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Question
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(a) Top Income Inequality
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Survey of Consumer Finances
Saez and Zucman (2014)

(b) Top Wealth Inequality

• In U.S. past 40 years have seen (Piketty, Saez, Zucman & coauthors)

• rapid rise in top income inequality

• rise in top wealth inequality (rapid? gradual?)

• Why?
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Question

• Main fact about top inequality (since Pareto, 1896): upper
tails of income and wealth distribution follow power laws

• Equivalently, top inequality is fractal

1 ... top 0.01% are X times richer than top 0.1%,... are X times
richer than top 1%,... are X times richer than top 10%,...

2 ... top 0.01% share is fraction Y of 0.1% share,... is fraction
Y of 1% share, ... is fraction Y of 10% share,...
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Evolution of “Fractal Inequality”

1950 1960 1970 1980 1990 2000 2010

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Year

R
el

at
iv

e 
In

co
m

e 
S

ha
re

 

 

S(0.1)/S(1)
S(1)/S(10)

• S(p/10)
S(p) = fraction of top p% share going to top (p/10)%

• e.g. S(0.1)
S(1) = fraction of top 1% share going to top 0.1%

• Paper: same exercise for wealth
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This Paper

• Starting point: existing theories that explain top inequality
at point in time

• differ in terms of underlying economics

• but share basic mechanism for generating power laws:
random growth

• Our ultimate question: which specific economic theories can
also explain observed dynamics of top inequality?

• income: e.g. falling income taxes? superstar effects?

• wealth: e.g. falling capital taxes (rise in after-tax r − g)?

• What we do:

• study transition dynamics of cross-sectional distribution of
income/wealth in theories with random growth mechanism

• contrast with data, rule out some theories, rule in others
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Main Results

• Transition dynamics of standard random growth models
too slow relative to those observed in the data

• analytic formula for speed of convergence

• transitions particularly slow in upper tail of distribution

• jumps cannot generate fast transitions either

• Two parsimonious deviations that generate fast transitions

1 heterogeneity in mean growth rates

2 “superstar shocks” to skill prices

• Both only consistent with particular economic theories

• Rise in top income inequality due to

• simple tax stories, stories about Var(permanent earnings)

• rise of “superstar” entrepreneurs or managers

• Rise in top wealth inequality due to

• increase in r − g due to falling capital taxes

• rise in saving rates/RoRs of super wealthy
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Literature: Inequality and Random Growth

• Income distribution
• Champernowne (1953), Simon (1955), Mandelbrot (1961),

Nirei (2009), Toda (2012), Kim (2013), Jones and Kim
(2013), Aoki and Nirei (2014),...

• Wealth distribution
• Wold and Whittle (1957), Stiglitz (1969), Cowell (1998), Nirei

and Souma (2007), Benhabib, Bisin, Zhu (2012, 2014), Piketty
and Zucman (2014), Piketty and Saez (2014), Piketty (2015)

• Dynamics of income and wealth distribution
• Blinder (1973), but no Pareto tail

• Aoki and Nirei (2014)

• Power laws are everywhere ⇒ results useful there as well
• firm size distribution (e.g. Luttmer, 2007)

• city size distribution (e.g. Gabaix, 1999)

• ...
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Plan

1 Random growth theories of top inequality

• a simple theory of top income inequality

• stationary distribution

2 Slow transitions in the baseline model

3 Models that generate fast transitions

• heterogeneous mean growth rates

• “superstar shocks” to skill prices

• Today’s presentation: focus on top income inequality

• Paper: analogous results for top wealth inequality
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A Random Growth Theory of Income Dynamics

• Continuous time

• Continuum of workers, heterogeneous in human capital hit

• die/retire at rate δ, replaced by young worker with hi0

• Wage is wit = ωhit

• Human capital accumulation involves
• investment

• luck

• “Right” assumptions ⇒ wages evolve as

d logwit = µdt + σdZit

• growth rate of wage wit is stochastic

• µ, σ depend on model parameters

• Zit = Brownian motion, i.e. dZit ≡ lim∆t→0 εit
√
∆t, εit ∼ N (0, 1)

• A number of alternative theories lead to same reduced form
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Stationary Income Distribution
• Result: The stationary income distribution has a Pareto tail

Pr(w̃ > w) ∼ Cw−ζ
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p(x,t)= ζ e−ζ x

slope = −ζ

• ... with tail exponent

ζ =
−µ+

√
µ2 + 2σ2δ

σ2

• Tail inequality η = 1/ζ increasing in µ, σ, decreasing in δ

10 / 38



Other Theories of Top Inequality

• We confine ourselves to theories that generate power laws

• random growth

• models with superstars (assignment models) – more later

• Example of theories that do not generate power laws, i.e. do
not generate fractal feature of top income inequality:

• theories of rent-seeking (Benabou and Tirole, 2015; Piketty,
Saez and Stantcheva, 2014)

• someone should write that “rent-seeking ⇒ power law” paper!
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Transitions: The Thought Experiment
• σ ↑ leads to increase in stationary tail inequality

• But what about dynamics? Thought experiment:

• suppose economy is in Pareto steady state

• at t = 0, σ ↑. Know: in long-run → higher top inequality
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t = 0: slope = −ξ
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t = 0: slope = −ξ
t = ∞: slope = −ζ

• What can we say about the speed at which this happens?

1 average speed of convergence?

2 transition in upper tail?
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Transitions: Tools

• Convenient to work with xit = logwit

dxit = µdt + σdZit

• Need additional “friction” to ensure existence of stat. dist.

• income application: death/retirement at rate δ

• alternative: reflecting barrier

• Distribution p(x , t) satisfies

pt = −µpx +
σ2

2
pxx − δp + δδ0

where δ0 = Dirac delta function (point mass at x = 0)

• Useful to write in terms of differential operator A∗

pt = A∗p + δδ0, A∗p = −µpx +
σ2

2
pxx − δp

• A∗ = “transition matrix” for continuous-state process
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Average Speed of Convergence

• Proposition: p(x , t) converges to stationary distrib. p∞(x)

||p(x , t)− p∞(x)|| ∼ ke−λt

• without reflecting barrier, rate of convergence is

λ = δ

• with reflecting barrier, rate of convergence is

λ =
1

2

µ2

σ2
1{µ<0} + δ

• For given amount of top inequality η, speed λ(η, σ, δ) satisfies

∂λ

∂η
≤ 0,

∂λ

∂σ
≥ 0,

∂λ

∂δ
> 0

• Observations:
• high inequality goes hand in hand with slow transitions

• half life is t1/2 = ln(2)/λ⇒ precise quantitative predictions

• Rough idea: λ = 2nd eigenvalue of “transition matrix” A∗
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Rough Idea of Proof back

• To understand, suppose xit = finite-state Poisson process

• xit ∈ {x1, ..., xN} ⇒ distribution = vector p(t) ∈ RN

• dynamics
ṗ(t) = ATp(t),

where A = N × N (diagonolizable) transition matrix

• Denote eigenvalues by 0 = |λ1| < |λ2| < ... < |λN | and
corresponding eigenvectors by (v1, ..., vN)

• Theorem: p(t) converges to stationary dist. at rate |λ2|
• Proof sketch: decomposition

p(0) =
N∑
i=1

civi ⇒ p(t) =
N∑
i=1

cie
λi tvi

• Example: symmetric two-state Poisson process with intensity ϕ

A =

[
−ϕ ϕ
ϕ −ϕ

]
, ⇒ λ1 = 0, |λ2| = 2ϕ

Intuitively, speed |λ2| ↗ in switching intensity ϕ
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Rough Idea of Proof

• Here: generalize this idea to continuous-state process

• Consider Kolmogorov Forward equation for xit-process

pt = A∗p + δδ0, A∗p = −µpx +
σ2

2
pxx − δp

• Exact generalization of finite-state ṗ(t) = ATp(t)

• Proof has two steps:

1 realization that speed = second eigenvalue of operator A∗

2 analytic computation: |λ2| = 1
2
µ2

σ2 1{µ<0} + δ
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Transition in Upper Tail

• So far: average speed of convergence of whole distribution

• But care in particular about speed in upper tail

• Show: transition can be much slower in upper tail
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Instructive Special Case: Steindl Model

• The special case σ = 0, µ > 0 can be solved cleanly

• xt grows at rate µ, gets reset to x0 = 0 at rate δ

• stationary distribution p(x) = ζe−ζx , ζ = δ/µ

• Can show: for t, x > 0 density satisfies

∂p(x , t)

∂t
= −µ∂p(x , t)

∂x
− δp(x , t), p(x , 0) = αe−αx (∗)

• Result: the solution to (∗) is

p(x , t) = ζe−ζx1{x≤µt} + αe−αx+(α−ζ)t1{x>µt}

where 1{·} = indicator function
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Instructive Special Case: Steindl Model
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Observations:

1 transition is slower in upper tail: it takes time τ(x) = x/µ for
the local PL exponent to converge to its steady state value ζ

2 initially, tail exhibits parallel shift
19 / 38



Transition in Tail: General Case

• Distribution p(x , t) satisfies a Kolomogorov Forward Equation

pt = −µpx +
σ2

2
pxx − δp + δδ0 (∗)

• Can solve this, but not particularly instructive

• Instead, use so-called “Laplace transform” of p

p̂ (ξ, t) :=

∫ ∞

−∞
e−ξxp (x , t) dx = E

[
e−ξx

]
• p̂ has natural interpretation: −ξth moment of income/wealth
wit = exit

• e.g. p̂(−2, t) = E[w2
it ]
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Transition in Upper Tail

• Proposition: The Laplace transform of p, p̂ satisfies

p̂(ξ, t) = p̂∞(ξ) + (p̂0(ξ)− p̂∞(ξ)) e−λ(ξ)t

with moment-specific speed of convergence

λ(ξ) = µξ − σ2

2
ξ2 + δ

• Hence, for ξ < 0, the higher the moment −ξ, the slower the
convergence (for high enough |ξ| < ζ)

• Key step: Laplace transform transforms PDE (∗) into ODE

∂p̂(ξ, t)

∂t
= −ξµp̂(ξ, t) + ξ2

σ2

2
p̂(ξ, t)− δp̂(ξ, t) + δ
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Transition in Upper Tail
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Dynamics of Income Inequality

• Recall process for log wages

d logwit = µdt + σdZit + death at rate δ

• σ2 = Var(permanent earnings)

• Literature: σ has increased over last forty years

• documented by Kopczuk, Saez and Song (2010), DeBacker et
al. (2013), Heathcote, Perri and Violante (2010) using PSID

• but Guvenen, Ozkan and Song (2014): σ flat/decreasing in
SSA data

• Can increase in σ explain increase in top income
inequality?
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Dynamics of Income Inequality: Model vs. Data
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Data (Piketty and Saez)
Model Transition
Model Steady State

(a) Top 1% Labor Income Share
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(b) Pareto Exponent

• Experiment σ2 ↑ from 0.01 in 1973 to 0.025 in 2014
(Heathcote, Perri and Violante, 2010)

• Note: PL exponent η = 1 + log10
S(0.1)
S(1) (from S(0.1)

S(1) = 10η−1)
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Jumps Don’t Help Either

• Standard random growth model: income innovations are
log-normally distributed

• Recent research: not a good description of the data, e.g.
Guvenen-Karahan-Ozkan-Song:
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US Data

Normal (0.0.482)

• Natural question: can jumps generate fast transitions?

• Answer: no! While useful descriptively, jumps do not increase
the speed of convergence
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Jumps Don’t Help Either

• Extend income process to

dxit = µdt + σdZit + jumps with intensity ϕ drawn from f

• Proposition: With jumps, speed of convergence is

λ(ξ, ϕ) := ξµ− ξ2
σ2

2
+ δ − ϕ(f̂ (ξ)− 1)

f̂ (ξ) :=

∫ ∞

−∞
e−ξg f (g)dg ,

Jumps have no effect whatsoever on average speed of
convergence

λ = δ

and they slow down the speed of convergence in the tail

ξ < 0 ⇒ λ(ξ, ϕ) decreasing in ϕ
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OK, so what drives top inequality then?

Two candidates:

1 heterogeneity in mean growth rates

2 deviations from Gibrat’s law, e.g. due to changes in skill prices
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Heterogeneity in Mean Growth Rates

(A) Mean earnings by age
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• Guvenen, Kaplan and Song (2014): between age 25 and 35

• earnings of top 0.1% of lifetime inc. grow by ≈ 25% each year

• and only ≈ 3% per year for bottom 99%
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Heterogeneity in Mean Growth Rates

• Two regimes: H and L

dxit = µHdt + σHdZit

dxit = µLdt + σLdZit

• Assumptions
• µH > µL

• fraction θ enter labor force in H-regime

• switch from H to L at rate ψ, L = absorbing state

• retire at rate δ

• See Luttmer (2011) for similar model of firm dynamics

• Proposition: The dynamics of p̂(x , t) = E[e−ξx ] satisfy

p̂(ξ, t)− p̂∞(ξ) = cH(ξ)e
−λH(ξ)t + cL(ξ)e

−λL(ξ)t

λH(ξ) := ξµH − ξ2
σ2H
2

+ ψ + δ ≫ λL(ξ)

and cL(ξ), cH(ξ) = constants
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“Superstar shocks” to skill prices
• Second candidate for fast transitions: xit = logwit satisfies

xit = χtyit

dyit = µdt + σdZit
(∗)

i.e. wit = (eyit )χt and χt = stochastic process ̸= 1

• Note: implies deviations from Gibrat’s law

dxit = µdt + xitdSt + σdZit , St := logχt ̸= 0

• Call χt (equiv. St) “superstar shocks”

• Proposition: The process (∗) has an infinitely fast speed of
adjustment: λ = ∞. Indeed

ζxt = ζy/χt or ηxt = χtη
y

where ζxt , ζ
y are the PL exponents of incomes xit and yit .

• Intuition: if power χt jumps up, top inequality jumps up
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A Microfoundation for “Superstar Shocks”

• χt term can be microfounded with changing skill prices in
assignment models (Sattinger, 1979; Rosen, 1981)

• Here adopt Gabaix and Landier (2008)
• continuum of firms of different size S ∼ Pareto(1/αt).

• continuum of managers with different talent T , distribution

T (n) = Tmax − B
β n

βt

where n:= rank/quantile of manager talent

• Match generates firm value: constant ×TSγt

• Can show: w(n) = eatn−χt (= eat+χtyit , yit = − log nit)

χt = αtγt − βt

• Increase in χt due to
• βt , γt : (perceived) importance of talent in production,

e.g. due to ICT (Garicano & Rossi-Hansberg, 2006)

• Other assignment models (e.g. with rent-seeking,
inefficiencies) would yield similar microfoundation
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Empirical Evidence on “Superstar shocks”

1 Acemoglu and Autor (2011): “convexification” of skill prices

2 Recall

dxit = µdt + xitdSt + σdZit , St := logχt ̸= 0

Parker and Vissing-Jorgenson (2009) and Guvenen (2014) find
evidence of St shocks at business cycle frequencies
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Revisiting the Rise in Income Inequality

• Casual evidence: very rapid income growth rates since 1980s
(Bill Gates, Mark Zuckerberg)

• Jones and Kim (2015): in IRS/SSA data, average growth rate
in upper tail of the growth rate distribution ↑ since late 1970s

• Experiment in model with het. growth rates: in 1973 growth
rate of H-types ↑ by 8%

1950 2000 2050
5

10

15

20

25

30

Year

T
op

 1
%

 L
ab

or
 In

co
m

e 
S

ha
re

 

 

Data (Piketty and Saez)
Model w High Growth Regime
Model Steady State

(a) Top 1% Labor Income Share

1950 2000 2050
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Year

η(
1)

 

 

Data (Piketty and Saez)
Model w High Growth Regime
Model Steady State

(b) Pareto Exponent
33 / 38



Wealth Inequality and Capital Taxes

• A simple model of top wealth inequality based on Piketty and
Zucman (2015, HID), Piketty (2015, AERPP),...

dwit = [y + (r − g − θ)wit ]dt + σwitdZit

r = (1− τ)r̃ , σ = (1− τ)σ̃

• y : labor income

• Ritdt = rdt + σdZit : after-tax return on wealth

• τ : capital tax rate

• g : economy-wide growth rate

• θ: MPC out of wealth

• Stationary top inequality

η =
1

ζ
=

σ2/2

σ2/2− (r − g − θ)

• Can r − g explain observed dynamics of wealth
inequality?
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Wealth Inequality and Capital Taxes

• Compute rt − gt = r̃t(1− τt)− gt with details

• r̃t from Piketty and Zucman (2014)

• τt = capital tax rates from Auerbach and Hassett (2015)

• gt = smoothed growth rate from PWT
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• σ = 0.3 = upper end of estimates from literature

• θ calibrated to match inequality in 1978
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Dynamics of Wealth Inequality
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OK, so what drives top wealth inequality then?

• Rise in rate of returns of super wealthy relative to wealthy
(top 0.01 vs. top 1%)

• better investment advice?

• better at taking advantage of “tax loopholes”?

• Kacperczyk, Nosal and Stevens (2015) provide some evidence

• Rise in saving rates of super wealthy relative to wealthy

• Saez and Zucman (2014) provide some evidence
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Conclusion

• Transition dynamics of standard random growth models
too slow relative to those observed in the data

• Two parsimonious deviations that generate fast transitions

1 heterogeneity in mean growth rates

2 “superstar shocks” to skill prices

• Rise in top income inequality due to

• simple tax stories, stories about Var(permanent earnings)

• rise in superstar growth (and churn) in two-regime world

• “superstar shocks” to skill prices

• Rise in top wealth inequality due to

• increase in r − g due to falling capital taxes

• rise in saving rates/RoRs of super wealthy
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