerjee and Duflo, 2005; Restuccia and Rogerson,

2008; Bartelsman, Haltiwanger and Scarpetta, 2008; Hsieh and Klenow, 2009). However, as

Banerjee and Moll (2009) argue one important question, that I will also try to address here, is

why misallocation is in fact persistent.

Most work in this area concentrates on the effect that credit constraints and misallocation

have on aggregate variables such as TFP and GDP, that is on inequality across countries. In

my view, another interesting question is: What are the implications of credit constraints for

inequality within a given country? Within-country inequality differs immensely across countries

and there is (at least anecdotal) evidence that inequality is particularly high in developing

countries. I want to argue in this paper that poor creditor rights are a potential reason for high

within-country wealth inequality. As I will explain below, poor creditor rights can magnify the

effect of heterogeneity in ability on long run wealth inequality, because wealth accumulation

functions as a substitute for poor creditor rights.2 Figure 1 presents some suggestive evidence

that such a negative correlation between the quality of creditor rights and wealth inequality is

in fact present in the data. To summarize, I ask the following question: How do poor creditor

rights affect inequality and development?

To tackle this question, I introduce limited enforcement into a deterministic neoclassical

growth model. Two types of entrepreneurs differ only in their initial wealth and each operate

a private firm. The entrepreneurs can borrow and lend to each other but face enforcement

constraints. As such the model is a reinterpretation of Kehoe and Perri (2002).3 Limited

enforcement is an endogenous credit market imperfection which results in capital misallocation.

Because credit markets are imperfect, the representative agent framework is invalid. As such

this paper presents an example of what Banerjee and Duflo (2005) term “non-aggregate growth

theory”. At the same time it incorporates elements from contract theory. Both contract

theory and non-aggregate growth theory usually rely heavily on numerical simulations. The

1See Banerjee and Duflo (2005) and Banerjee and Moll (2009) and the references cited therein for evidence
on capital misallocation.

2A similar argument is put forth by Quadrini (2009), Cagetti and De Nardi (2006) and others. They argue
that costly external finance can explain the high concentration of wealth among entrepreneurial households
relative to non-entrepreneurial ones. My argument is different in that it considers wealth inequality within

entrepreneurial households.
3Kehoe and Perri study the implications of limited enforcement for international business cycles in a two-

country model. Their two countries correspond to my two types of entrepreneurs.
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Figure 1: Wealth Inequality and Creditor Rights

Note: Data suggesting a possible negative relationship between the quality of creditor rights and
the degree of wealth inequality. The data sources used for this regression are creditor rights data
from Djankov, McLiesh and Shleifer (2007) and wealth inequality data from UN (2008).

main methodological contribution of this paper is then to provide some analytic results in a

model that combines elements from both fields. These analytic results aid in understanding

the economic mechanisms at work. I will briefly comment on the setup of the model and

draw some connections to related theoretical literature. As already mentioned, the setup is

very similar to Kehoe and Perri (2002) albeit with a different interpretation. In contrast,

to their paper however, my model is deterministic. This delivers a majority of the analytic

tractability. Ray (2002) and Acemoglu, Golosov and Tsyvinski (2008) are two other papers

that feature deterministic setup with a very similar mathematical structure. They also stress

the importance of discount rates. In contrast to each of them, my model is set up in continuous

time. This delivers additional tractability.

Solving the model in continuous time discloses a simple connection between two branches of

the literature on optimal contracts: The literature using the Lagrangian method developed by

Marcet and Marimon (1999) and the promised value literature started by Spear and Srivastava

(1987). Time-varying Pareto weights of Marcet and Marimon (1999) are simply the costates

corresponding to promised value as a state.4 The continous time setup also implies that the

equilibrium of the economy is characterized by a system of ordinary differential equations.

While the dimension of this system of ODEs is greater than two and cannot be analyzed with

a standard phase diagram, the system is very similar in structure to the standard neoclassical

growth model. In particular, these ODEs have a steady state around which they can be

linearized. I prove that the linearized system of differential equations is saddle-path stable,

4Marcet and Marimon (1999) already observed that a time-varying Pareto weight “acts as a costate vari-
ables”. This statement is made more precise here.
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using a result from a field of linear algebra known as ”Inertia Theory”. The results I use are

from Datta (1999). For another example of their application to economics see Moll (2008).

Other related literature. In addition to the empirical papers already cited above, my paper

is related to a broad theoretical literature on the macro-implications of credit market imper-

fections. Early examples are Banerjee and Newman (1993), Aghion and Bolton (1997), and

Piketty (1997). Often these papers predict interesting phenomena such as persistent inequality

and poverty traps. However, one main shortcoming of these analyses is that they are based

on strong assumptions. Generations are assumed to live for a single time period and the evo-

lution of wealth is determined by a warm-glow bequest motive that is not forward-looking.

In contrast to such Solow-type overlapping-generations models of economic growth, modern

macroeconomics typically assumes that agents are forward-looking and accumulate assets opti-

mally as in the neoclassical growth model. Also, in the above papers usually either the interest

rate and/or the identity of borrowers and lenders is exogenous. More recent contributions

(Townsend and Ueda, 2006; Buera, Kaboski and Shin, 2009; Banerjee and Moll, 2009) address

these problems. As already mentioned, one main contribution of this paper is to emphasize

the forward-looking nature of both savings decisions and credit constraints while keeping the

model relatively tractable.

The paper is organized in five sections. Section 1 presents the setup as a competitive equi-

librium. This setup is then recast as a planning problem, first without enforcement constraints

(unconstrained planning problem in section 2), then with enforcement constraints (constrained

planning problem in section 3). Section provides a discussion of the model’s main predictions.

Section 5 concludes.

1 Setup

1.1 Preferences and Technology

Time is continuous. There are two types of entrepreneurs indexed by i = 1, 2, and for both

types there is a continuum of equal mass.5 Preferences for both types of entrepreneurs are given

by
∫ ∞

0

e−ρitu(ci(t))dt, i = 1, 2. (1)

Note that entrepreneurs potentially differ in their discount rates ρi. I assume that the function

u is strictly increasing and strictly concave and satisfies standard Inada conditions. Each

entrepreneur owns a private firm which uses ki units of capital to produce zif(ki) units of

5The mass of each type is normalized to one. Different masses for the two types of entrepreneurs could easily
be incorporated but would not change any of the main results.
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output. The intercept zi is interpreted as entrepreneurial ability. I assume that the function

f is strictly increasing and strictly concave and satisfies standard Inada conditions. Capital

depreciates at the rate δ.

1.2 Market Structure and Equilibrium

Denote by ai(t) the wealth of a type i entrepreneur and by r(t) the (endogenous) interest rate.

Entrepreneurs can rent capital k(t) in a rental market at a rental rate R(t) = r(t) + δ. Then

their wealth evolves according to

ȧi = zif(ki) − (r + δ)ki + rai − ci, ai(0) = ai0. (2)

Savings ȧi equal profits – output minus rental costs – plus interest income minus consumption.

The setup with a rental market is chosen solely for simplicity. Moll (2009) shows that it is

equivalent to a setup in which entrepreneurs own and accumulate capital ki and can trade in a

risk-free bond.

In addition, at each point in time, entrepreneurs face borrowing or enforcement constraints.

In particular, I assume that entrepreneurs who borrow capital can default and run away with

a fraction φ ∈ [0, 1] of the capital they are using. There is some outside value vi(φki), i = 1, 2

associated with defaulting.6 I will consider different alternative default values below. For now,

I only impose u(0)/ρi ≥ vi(0), i = 1, 2. The enforcement constraints are therefore:

∫ ∞

t

e−ρi(τ−t)u(ci(τ))dτ ≥ vi(φki(t)), i = 1, 2, t ≥ 0. (3)

Note that the standard growth model can be nested by letting φ = 0 because then the con-

straints (3) never bind. It is also worth noting that enforcement constraints act as borrowing

constraints. This is because (3) can always be satisfied by choosing ki on the right hand side

small enough.

The structure of the model here is almost precisely the same as outlined in section 6.1 of

Banerjee and Duflo (2005). The only difference is that borrowing constraints are endogenous

rather than exogenous and that I restrict the types of entrepreneurs to two.

Definition 1 An equilibrium with enforcement constraints consists of a time path for the

interest rate r(t), t ≥ 0 and allocations (ai(t), ki(t), ci(t)), i = 1, 2, t ≥ 0 such that

6Note that the outside option is indexed by an entrepreneur’s type i. I make this assumption not only
because it is more general, but also because it is more natural: If entrepreneurs differ in their productivity zi

then one would also expect their outside options to differ; presumably, more productive entrepreneurs can put
the stolen capital to better use and therefore have a higher outside option.
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(i) Given the interest rate r(t) and outside options vi(φki(t)), for all ai0, the allocations

(ai(t), ki(t), ci(t)) maximize (1) subject to (2) and (3).

(ii) the capital market clears for all t:

a1(t) + a2(t) = k1(t) + k2(t). (4)

In such an equilibrium, any interesting role for capital markets must be due to some form of

heterogeneity between the two types of entrepreneurs; if the two types of entrepreneurs were

identical in every respect there would be no reason for them to trade in the capital market (or

any market for that matter). The reader should therefore recall that there are four potential

sources of heterogeneity between the two types of entrepreneurs: First, their initial wealth ai0;

second, their ability zi, third, their discount rates ρi; and fourth, their outside options vi(φki).

This completes the entirely standard description of the economy. My ultimate goal is

to analyze the dynamics of the capital stocks k1 and k2 under limited enforcement. It is,

however, instructive to first have a closer look at a competitive equilibrium without any such

imperfections, that is the case where φ = 0. As is standard, such an equilibrium can be solved

as a planning problem. This prelude to the actual problem of interest is contained in the next

section, allowing me to both establish some useful benchmarks and introduce some notation in

an entirely standard setting.

2 First-Best: Unconstrained Planning Problem

Consider the case φ = 0 so that (3) never binds. The easiest way to characterize the com-

petitive equilibrium is to solve a planning problem. This planning problem can be stated in a

variety of ways. Anticipating the setup with an enforcement problem, the following one is most

convenient:

V u(w0, k0) = max
c1,c2,k1,k2

∫ ∞

0

e−ρ2tu(c2)dt s.t. (U)

∫ ∞

0

e−ρ1tu(c1)dt ≥ w0 (5)

k̇ = z1f(k1) + z2f(k2) − δk − c1 − c2 (6)

k1 + k2 ≤ k, k(0) = k0. (7)

Intuitively, the planner maximizes the present discounted value of utility of one type of agents –

here type 2 without loss of generality – while delivering a value of at least w0 to the other type –
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here type 1. In so doing, the planner takes into account the constraints implied by the physical

environment, that is the law of motion for aggregate capital k and the constraint that the sum

of individual capital usage cannot exceed aggregate capital. In going from the competitive

equilibrium to the planning problem described here, an open question is how the initial value

of type 1 entrepreneurs is determined. For now, it suffices to note that w0 is determined by the

three sources of potential heterogeneity between the two types: their initial wealth ai0, their

ability zi and their discount rates ρi, i = 1, 2.

The purpose of this section is to illustrate the

dynamics of capital and consumption that are the solution to this unconstrained planning

problem. Because this is just a prelude to the actual problem of interest, I derive these in a

quick but relatively informal way. The unconstrained planning problem (U) is the special case

with φ = 0 of the constrained planning problem (C) in section 3 so that a formal derivation

is contained there. Denote the Lagrange multiplier on the constraint (5) as α0. Then the first

terms of the Lagrangean for (U) are

L =

∫ ∞

0

e−ρ2tu(c2(t))dt+ α0

[
∫ ∞

0

e−ρ1tu(c1(t))dt− w0

]

+ ... (8)

The multiplier α0 is therefore also a Pareto weight. To put this in a slightly different way, for

any k0 the function V u(·, k0) defines the Pareto frontier between types 1 and 2. By the envelope

theorem, we have that V u
w (w0, k0) = −α0 so that the Pareto weight α0 is also the slope of the

Pareto frontier. To proceed, further rewrite (8) as

L =

∫ ∞

0

e−ρ2t [α(t)u(c1(t)) + u(c2(t))] dt+ ..., where α(t) ≡ α0e
−(ρ1−ρ2)t.

The objective function is now the present discounted value of α(t)u(c1(t))+u(c2(t)) discounted

by a common discount factor ρ2. This is also the period payoff of a social planner who places a

time-varying Pareto weight α(t) on type 1 agents. Note that if type 2 entrepreneurs are more

patient ρ1 > ρ2, then the Pareto weight goes to zero asymptotically, so that the more patient

type 2 entrepreneurs get all the surplus in the long run. Given this discussion, the following

claim should not be surprising:

Claim 1 The problem (U) can be solved in the following two stages. First, solve the two sharing

rules:7

U(c, α) = max
c1,c2

{αu(c1) + u(c2) s.t. c1 + c2 ≤ c} (9)

7For example with CRRA utility with parameter σ, we have U(c, α) =
[

α1/σ + 1
]σ
u(c).
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F (k) = max
k1,k2

{z1f(k1) + z2f(k2) s.t. k1 + k2 ≤ k} (10)

Second, solve the system of three ordinary differential equations

λ̇ = λ[ρ2 + δ − F ′(k)]

α̇ = −[ρ1 − ρ2]α

k̇ = F (k) − δk − U−1
c (λ, α)

(11)

where U−1
c (·, λ) is the inverse of the marginal utility of consumption with respect to its first

argument.8

This Claim will be verified formally in section 3 (see especially the system of ODEs (26)).

Consider first the case where both types are equally patient, ρ1 = ρ2. In this case α̇ = 0 or

α(t) = α0 for all t. The corresponding equation in (11) can then be dropped and we’re left

with a system of two differential equations in λ and k. These are precisely the same differential

equations that characterize the solution to a standard neoclassical growth model; there is a λ

is a co-state variable 9 In the case ρ1 6= ρ2, the behavior of the system if identical with the

difference that there is an additional equation to keep track of the Pareto weight α. As already

noted the more patient type will generally end up with all the surplus in the long run. Note

that – regardless of the evolution of the Pareto weight – as part of the solution of (10), marginal

products of capital of both types are equalized at all points in time

z1f
′(k1) = z2f

′(k2). (12)

That is, capital is allocated optimally across entrepreneurs. This will not necessarily be true

anymore in the presence of enforcement constraints, φ > 0. Anticipating the analysis of that

case below, define by ku
i (k), i = 1, 2 the amount of capital held by type i in the unconstrained

planning problem if the aggregate capital stock is k, that is individual capital stocks satisfying

(12). This unconstrained capital allocation will there be used to check whether enforcement

constraints bind.

8Any solution to (11) must also satisfy the boundary conditions k(0) = k0, α(0) = α0, limt→∞ e−ρ2tλ(t)k(t) =
0. I impose an initial condition on the Pareto weight α0 instead of type 1’s value w0; the two are equivalent.
The last condition is a standard transversality condition.

9For the case ρ1 = ρ2, the system of ODEs (11) can be derived from the present value Hamiltonian H(k, λ) =
U(c, α) + λ[F (k) − δk − c]. This derivation still works for the case ρ1 6= ρ2 but is not entirely correct because
the Pareto weight α is changing over time.
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3 Limited Enforcement: Constrained Planning Problem

Now, consider the case φ > 0 so that defaulting entrepreneurs get to keep a positive fraction of

their operating capital stock. We can still solve a planning problem to describe the competitive

equilibrium of this economy. In particular, one simply adds the constraints (3) to the constraint

set of the planning problem (U).

The constrained planning problem is:

V (w0, k0) = max
c1,c2,k1,k2

∫ ∞

0

e−ρ2tu(c2(t))dt s.t.

∫ ∞

0

e−ρ1tu(c1(t))dt ≥ w0 (C)

k̇ = z1f(k1) + z2f(k2) − δk − c1 − c2, k1 + k2 ≤ k, k(0) = k0 (13)
∫ ∞

t

e−ρi(τ−t)u(ci(τ))dτ ≥ vi(φki(t)), i = 1, 2, t ≥ 0. (14)

The planner simply solves the same problem as the unconstrained planning problem (U) but

taking into account the enforcement constraints (3). To make the problem interesting, I impose

the following restrictions on the default values vi(φki).

Assumption 1 (Feasibility) Default values vi(·), i = 1, 2 are such that V u[v1(φk
u
1 (k)), k] ≥

v2(φk
u
2 (k)) for all k.

This assumption guarantees that for every value of the aggregate capital stock k, there is some

value for type 1’s continuation value such that both enforcement constraints (3) are slack. This

is illustrated in Figure 2: there is some region on the (unconstrained) Pareto frontier V u(w, k)

such that both constraints are slack. Consider for example the symmetric case ρ1 = ρ2, z1 = z2,

v1(·) = v2(·). Then it is easy to see that Assumption 1 is satisfied if the consequence of default

is being cast into autarky forever.

Problem C is in general a non-convex optimization problem implying first-order conditions

are only necessary but not sufficient. This is because the functions vi(φki) are concave so that

the constraint (14) are not convex. The following assumption is sufficient to make the constraint

set of (C) convex, as show in the corresponding Lemma.

Assumption 2 (Convexity) zif
′(k)

v′
i
(φk)φ

is decreasing in k for all k and for i = 1, 2.

Lemma 1 Under assumption 2, the constraint set of the constrained planning problem (C) is

convex.

(All proofs are in the Appendix.) Assumption 2 is for example satisfied if outside options are

linear in capital, vi(ki) = ki, or more generally if the outside options are “not too concave”
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Figure 2

Note:

and φ is small. This assumption will be imposed in some of the results below, but not all.

As just noted, it guarantees that first-order conditions are both necessary and sufficient. This

is useful in some of the results, but not required in others. There is, however, another useful

consequence of assumption 2:

Lemma 2 Under assumption 2, the Pareto frontier V (w0, k0) is concave in w0 for all k0.

This Lemma follows almost immediately from Lemma 1. It captures the standard intuition

that the set of attainable utilities is convex so that the Pareto frontier is concave.

3.1 The Optimal Contract

To solve the problem, it is convenient to define the continuation value of type 1 entrepreneurs

w(t) ≡

∫ ∞

t

e−ρ1(τ−t)u(c1(τ))dτ (15)

Clearly, the enforcement constraints reduces to

w(t) ≥ v1(φk1(t)), V (w(t), k(t)), t ≥ 0. (16)
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Differentiating (15) with respect to time results in a law of motion for this continuation value10

ẇ = ρ1w − u(c1). (17)

I follow the branch of the literature that uses continuation values as state variables (Spear and

Srivastava, 1987) and include w in the state space. The law of motion (17) is the continuous

time version of the “promise-keeping constraint”. The problem (C) can then be written in

recursive using the continuation value of type 1 as a state variable, together with the aggregate

capital stock k. The value to type 2, V (w, k), must satisfy

ρ2V (w, k) = max
c1,c2,k1,k2,k̇,ẇ

u(c2) + Vw(w, k)ẇ + Vk(w, k)k̇ s.t. (B)

ẇ = ρ1w − u(c1) (18)

k̇ = z1f(k1) + z2f(k2) − δk − c1 − c2 (19)

k = k1 + k2 (20)

w ≥ v(φk1), V (w, k) ≥ v(φk2) (21)

This Hamiltona-Jacobi-Bellman equation is similar to the one studied by Hopenhayn and Wern-

ing (2009) and by Kocherlakota (1996) in discrete time. The thought experiment is as follows:

a social planner promises a value w to type 1. Taking this promise as given in the form of (18),

the planner seeks to maximize the amount of utility type 2 receives. The planner determines the

evolution of the aggregate capital stock, (19), and how to split that capital and consumption

between the two types, taking into account the enforcement constraints of the two types, (21).

3.2 Optimality Conditions

The optimality conditions are derived in the usual way. Use the following Lagrange multipliers:

α on (18); λ on (19); q on (20); and µ1 and µ2 on the corresponding enforcement constraints

(21). Further define where r ≡ q/λ− δ (as discussed in section 4.3 below r, turns out to have

the interpretation of an interest rate). The first-order conditions are

Vw(w, k) = −α, Vk(k, w) = λ (22)

αu′(c1) = u′(c2) = λ (23)

zif
′(ki) − µi

φv′i(φki)

λ
= r + δ, i = 1, 2. (24)

10Rearranging (17) as ρ1w = u(c1) + ẇ makes clear that this is simply the continuous time Bellman equation
for type 1.
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The following complementary slackness condition also holds.

µ1[w − v1(φk1)] = 0, µ2[V (w, k) − v2(φk2)] = 0 (25)

As in the analysis of the unconstrained planning problem in section 2, the Lagrange multiplier

α = −Vw(w, k) in (22) is the slope of the Pareto frontier, or – equivalently and as is apparent

from (23) – the Pareto weight on agent 1. The equations (24) and (25) determine how the

aggregate capital stock k is split between the two types. If both types’ enforcement constraints

are slack, then µi = 0, i = 1, 2 and (24) collapses to the familiar condition of equalized marginal

products (12). If in contrast, say, type 1’s constraint binds, then his marginal product of

capital will be higher than that of type 2, z1f
′(k1) > z2f

′(k2) (note that from Assumption 1 it

is impossible for both constraints to bind simultaneously). Condition (24) and (25) are crucial

and will be discussed in more detail below.

Using (22), the envelope conditions of the Bellman equation (B) can be written in terms

of laws of motions for the Lagrange multipliers11. I state those here together with the laws of

motion (18) and (19) for reasons that will become clear shortly:

λ̇ = λ[ρ2 − r]

α̇ = α[ρ2 − ρ1 − µ2] + µ1

k̇ = z1f(k1) + z2f(k2) − δk − c1 − c2

ẇ = ρ1w − u(c1).

(26)

This system of differential equations together with the first order conditions (23) and (24) and

the complementary slackness condition (25) summarizes the dynamics of the equilibrium with

limited enforcement.12 Note the similarity of this system of equations to the system of ODEs

(11). In particular, (11) can be obtained from (26) as the special case in which φ = 0 (thereby

also verifying Claim 1 in the previous section). In that case the enforcement constraints never

bind so that the multipliers, µi = 0, i = 1, 2. Because the constraints never bind, one does not

need to keep track of type 1’s continuation value w and can therefore discard the law of motion

for w.

An easy connection can be drawn to the time-varying Pareto-weights of Marcet and Marimon

11Consider for example the first equation. It is derived from noting that the envelope condition is ρ2Vk =
Vwkẇ+ Vkk k̇− λδ+ q and using the fact that Vk = λ so that Vkwẇ+ Vkk k̇ = λ̇. A similar derivation applies to
the second equation.

12Boundary conditions are k(0) = k0, w(0) = w0, limt→∞ e−ρ2tλ(t)k(t) = 0, limt→∞ e−ρ2tα(t)w(t) = 0. The
last two conditions are transversality conditions that come from the fact that λ and α play the role of co-state
variables.
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(1999) and Kehoe and Perri (2002), using the law of motion for α in (26) and the first-order

condition for consumption (23). These are restated here as

u′(c2(t))

u′(c1(t))
= α(t), α̇(t) = [ρ2 − ρ1 − µ2(t)]α(t) + µ1(t). (27)

The interpretation of (27) is clear: α(t) is entrepreneur 1’s Pareto weight, and this Pareto weight

is varying over time as in Marcet and Marimon (1999) and Kehoe and Perri (2002). Suppose

for the moment that entrepreneurs are equally patient, ρ1 = ρ2. Then, this Pareto weight is

the initial Pareto weight plus Lagrange multipliers accumulated over the past.13 Embedded in

equation (27) is the effect that limited enforcement has on the allocation of consumption across

entrepreneurs. Suppose for the moment that the utility function u(·) is of the CRRA type with

parameter σ. Continue to assume ρ1 = ρ2 and differentiate (27) with respect to time

σ

[

ċ1
c1

−
ċ2
c2

]

= −µ2 +
µ1

α

The right-hand side is positive whenever type 1’s enforcement constraint binds and negative

whenever type 2’s binds. In that case
ċ1
c1
>
ċ2
c2
.

That is entrepreneurs with binding constraints experience higher consumption growth. This

result is typical in the literature on optimal contracts: In effect, the planner “bribes” the

entrepreneurs not to default by assigning them a higher continuation value. This also implies

that incentives will generally “back-loaded” as for example in Thomas and Worrall (1988)

and Kocherlakota (1996). The fact that an agent’s Pareto weight tends to increase when his

constraint binds, will be the driving force in many of the following results. Expression (27) will

therefore play a prominent role in the remainder of the paper.

3.3 Steady State Misallocation

The steady state of the economy (k∗, w∗) is defined by setting all time derivatives equal to zero

in (32).14

Proposition 1 There is a continuum of steady states (k∗, w∗). In any steady state

13Equation (27) is the continuous time analogue of equation (7) in Kehoe and Perri (2002). The same
differential equation for α could have been derived directly from the Lagrangean for (C) by use of an integration
by parts argument.

14One could define the steady state to be the vector (λ∗, α,k∗, w∗) but I here choose to denote it in terms of
k and w only because those are the state variables. Instead λ and α play the role of co-states. In any case, if k
and w are constant this immediately implies that so must be λ = Vk(w, k) and α = −Vw(w, k).
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(1) When ρ1 = ρ2, there is no capital misallocation in steady state. The steady state capital

stock k∗ is first-best and satisfies

F ′(k∗) = ρ+ δ, (28)

where F (k) is the aggregate production function defined in (10).

(2) When ρ1 6= ρ2, there is capital misallocation in steady state.

The intuition for this result is straightforward. Consider first part 1. That there is no capital

misallocation in steady state follows almost directly from the law of motion of the time varying

Pareto weight (27). If entrepreneurs are equally patient, ρ1 = ρ2, this changes whenever an

enforcement constraint binds. For the economy to be in steady state, the Pareto weight must

be constant; but this immediately implies that constraints cannot bind in steady state so that

capital is allocated efficiently. Because marginal products of capital are equalized the production

side of the economy can be represented by the aggregate production function (10). As stated

in expression(28), the marginal product of this aggregate production function equals ρ + δ in

steady state. Note that this is exactly the same equation solved by the steady state capital

stock in a standard neoclassical growth model. Finally, consider the statement that there is a

continuum of steady states, that is the steady state is not unique. This is illustrated in Figure

3. I have just argued that the steady state capital stock k∗ solves the expression (28). It is

Figure 3: State Space K ×W

Note: .

therefore unique. However, as illustrated in the Figure, the steady state continuation value w∗

14



is not unique. This can again be seen from the fact that enforcement constraints don’t bind in

steady state, implying that (k∗, w∗) satisfy

w∗ ≥ v1(φk
u
1 (k∗)) and V u(w∗, k∗) ≥ v2(φk

u
2 (k∗)).

From assumption 1, there are multiple values w∗ that are consistent with these inequalities.

Any such value is consistent with the economy being in steady state.

Next, consider part 2 of the proposition. If entrepreneurs’ discount rates differ, ρ1 6= ρ2, the

logic of the first part of the Proposition breaks down. Consider again the law of motion for the

time-varying Pareto weight (27). There are now two reasons for the Pareto weight to change

over time: differences in the discount rates, and binding enforcement constraints. In fact, the

Pareto weight can only be constant if one of the constraints binds so as to offset the drift of

the Pareto weight due to differential discount rates.

3.4 Dynamics of Misallocation

Proposition 1 stated that there is no misallocation in steady state when entrepreneurs are

equally patient. This begs the question whether this steady state outcome is actually achieved

over time. This is a harder question so that more can only be said under stronger assumptions.15

For the remainder of this section I therefore impose Assumption 2. From Lemma 2 we

know that the Pareto frontier V (w, k) is then concave in w. This is helpful because from the

first-order condition Vw(w, k) = −α, there is then a monotone relationship between α and w. I

further impose a symmetry assumption

Assumption 3 (Symmetry) z1 = z2, and v1(·) = v2(·).

This assumption says that the two types of agents are identical except possibly in their discount

rates ρi, i = 1, 2 and their initial values, w0 and V (w0, k0). Note that under this assumption, it

is always optimal to split aggregate capital equally between the two types ku
i (k) = k/2, i = 1, 2.

The following statement about the dynamics of misallocation can be made.

Proposition 2 Let Assumptions 2 and 3 be satisfied. Then the steady state outcome in Propo-

sition 1 is stable, in the sense that

(1) When ρ1 = ρ2, capital misallocation disappears asymptotically. That is (12) holds as

t→ ∞.
15Note that this is also a different question. Proposition 1 only says that if ρ1 = ρ2 and the economy starts

out at a steady state with no misallocation, it will stay there. It does not say whether the economy would
converge to such an outcome over time. This is akin to the distinction between the question of existence of a
steady state and its stability (for example, in a standard neoclassical growth model).
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(2) When ρ1 6= ρ2, capital misallocation persists even asymptotically.

Most of the intuition for this result can again be obtained from examining equation (27). This

equation states that the Pareto weight of a type increases whenever his enforcement constraint

binds. To fix ideas, consider the case where type 1’s enforcement constraint binds and where

capital is fixed k(t) = k̄ for all t (for whatever reason). In that case, there is a one-to-one

mapping between the Pareto weight and promised value α(t) = Vw(w(t), k̄) which implies that

w increases whenever α. From the law of motion for the Pareto weight α, we can also see that

the function α(t) – and therefore also w(t) – is weakly increasing over time. It therefore must

be true that at some date t, w(t) ≥ v(φk̄/2), at least asymptotically as t→ ∞.

A problem stands in the way: capital k(t) is typically changing as well. This has two

implications. First, because the Pareto frontier V (w, k) depends on k, promised value w may

be decreasing even though the slope α = −Vw(w, k) is increasing. Second, the outside options

change with the aggregate capital stock. These two observations imply there may be reversals

in the binding pattern of the constraints. That is, the constraint of type 1 binds first, then

no constraint binds, and then the constraint of type 2 does. This would imply that α(t) may

not be monotone over time any more, invalidating the main argument above. It is the role of

assumption 3 to guarantee that these problems do not occur. That being said, one could also

make other assumptions than symmetry to guarantee this.

If entrepreneurs’ discount rates differ, ρ1 6= ρ2, the logic of the first part of the Proposition

breaks down. This result can best be understood by recalling the unconstrained planning

problem in section 2. There, the different discount rates had the effect that the more patient

entrepreneur ended up with all the surplus in the long-run. This was captured by the fact that

the Pareto weight α(t) varied over time. In particular, if type 1 entrepreneurs were the less

patient ones, ρ1 > ρ2, then their Pareto weight converged to zero, α(t) → 0. It is now almost

immediate that this outcome does not survive the addition of enforcement constraints. In the

long-run, the enforcement constraint of the less patient type 1 entrepreneurs must always bind,

which implies that capital misallocation persists.

The result in proposition 2 was cast in terms of a planning problem. It can also be under-

stood in terms of the decentralized competitive equilibrium which was the starting point of my

analysis (section 1). In a decentralized equilibrium, entrepreneurs accumulate wealth over time.

That capital misallocation disappears in the long-run (if entrepreneurs are equally patient) is

a result similar to that in ? and Banerjee and Moll (2009). The intuition is the same as there:

being credit constrained creates big incentives to save in the form of a high marginal product

of capital which implies a high marginal rate of substitution between consumption today and

consumption tomorrow. Therefore, individuals use wealth accumulation as a substitute for

16



poorly functioning credit markets. This logic breaks down, however, if entrepreneurs discount

at differential rates. In that case, the marginal rate of substitution also depends on the discount

rate so that an constrained entrepreneur might actually have lower incentives to save than a

constrained one.

The results in Proposition 2 does not say that the steady state in Proposition 1 is globally

stable. The discussion here is however suggestive of this property of the model, at least for the

case ρ1 = ρ2. This is illustrated in Figure 4. The figure shows the dynamics of the system of

Figure 4: Global Stability in the Case ρ1 = ρ2

Note:

ODEs (26) in (α, k) space (this is the state space of Marcet and Marimon (1999)). This space

can be divided into three different regions. For low values of the Pareto weight α, the constraint

of type 1 binds; for high values of α the constraint of type 2 binds; for intermediate values they

are both slack.16 The arrows in the figure indicate what we know about the dynamics of the

system (26) in any particular region. Consider first the unconstrained region for intermediate

α. In this region, α̇ = 0 (I continue to assume ρ1 = ρ2). Further, the dynamics for capital are

the same as in a neoclassical growth model, that is capital converges monotonically towards the

steady state k∗.17 Next, consider the region in which type 1 is constrained (low α). In this case,

16That there is a region in which both constraints are slack is guaranteed by assumption 1. That one can look
at the binding pattern of constraints in (α, k) rather than (w, k)-space is guaranteed by assumption 2 which
implies that V (w, k) is concave and therefore that α = −Vw(w, k) is an increasing function of w. That the
boundaries between the sets are continuous also assumes that Vw(w, k) is continous in k.

17To see this formally, note that in the unconstrained region of the state space (w, k), we have that the
value functions of the constrained planning problem (C) coincides with that of the unconstrained problem (U),
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I am not able to say anything about the dynamics of k. However, I know that α̇ = µ1 > 0,

that is α is strictly increasing. This implies that there is a strong pressure for α to adjust in

the direction of alleviating the enforcement constraint of type 1 over time. An analogous logic

holds for the region in which type 2 is constrained. Examining the arrows in Figure 4, there is

therefore a strong force for the system to converge to a steady state without misallocation (see

Proposition 1).

4 Model Predictions: Creditor Rights, Inequality and

Development

I set out with the goal of better understanding the interaction between limited enforceability

of credit contracts, inequality and economic growth. I here provide some simulations that

highlight the predictions of the model for these issues. How the simulations are computed is

outlined in section 5. I assume in the present section that ρ1 = ρ2, so that there is no capital

misallocation in the long-run.18 I use the following standard functional forms and parameter

values: CRRA utility with parameter σ = 2; Cobb-Douglas production with capital share

γ = 0.3; Discount and depreciation rates ρ1 = ρ2 = δ = 0.05; The value of default is given by

being cast into autarky forever; I assume that type 1 is the more able type, z1 = 1, z2 = 0.5 I

vary the parameter capturing the quality of creditor rights φ, and the initial condition (k0, w0).

4.1 Creditor Rights and Growth

I have already shown that capital misallocation disappears asymptotically if entrepreneurs have

the same discount rates, ρ1 = ρ2 so that limited enforcement does not matter for aggregate

outcomes in the long run. However, one might ask how the transition path to the steady

state is affected. To answer this question, consider the following experiment. Two countries

are identical in every respect except their quality of creditor rights φ. In particular, they

are characterized by the same initial conditions for aggregate capital and inequality (k0, w0),

but one has a higher φ (worse creditor rights) than the other. I have in mind here, say,

Argentina and Chile in the 1970s. I assume that one contry has perfect credit markets, φ = 0

whereas the other is characterized by an intermediate level of creditor rights, φ = 0.5. Initial

conditions are (k0, w0) = (0.8k∗, 0.7w∗). Figure 5 plots the time paths for the aggregate capital

stocks, for individual marginal products of capital, for aggregate production and total factor

V (w, k) = V u(w, k). Consequently, the policy functions must coincide as well.
18In light of Propositions 1 and 2 the more general case is obviously interesting and I plan to add the

corresponding simulations in a future version.
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productivity.19 Consider first the paths of the aggregate capital stock for the two economies.
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Figure 5: Different Creditor Rights

Note: .

Limited enforcement has an effect on aggregate savings. Perhaps somewhat surprisingly, capital

accumulation is higher in the country with worse creditor rights, that is there is a positive

savings effect. This savings effect can go either way however, and depends crucially on the

specification of the outside option. For example, with a linear outside option vi(φk) = φk, it

goes the other way. Consider, next the inidividual marginal products of capital. The presence

of limited enforcement implies that marginal products are not equalized so that there is capital

misallocation. More formally, from (24) a binding enforcement constraint implies that

z1f
′(k1) > z2f

′(k2)

19Total factor productivity is simply defined as the residual y/kγ where y = z1k
γ
1

+ z2k
γ
2

and normalized by
first-best TFP yu/kγ where yu = z1(k

u
1 )γ + z2(k

u
2 )γ .

19



which can be observed in the second panel of Figure 5. This misallocation shows up as low

output or equivalently as low TFP (panel 4). I term this the TFP effect of limited enforcement.20

I have proved in proposition 4 that this misallocation disappears over time so that marginal

products are equalized eventually. This result is very much in the spirit of Banerjee and Moll

(2009) and the references therein. Finally, consider GDP in the two economies. The effect

on GDP is the combination of the savings and TFP effects. Because the former is positive

while the latter is negative, the overall effect is ambiguous. A similar conclusion holds when

considering GDP growth as opposed to GDP levels : because of the two counteracting effects,

the overall impact of bad creditor rights on growth is again ambiguous.21

4.2 Creditor Rights and Inequality

Figure 1 in the introduction provided some suggestive evidence that wealth inequality is higher

in countries with worse creditor rights. I want to argue in this section that poor creditor

rights magnify the effect of heterogeneity in ability on long run wealth inequality in the present

model, providing a potential rationale for the relation observed in Figure 1. Compare again

two countries: one with perfect credit markets, φ = 0, and one with an intermediate quality

of credit rights, φ = 0.5. In both countries, entrepreneurs are equally wealthy at time zero

but type 1 has higher ability z1 > z2. The aggregate capital stock is in steady state k0 = k∗.

Figure 6 depicts the evolution of (consumption) inequality. In the country with perfect credit

markets, φ = 0 there is a complete separation between ownership and production. Individual

consumptions are equal, c1(t) = c2(t) for all t. In contrast, with poor creditor rights there is a

fanning out of inequality. The consumption of the more able type 1s increases and that of the

less able type 2’s decreases. As discussed above, capital misallocation disappears asymptotically

because entrepreneurs use wealth accumulation as a substitute for poor creditor rights. The

same effect is also responsible for the fanning out of inequality observed in Figure 6. With

perfect credit markets, the more able type 1 entrepreneurs, simply borrow some capital from

the less able type 2 entrepreneurs. This is not possible with poor creditor rights. Instead,

the more able entrepreneurs accumulate wealth in order to be able to exploit their superior

20In the present example, the TFP loss is always below four percent. The size of the TFP loss depends on the
number of entrepreneurs in the economy. Consider the upper bound on the TFP loss which is given by the loss
incurred from giving the all capital to one entrepreneur and none to others. It is 1−kγ/[n(k/n)γ ] = 1−(1/n)1−γ ,
which is increasing in n.

21One might also be interested in the relation between initial inequality and the time path of aggregate output.
One measure of initial inequality is type 1’s promised value w0. Consider then two countries that have the same
φ and k0 but different k0. The time paths will be qualitatively identical to the ones in Figure 5. In particular,
the effect of initial inequality on output levels and growth is ambiguous. This complex relationship is in line
with the argument made by Banerjee and Duflo (2005) that ”estimating the relationship between inequality
and growth in a cross-country dataset [...] has, at best, very limited use.”
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production technologies.

4.3 Low Interest Rates

Hausmann, Rodrik and Velasco (2005) suggest that interest rate data provide a “growth diag-

nostic” in that binding credit constraints can be inferred from it. I examine whether this is true

in the present model. The interest rate in the economy can be backed out from the planning

problem as

r = ρ−
λ̇

λ
,

where λ = u′(c2) is the marginal utility of the unconstrained type 2 entrepreneurs. This strategy

of backing out the interest rate from a planning problem follows Alvarez and Jermann (2000).

It states that the interest rate is given by the continuous time analogue of the marginal rate of

substitution across time for the unconstrained type 2 entrepreneurs. From (26), we then have

that

r = z2f
′(k2) − δ,

where I continue to assume that ρ1 = ρ2 and that type 1 entrepreneurs are constrained. Figure 7

plots the time path of the interest rate. This time path is shaped by the same TFP and savings

effects as in Figure 5 above. Consider first the case where the savings effect is absent so that

aggregate capital accumulation is the same as in the unconstrained neoclassical growth model.

In that case, the interest rate is always lower compared to an economy without enforcement

constraints. This follows immediately from the fact that the interest rate is determined by

the marginal product of unconstrained entrepreneurs who get a bigger share of the aggregate
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capital stock in the presence of enforcement constraints. In general equilibrium, the flip-side

of the constrained marginal product being relatively high, is that the unconstrained marginal

product is relatively low. Similar results about the interest rate are obtained in Kehoe and

Levine (1993) and Alvarez and Jermann (2000). Another way of putting this is that

r = z2f
′(k2) − δ < F ′(k) − δ, (29)

where F (k) is the aggregate production function defined in (10). In the absence of enforcement

constraints, the interest rate would equal the aggregate marginal product F ′(k) − δ. Enforce-

ment constraints break this link.

However, this logic ignores the presence of a savings effect: the aggregate capital stock might

be higher which might overturn the TFP effect. This might result in the interest rate being

higher in an economy with enforcement constraints. Overall, the effect of poor creditor rights

on the interest rate is ambiguous. In that sense, the level of the interest rate is uninformative

about the presence of credit constraints in an economy.

That enforcement constraints break the link between the interest rate and the aggregate

marginal product of capital as in (29) is also relevant with respect to an argument put forth by

King and Rebelo (1993): If one wants to explain sustained growth by transitional dynamics of

the standard neoclassical growth model, one generates extremely counterfactual implications

for the time path of the interest rate. For example, King and Rebelo (1993) argue that if the

neoclassical growth model were to explain the postwar growth experience of Japan, the interest
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rate in 1950 should have been around 500 percent. As can be seen in Figure 7, it is theoretically

possible that both the capital stock and the interest rate approach the steady state from below,

offering a way out of problem raised by King and Rebelo (1993).

5 Local Stability and Computation: Some Technical Results

More can be said about the behavior of the dynamic system (26) for the case where individuals

are equally patient ρ1 = ρ2(= ρ). In particular, I here show that the dynamics of the economy

are very similar to that of the standard neoclassical growth model and that steady states are

locally stable. I impose

Assumption 4 Type 1’s enforcement constraint binds at date zero, w0 < v1(φk
u
1 (k)).

The case where no constraint binds is generally uninteresting because dynamics will be the same

as in the neoclassical growth model; the case where type 2’s constraint binds is symmetric.

5.1 Effective Uniqueness of Steady State

The system of ODEs is relatively easy to analyze, if the economy is always in the constraint

region of the state space for all t ≥ 0.22 I first provide conditions that guarantee that this is

the case. Since I only analyze the local stability of the system of ODEs (26), these conditions

only need to be valid in a neighborhood of the steady states. The following assumption implies

that the economy will always be in the constraint region of the state space.

Assumption 5 The slope of the unconstrained Pareto frontier at the point w = v1(φk
u
1 (k)),

V u
w [v1(φk

u
1 (k)), k] is independent of k in a neighborhood of the steady state k∗.

Lemma 3 Let Assumptions 2, 4 and 5 be satisfied and let ρ1 = ρ2. Then the enforcement

constraint (3) binds for all t ≥ 0, in a neighborhood of the steady state. That is, for (k0, w0)

sufficiently close to (k∗, w∗)

w(t) ≤ v1[φk
u
1 (k(t))] t ≥ 0.

This Lemma establishes that under certain assumptions, the economy is always in the con-

strained region of the state space. It can then be seen from Figure 3 that the steady state must

lie at the boundary of the half-line w∗ ≥ v1(φk
u
1 (k∗)). That is, it satisfies w∗ = v1(φk

u
1 (k∗))

so that constraint (3) is ”barely binding”. For all practical purposes, then the steady state is

unique.

22It is also easy to analyze if the economy is always in the unconstrained region. The dynamics are then
identical with the ones of the standard neoclassical growth model. I therefore concentrate on the constraint
case.
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5.2 Local Stability

I next define two useful constructs which I term ”pseudo-aggregate production function” and

”pseudo-aggregate utility function”. While the representative agent framework is invalid, these

constructs will play exactly the same role as the aggregate production function (10) and the

aggregate utility function (9) in the unconstrained planning problem.23 The “pseudo-aggregate

production function” is

F (k, w) = max
k1,k2

z1f(k1) + z2f(k2) s.t. k1 + k2 ≤ k, w ≥ v1(φk1) (30)

If we define the Lagrange multipliers on the first and second constraint to be R and µ/λ

respectively, then the first order and complementary slackness conditions coincide with (24)

and (25). Similarly, the “pseudo-aggregate utility function” is

U(c, x) = max
c1,c2

u(c2) s.t. c1 + c2 ≤ c, u(c1) ≥ x (31)

Now, denote by λ and α the Lagrange multipliers on the first and second constraint respectively.

Then the first order condition is (23).

Lemma 4 The pseudo-aggregate utility function U(c, x) is strictly concave. The pseudo-aggregate

production function is strictly concave under assumption 2.

In what follows it turns out to be more convenient to work with

ψ ≡ −α.

Just as in the unconstrained planning problem, the (pseudo-) aggregate production and utility

functions can be used to simplify (26). In particular, using the envelope theorem in (30), we

see that

Fk(k, w) = R, Fw(k, w) = µ/λ

Similarly, applying the envelope theorem in (31), we have that

Uc(c, x) = λ, Ux(c, x) = ψ or ∂U(c, x) = (λ, ψ)

23I add the qualifier ”pseudo” because these are clearly not an aggregate production/utility functions in the
usual sense. In particular, they depend on entrepreneur 1’s utility and continuation value.
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where ∂U : R2 → R2 is the gradient of U . Because U is concave, ∂U has an inverse. Then

(c, x) = (∂U)−1(λ, ψ) or (c, x) = [c(λ, ψ), x(λ, ψ)]

Using these properties of the (pseudo-) aggregate production and utility functions, (26) can

be rewritten as a system of autonomous differential equations in (λ, ψ, k, w) only.

λ̇ = λ[ρ+ δ − Fk(k, w)]

ψ̇ = −λFw(k, w)

k̇ = F (k, w) − δk − c(λ, ψ)

ẇ = ρw − x(λ, ψ)

(32)

These four ODEs and boundary conditions together with the solutions to the pseudo-aggregate

production and utility functions (30) and (31) completely characterize the competitive equi-

librium with enforcement constraints.24 Linearizing (32) around the steady state (w∗, k∗) =

(φv1(k
u
1 (k∗)), k∗) (which is effectively unique given the argument in section 5.1) yields

ẋ = Ax, A =















0 0 ∂λ̇/∂k ∂λ̇/∂w

0 0 ∂ψ̇/∂k ∂ψ̇/∂w

∂k̇/∂λ ∂k̇/∂ψ ρ 0

∂ẇ/∂λ ∂ẇ/∂ψ 0 ρ















, x ≡















λ− λ∗

ψ − ψ∗

k − k∗

w − w∗















. (33)

This can be written more compactly as

A =

[

0 X

Y ρI

]

where 0 is a 2× 2 matrix of zeros and I is the 2× 2 identity matrix. Denote the 2× 2 Hessian

matrices of the aggregate production function and aggregate utility function by ∂2F (k, w) and

∂2U(c, x) respectively. It is easy to show that X and Y are simply given by

X = −λ∗∂2F (k∗, w∗), Y = −[∂2U(c∗, x∗)]−1

As show in Lemma 4, U(c, x) and F (k, w) are strictly concave. This immediately implies that

both X and Y are positive definite matrices.

24The boundary conditions are k(0) = k0, w(0) = w0, limt→∞ e−ρtλ(t)k(t) = 0, limt→∞ e−ρtψ(t)w(t) = 0.
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The stability proof makes use of some results from a field of linear algebra called ”Inertia

Theory”. The following results are taken from Datta (1999).25 I’m interested in applying the

theory to the 4 × 4 matrix A. However, the theory applies to matrices of any dimension. I

choose to present it in its most general form.

Definition 2 The inertia of a matrix A, denoted by In(A), is the triplet (π(A), ν(A), δ(A))

where π(A), ν(A) and δ(A) are, respectively, the number of eigenvalues of A with positive,

negative, and zero real parts, counting multiplicities.

A linear system of 2n differential equations such as (32), is saddle path stable if exactly half of

the eigenvalues of A have negative real parts. Saddle path stability is therefore equivalent to

the statement

In(A) = (n, n, 0)

The following theorem is very useful in establishing sufficient conditions under which indeed

In(A) = (n, n, 0).26 In the following, M ≥ 0 means that the matrix M is positive semidefinite.

Proposition 3 Let δ(A) = 0, and let W be a nonsingular symmetric matrix such that

WA+ ATW = M ≥ 0 (34)

Then In(A) = In(W ).

This Theorem is a generalization of the Lyapunov Stability Theorem for matrices (see Theorem

3.2. in Datta (1999)). It is used in the same way, and its advantages and disadvantages are

similar. In particular, the exercise boils down to finding a matrix W whose inertia we can easily

determine. If we are not able to find such a matrix, the theorem is worthless.

Proposition 4 In(A) = (2, 2, 0) and hence the steady state (λ∗, ψ∗, k∗, w∗) is locally stable.

The linearized system (33) can be used to compute solutions to the constrained planning prob-

lem (C). In the Appendix I derive in more details the entries of the matrix A.

25Benhabib and Nishimura (1981) use a similar result by Wielandt (1973) in a stability proof for n-sector
growth.

26It is natural to ask whether corresponding techniques are also available for systems of difference equations.
Datta (1999) also defines a unit circle inertia as the triplet of the number of eigenvalues outside, inside and on
the unit circle. Theorem 4.5. in this paper is the analogue of Theorem 3 for the unit circle inertia.
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6 Conclusion

I have presented a deterministic neoclassical growth model in which the presence of limited

enforcement inhibits the efficient working of capital markets, and used this framework to study

the implications of the quality of creditor rights for inequality and economic growth. Binding

enforcement constraints imply that capital is misallocated across entrepreneurs which shows up

as low aggregate TFP and GDP. I provided a characterization of the evolution of this distortion

over time. When entrepreneurs are equally patient capital misallocation disappears in the

long run. In contrast, when entrepreneurs’ discount rates differ, capital misallocation persists

asymptotically. Because they result in an inefficient allocation of capital, poor creditor rights

also break the link between the interest rate and the aggregate marginal product of capital, in

particular typically lowering the interest rate. This was relevant because this disconnect offers

a way out of the problem raised by King and Rebelo (1993) that wanting to explain sustained

growth with a neoclassical growth model generates extremely counterfactual implications for

the interest rate.

Poor creditor rights also magnify the effect of heterogeneity in ability on long run (consump-

tion) inequality. A high ability entrepreneur with low initial wealth (as measured by promised

utility) initially has a binding enforcement constraint. To alleviate this constraint, the social

planner shifts more and more consumption towards him until his constraint ceases to bind.

This implies that more more able entrepreneurs generally end up with more consumption than

they would in the absence of enforcement constraints. Observe that the same mechanism that

is good for aggregate activity, here increases inequality. More generally, my model departed

from the representative agent framework and therefore has a non-trivial interplay between the

evolution of inequality and the evolution of aggregates. Both are determined endogenously and

simultaneously. One can easily come up with configurations in which inequality increases while

GDP does. The reverse is also possible. When reading the empirical literature examining the

relationship between inequality and growth, one wonders: Why do so many authors obtain

such widely different results? The complex relationship generated by a simple model such as

the one presented here provides a possible answer.
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Appendix

A Proofs

A.1 Proof of Lemma 1

I follow Aguiar and Amador (2009, footnote 16) in making the following change of variables
in problem (C). Let Vi = vi(φki) be my choice variables instead of ki, and define Ki(Vi) to
be the inverse function of v(φki).

27 Similarly, make utility itself the choice variable and let
c(ui) denote the inverse utility function, that is, the consumption required to deliver utility ui.
Problem (C) becomes

V (w0, k0) = max
{u1(t),u2(t),v1(t),v2(t)}

∫ ∞

0

e−ρ2tu2(t)dt s.t.

∫ ∞

0

e−ρ1tu1(t)dt ≥ w0, (35)

k̇ = z1f [K1(V1)] + z2f [K2(V2)] − δk − c(u1) − c(u2), (36)

k −K1(V1) −K2(V2) ≥ 0, k(0) = k0, (37)
∫ ∞

t

e−ρi(τ−t)ui(τ)dτ ≥ Vi(t), i = 1, 2, t ≥ 0. (38)

The objective function and constraints (35) and (38) are linear in choice variables. Since Ki(Vi)
is convex for i = 1, 2, (37) is concave. Finally, f [Ki(Vi)] is concave by assumption 2 so that
(36) is also convex.�

A.2 Proof of Lemma 2

Use the notation of the proof of Lemma 1. Define the utility possibility set

W(k0) =

{

(w1, w2) | wi ≤

∫ ∞

0

e−ρitui(t)dt, (36) to (38) hold

}

Because (36) to (38) are convex, and
∫ ∞

0
e−ρitui(t)dt is linear, the utility possibility set W(k0) is

convex. The Pareto frontier V (w0, k0) is the upper envelope of W(k0) which is then concave.�

A.3 Proof of Proposition 1

Part 1: Setting α̇ = 0, since ρ1 = ρ2 = ρ it must be that in steady state 0 = −α∗µ∗
2 + µ∗

1. By
assumption 1, only one of the constraints can bind. But then it must be that the other doesn’t
bind either, µ∗

i = 0, i = 1, 2. This immediately implies that

z1f
′(k∗1) = z2f

′(k∗2) = ρ+ δ

so that k∗ = k∗1 +k∗2 is the steady state capital stock of the standard neoclassical growth model.
Given k∗, any w∗ such that w∗ ≥ v1(φk

∗
1) and V (w∗, k∗) ≥ v2(φk

∗
2) satisfies µ∗

i = 0, i = 1, 2.
Now pick any such w∗. c∗1 is pinned down by w∗ = u(c∗1)/ρ1. Further, c∗2 = c∗ − c∗1 where
c∗ = z1f(k∗1) + z2f(k∗2)− δk∗. Given c∗2, λ

∗ = u′(c∗2) and α∗ = u′(c∗1)/u
′(c∗2). Summarizing, k∗ is

27Vi is simply the value of the outside option the entrepreneur would get from defaulting with any given
capital stock.
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unique but there are multiple steady state values of promised utility w∗ (see Figure 3). Given
a choice of w∗, (λ∗, α∗) are unique as well.

Part 2: Without loss of generality, consider the case ρ1 > ρ2. Then µ∗
1 = [ρ1 − ρ2]α

∗ > 0.
Since only one type’s enforcement constraint can bind, µ∗

2 = 0 so that

z1f
′(k∗1) > z2f

′(k∗2) = ρ2 + δ.

That is, marginal products aren’t equalized so that capital is misallocated.�

A.4 Proof of Proposition 2

I first present two Lemmas, which aid in establishing the proposition below. Their purpose is
to say more about the binding pattern of enforcement constraints.

Lemma 5 Assume ρ1 = ρ2 and further let assumptions 3 and 2 be satisfied. Then there will be
no reversals in the binding pattern of the constraint. That is, if for some t type 1’s constraint
binds, µ1(t) > 0, then type 2’s constraint can never bind, µ2(t) = 0 for all t (and vice versa).

Proof Step 1: Under the assumptions, all heterogeneity between the two agents is summarized
by the state (k, w), and the problem is otherwise symmetric. This is illustrated in Figure 8. It
follows from assumption 1 that any (w, k) such that V (w, k) = w must have both enforcement
constraints slack so that V (w, k) = V u(w, k). Furthermore, by symmetry if V [w(s), k(s)] =
w(s) for some s, then V [w(t), k(t)] = w(t) for all t > s. This is because then both types are
exactly identical at date s and will remain so.

Figure 8

Note:

Step 2: I next show that if µ1(t) > 0, then µ2(τ) = 0 for all τ > t. By way of contradiction,
suppose that µ1(t) > 0 but µ2(τ) > 0 for some τ > t. Because µ1(t) > 0, we know that
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w(t) < V (w(t), k(t)). Similarly, w(τ) > V (w(τ), k(τ)). Because w(t) is continuous in t, for
some t < s < τ , V (w(s), k(s)) = w(s). But this is a contradiction to what was said in Step 1.

Proof of Proposition 2.

Part 1: Without loss of generality consider the case where V (w0, k0) > w0. From 5, then
µ1(t) ≥ 0 and µ2(t) = 0 for all t. When ρ1 = ρ2, this immediately implies that the function
α(t) is nondecreasing. Therefore, limt→∞ α(t) = supt α(t). There are only two possible cases:

Case 1: supt α(t) = α∗ < ∞. This is only possible if µ(t) → 0 as t → ∞, implying the
desired result.

Case 2: supt α(t) = ∞. This implies u′(c1(t))/u
′(c2(t)) → 0 as t→ ∞. This is only possible

if either c1(t) → ∞ or c2(t) → 0. But then

lim
t→∞

w(t) > lim
t→∞

V (w(t), k(t)),

which is a contradition because by following similar steps as in Lemma 5, one can show that
V (w0, k0) > w0 implies V (w(t), k(t)) ≥ w(t) for all t.

Part 2: Suppose that α(t) converges to some α∗. Then α̇(t) → 0 and from (27), either
µ1(t) → µ∗

1 > 0 or µ2(t) → µ∗
2 > 0. Next, suppose that {α(t)}∞t=0 does not converge, i.e. it

oscillates. Then lim sup α̇(t) = lim inf α̇(t) = 0 so that, again from (27), lim supµi(t) > 0 for
one of i = 1, 2. Consequently distortions persist asymptotically.

A.5 Proof of Lemma 4

Consider U(c, x). Substituting in for the constraints

U(c, x) = u[c− u−1(x)]

Pick any θ ∈ (0, 1) and any c, c′, x, x′. Define cθ = θc + (1 − θ)c′, and similarly for xθ. I want
to show that U(cθ, xθ) > θU(c, x) + (1 − θ)U(c′, x′). This follows because

u[cθ − u−1(xθ)] > u[cθ − (θu−1(x) + (1 − θ)u−1(x′))] > θu[c− u−1(x)] + (1 − θ)u[c′ − u−1(x′)],

where the first inequality follows from the fact that the inverse of a concave function is convex.�

A.6 Proof of Lemma 3

The proof works with the Marcet and Marimon (1999) state space (α, k). By assumption 5,
α = −Vw[v1(φk

u
1 (k)), k] is independent of k. By assumption 2, the enforcement constraint

binds if α < α and is slack otherwise. Figure 9 is a phase diagram in (α, k) space under
assumption 5. The plane is divided into two parts depending on whether α ≷ α. Define
C ≡ {(α, k) ∈ S : α < α}. The enforcement constraint (3) binds if and only if (α, k) ∈ C.
The theorem is proven if I can show that an economy starting out in C, will never leave that
region. The arrows indicate what we know about the dynamics of (α, k). For α < α, we know
that α̇ = µ1 > 0, but the dynamics for k are unclear. For the part of the state space where
alpha ≥ α, the dynamics of the system are those of the unconstrained benchmark in section 1.3,
and we know that the aggregate capital stock converges to its steady state value k∗ while the
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steady states

α(φ)

1

k∗ k

π

continuum of

Figure 9: Illustration of Lemma 3

Note: .

Pareto weight α is constant. It can easily be seen from the figure 9 that an economy starting
out in C will never leave that region.�

A.7 Proof of Proposition 3

See Theorem 4.4. in Datta (1999). The theorem is originally due to Carlson and Schneider
(1963).

A.8 Proof of Proposition 4

First, recall that X and Y are both positive definite matrices. Define

W =

[

−Y 0
0 X

]

, M =

[

0 0
0 2ρX

]

We have that
WA+ ATW = M ≥ 0

Applying Theorem 3 we see that

In(A) = In(W ) = (n, n, 0)

where the second equality follows because W is block diagonal and its eigenvalues are those of
−Y and X.

A.9 Computation

TO BE DONE.
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