The Dynamics of Inequality

XAVIER GABAIX NYU Stern JEAN-MICHEL LASRY Dauphine

PIERRE-LOUIS LIONS Collège de France BENJAMIN MOLL Princeton

NBER Summer Institute Working Group on Income Distribution and Macroeconomics

July 15, 2015

Question

- In U.S. past 40 years have seen (Piketty, Saez, Zucman & coauthors)
 - rapid rise in top income inequality
 - rise in top wealth inequality (rapid? gradual?)
- Why?

Question

- Main fact about top inequality (since Pareto, 1896): upper tails of income and wealth distribution follow power laws
- Equivalently, top inequality is fractal
 - ... top 0.01% are X times richer than top 0.1%,... are X times richer than top 1%,... are X times richer than top 10%,...
 - ... top 0.01% share is fraction Y of 0.1% share,... is fraction Y of 1% share, ... is fraction Y of 10% share,...

Evolution of "Fractal Inequality"

- \$\frac{S(p/10)}{S(p)}\$ = fraction of top p\% share going to top (p/10)\%
 e.g. \$\frac{S(0.1)}{S(1)}\$ = fraction of top 1\% share going to top 0.1\%
- Paper: same exercise for wealth

This Paper

- Starting point: existing theories that explain top inequality at point in time
 - differ in terms of underlying economics
 - but share basic mechanism for generating power laws: random growth
- **Our ultimate question:** which specific economic theories can also explain observed **dynamics** of top inequality?
 - income: e.g. falling income taxes? superstar effects?
 - wealth: e.g. falling capital taxes (rise in after-tax r g)?

• What we do:

- study transition dynamics of cross-sectional distribution of income/wealth in theories with random growth mechanism
- contrast with data, rule out some theories, rule in others

Main Results

- Transition dynamics of standard random growth models **too slow** relative to those observed in the data
 - analytic formula for speed of convergence
 - transitions particularly slow in **upper tail** of distribution
 - jumps cannot generate fast transitions either
- Two parsimonious deviations that generate fast transitions
 - 1 heterogeneity in mean growth rates
 - 2 "superstar shocks" to skill prices
- Both only consistent with particular economic theories
- Rise in top income inequality due to
 - simple tax stories, stories about Var(permanent earnings)
 - rise of "superstar" entrepreneurs or managers
- Rise in top wealth inequality due to
 - increase in r g due to falling capital taxes
 - rise in saving rates/RoRs of super wealthy

Literature: Inequality and Random Growth

• Income distribution

- Champernowne (1953), Simon (1955), Mandelbrot (1961), Nirei (2009), Toda (2012), Kim (2013), Jones and Kim (2013), Aoki and Nirei (2014),...
- Wealth distribution
 - Wold and Whittle (1957), Stiglitz (1969), Cowell (1998), Nirei and Souma (2007), Benhabib, Bisin, Zhu (2012, 2014), Piketty and Zucman (2014), Piketty and Saez (2014), Piketty (2015)
- Dynamics of income and wealth distribution
 - Blinder (1973), but no Pareto tail
 - Aoki and Nirei (2014)
- Power laws are everywhere ⇒ results useful there as well
 - firm size distribution (e.g. Luttmer, 2007)
 - city size distribution (e.g. Gabaix, 1999)

• ..

Plan

1 Random growth theories of top inequality

- a simple theory of top income inequality
- stationary distribution
- **2** Slow transitions in the baseline model
- 3 Models that generate fast transitions
 - heterogeneous mean growth rates
 - "superstar shocks" to skill prices
 - Today's presentation: focus on top income inequality
- Paper: analogous results for top wealth inequality

A Random Growth Theory of Income Dynamics

- Continuous time
- Continuum of workers, heterogeneous in human capital h_{it}
- die/retire at rate δ , replaced by young worker with h_{i0}
- Wage is $w_{it} = \omega h_{it}$
- Human capital accumulation involves
 - investment
 - luck
- "Right" assumptions \Rightarrow wages evolve as

$$d \log w_{it} = \mu dt + \sigma dZ_{it}$$

- growth rate of wage w_{it} is stochastic
- μ,σ depend on model parameters
- $Z_{it} = \text{Brownian motion, i.e. } dZ_{it} \equiv \lim_{\Delta t \to 0} \varepsilon_{it} \sqrt{\Delta t}, \varepsilon_{it} \sim \mathcal{N}(0, 1)$
- A number of alternative theories lead to same reduced form

Stationary Income Distribution

• Result: The stationary income distribution has a Pareto tail

$$\mathsf{Pr}(ilde{w} > w) \sim Cw^{-\zeta}$$

... with tail exponent

$$\zeta = \frac{-\mu + \sqrt{\mu^2 + 2\sigma^2 \delta}}{\sigma^2}$$

• Tail inequality $\eta=1/\zeta$ increasing in $\mu,\sigma,$ decreasing in δ

Other Theories of Top Inequality

- We confine ourselves to theories that generate power laws
 - random growth
 - models with superstars (assignment models) more later
- Example of theories that do not generate power laws, i.e. do not generate **fractal feature** of top income inequality:
 - theories of rent-seeking (Benabou and Tirole, 2015; Piketty, Saez and Stantcheva, 2014)
 - someone should write that "rent-seeking \Rightarrow power law" paper!

Transitions: The Thought Experiment

- $\sigma \uparrow$ leads to increase in stationary tail inequality
- But what about dynamics? Thought experiment:
 - suppose economy is in Pareto steady state
 - at t = 0, $\sigma \uparrow$. Know: in long-run \rightarrow higher top inequality

Transitions: Tools

• Convenient to work with $x_{it} = \log w_{it}$

$$dx_{it} = \mu dt + \sigma dZ_{it}$$

- Need additional "friction" to ensure existence of stat. dist.
 - income application: death/retirement at rate δ
 - alternative: reflecting barrier
- Distribution p(x, t) satisfies

$$p_t = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p + \delta \delta_0$$

where $\delta_0 = \text{Dirac}$ delta function (point mass at x = 0)

- Useful to write in terms of differential operator \mathcal{A}^\ast

$$p_t = \mathcal{A}^* p + \delta \delta_0, \quad \mathcal{A}^* p = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p$$

• $\mathcal{A}^* =$ "transition matrix" for continuous-state process

Average Speed of Convergence

- Proposition: p(x, t) converges to stationary distrib. $p_{\infty}(x)$ $||p(x, t) - p_{\infty}(x)|| \sim ke^{-\lambda t}$
 - without reflecting barrier, rate of convergence is

$$\lambda = \delta$$

• with reflecting barrier, rate of convergence is

$$\lambda = \frac{1}{2} \frac{\mu^2}{\sigma^2} \mathbf{1}_{\{\mu < \mathbf{0}\}} + \delta$$

• For given amount of top inequality η , speed $\lambda(\eta, \sigma, \delta)$ satisfies

$$rac{\partial\lambda}{\partial\eta} \leq 0, \quad rac{\partial\lambda}{\partial\sigma} \geq 0, \quad rac{\partial\lambda}{\partial\delta} > 0$$

- Observations:
 - high inequality goes hand in hand with slow transitions
 - half life is $t_{1/2} = \ln(2)/\lambda \Rightarrow$ precise quantitative predictions
- Rough idea: $\lambda = 2$ nd eigenvalue of "transition matrix" \mathcal{A}^*

- To understand, suppose x_{it} = finite-state Poisson process
 - $x_{it} \in \{x_1, ..., x_N\} \Rightarrow \text{distribution} = \text{vector } p(t) \in \mathbb{R}^N$
 - dynamics

$$\dot{p}(t) = \mathbf{A}^T p(t),$$

where $\mathbf{A} = N \times N$ (diagonolizable) transition matrix

- Denote eigenvalues by $0 = |\lambda_1| < |\lambda_2| < ... < |\lambda_N|$ and corresponding eigenvectors by $(v_1, ..., v_N)$
- Theorem: p(t) converges to stationary dist. at rate $|\lambda_2|$
- Proof sketch: decomposition

$$p(0) = \sum_{i=1}^{N} c_i v_i \quad \Rightarrow \quad p(t) = \sum_{i=1}^{N} c_i e^{\lambda_i t} v_i$$

• Example: symmetric two-state Poisson process with intensity ϕ

$$\mathbf{A} = \begin{bmatrix} -\phi & \phi \\ \phi & -\phi \end{bmatrix}, \quad \Rightarrow \quad \lambda_1 = 0, \quad |\lambda_2| = 2\phi$$

Intuitively, speed $|\lambda_2|\nearrow$ in switching intensity ϕ

Rough Idea of Proof

- Here: generalize this idea to continuous-state process
- Consider Kolmogorov Forward equation for x_{it}-process

$$p_t = \mathcal{A}^* p + \delta \delta_0, \quad \mathcal{A}^* p = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p$$

- Exact generalization of finite-state $\dot{p}(t) = \mathbf{A}^T p(t)$
- Proof has two steps:

1 realization that speed = second eigenvalue of operator \mathcal{A}^*

2) analytic computation:
$$|\lambda_2| = \frac{1}{2} \frac{\mu^2}{\sigma^2} \mathbf{1}_{\{\mu < 0\}} + \delta$$

Transition in Upper Tail

- So far: average speed of convergence of whole distribution
- But care in particular about speed in upper tail
- Show: transition can be much slower in upper tail

Instructive Special Case: Steindl Model

- The special case $\sigma=\mathbf{0}, \mu>\mathbf{0}$ can be solved cleanly
 - x_t grows at rate μ , gets reset to $x_0 = 0$ at rate δ
 - stationary distribution $p(x) = \zeta e^{-\zeta x}, \zeta = \delta/\mu$
- Can show: for t, x > 0 density satisfies

$$\frac{\partial p(x,t)}{\partial t} = -\mu \frac{\partial p(x,t)}{\partial x} - \delta p(x,t), \quad p(x,0) = \alpha e^{-\alpha x} \quad (*)$$

• **Result:** the solution to (*) is

$$p(x,t) = \zeta e^{-\zeta x} \mathbf{1}_{\{x \le \mu t\}} + \alpha e^{-\alpha x + (\alpha - \zeta)t} \mathbf{1}_{\{x > \mu t\}}$$

where $\mathbf{1}_{\{\cdot\}} = \mathsf{indicator}$ function

Instructive Special Case: Steindl Model

Observations:

- transition is slower in upper tail: it takes time τ(x) = x/μ for the local PL exponent to converge to its steady state value ζ
- 2 initially, tail exhibits parallel shift

Transition in Tail: General Case

• Distribution p(x, t) satisfies a Kolomogorov Forward Equation

$$p_t = -\mu p_x + \frac{\sigma^2}{2} p_{xx} - \delta p + \delta \delta_0 \qquad (*)$$

- Can solve this, but not particularly instructive
- Instead, use so-called "Laplace transform" of p

$$\widehat{p}(\xi,t) := \int_{-\infty}^{\infty} e^{-\xi x} p(x,t) \, dx = \mathbb{E}\left[e^{-\xi x}\right]$$

• \hat{p} has natural interpretation: $-\xi$ th moment of income/wealth $w_{it} = e^{x_{it}}$

• e.g.
$$\widehat{p}(-2,t) = \mathbb{E}[w_{it}^2]$$

Transition in Upper Tail

• **Proposition:** The Laplace transform of p, \hat{p} satisfies

$$\widehat{p}(\xi,t) = \widehat{p}_{\infty}(\xi) + (\widehat{p}_{0}(\xi) - \widehat{p}_{\infty}(\xi)) e^{-\lambda(\xi)t}$$

with moment-specific speed of convergence

$$\lambda(\xi) = \mu\xi - \frac{\sigma^2}{2}\xi^2 + \delta$$

- Hence, for ξ < 0, the higher the moment −ξ, the slower the convergence (for high enough |ξ| < ζ)
- Key step: Laplace transform transforms PDE (*) into ODE

$$\frac{\partial \widehat{p}(\xi,t)}{\partial t} = -\xi \mu \widehat{p}(\xi,t) + \xi^2 \frac{\sigma^2}{2} \widehat{p}(\xi,t) - \delta \widehat{p}(\xi,t) + \delta$$

Transition in Upper Tail

Dynamics of Income Inequality

Recall process for log wages

$$d \log w_{it} = \mu dt + \sigma dZ_{it} + death at rate \delta$$

•
$$\sigma^2 = Var(permanent earnings)$$

- Literature: σ has increased over last forty years
 - documented by Kopczuk, Saez and Song (2010), DeBacker et al. (2013), Heathcote, Perri and Violante (2010) using PSID
 - but Guvenen, Ozkan and Song (2014): σ flat/decreasing in SSA data
- Can increase in σ explain increase in top income inequality?

Dynamics of Income Inequality: Model vs. Data

- Experiment $\sigma^2 \uparrow$ from 0.01 in 1973 to 0.025 in 2014 (Heathcote, Perri and Violante, 2010)
- Note: PL exponent $\eta = 1 + \log_{10} \frac{S(0.1)}{S(1)}$ (from $\frac{S(0.1)}{S(1)} = 10^{\eta-1}$)

Jumps Don't Help Either

- Standard random growth model: income innovations are log-normally distributed
- Recent research: not a good description of the data, e.g. Guvenen-Karahan-Ozkan-Song:

- Natural question: can jumps generate fast transitions?
- Answer: no! While useful descriptively, jumps do not increase the speed of convergence

Jumps Don't Help Either

Extend income process to

 $dx_{it} = \mu dt + \sigma dZ_{it} + \text{jumps with intensity } \phi \text{ drawn from } f$

• Proposition: With jumps, speed of convergence is

$$egin{aligned} \lambda(\xi,\phi) &:= \xi \mu - \xi^2 rac{\sigma^2}{2} + \delta - \phi(\widehat{f}(\xi) - 1) \ \widehat{f}(\xi) &:= \int_{-\infty}^\infty e^{-\xi g} f(g) dg, \end{aligned}$$

Jumps have no effect whatsoever on average speed of convergence

$$\lambda = \delta$$

and they slow down the speed of convergence in the tail

$$\xi < 0 \quad \Rightarrow \quad \lambda(\xi, \phi) \text{ decreasing in } \phi$$

OK, so what drives top inequality then?

Two candidates:

- 1 heterogeneity in mean growth rates
- 2 deviations from Gibrat's law, e.g. due to changes in skill prices

Heterogeneity in Mean Growth Rates

(A) Mean earnings by age

- Guvenen, Kaplan and Song (2014): between age 25 and 35
 - earnings of top 0.1% of lifetime inc. grow by $\approx 25\%$ each year
 - and only $\approx 3\%$ per year for bottom 99%

Heterogeneity in Mean Growth Rates

• Two regimes: H and L

$$dx_{it} = \mu_H dt + \sigma_H dZ_{it}$$
$$dx_{it} = \mu_L dt + \sigma_L dZ_{it}$$

- Assumptions
 - $\mu_{H} > \mu_{L}$
 - fraction θ enter labor force in *H*-regime
 - switch from H to L at rate ψ , L = absorbing state
 - retire at rate δ
- See Luttmer (2011) for similar model of firm dynamics

• **Proposition:** The dynamics of $\hat{p}(x, t) = \mathbb{E}[e^{-\xi x}]$ satisfy $\hat{p}(\xi, t) - \hat{p}_{\infty}(\xi) = c_{H}(\xi)e^{-\lambda_{H}(\xi)t} + c_{L}(\xi)e^{-\lambda_{L}(\xi)t}$ $\lambda_{H}(\xi) := \xi\mu_{H} - \xi^{2}\frac{\sigma_{H}^{2}}{2} + \psi + \delta \gg \lambda_{L}(\xi)$

and $c_L(\xi), c_H(\xi) = \text{constants}$

"Superstar shocks" to skill prices

• Second candidate for fast transitions: $x_{it} = \log w_{it}$ satisfies

$$x_{it} = \chi_t y_{it}$$

$$dy_{it} = \mu dt + \sigma dZ_{it}$$
 (*)

i.e. $w_{it} = (e^{y_{it}})^{\chi_t}$ and $\chi_t = \text{stochastic process} \neq 1$

Note: implies deviations from Gibrat's law

$$dx_{it} = \mu dt + x_{it} dS_t + \sigma dZ_{it}, \quad S_t := \log \chi_t \neq 0$$

- Call χ_t (equiv. S_t) "superstar shocks"
- Proposition: The process (*) has an infinitely fast speed of adjustment: λ = ∞. Indeed

$$\zeta_t^x = \zeta^y / \chi_t$$
 or $\eta_t^x = \chi_t \eta^y$

where ζ_t^x , ζ^y are the PL exponents of incomes x_{it} and y_{it} .

• Intuition: if power χ_t jumps up, top inequality jumps up

A Microfoundation for "Superstar Shocks"

- χ_t term can be microfounded with changing skill prices in assignment models (Sattinger, 1979; Rosen, 1981)
- Here adopt Gabaix and Landier (2008)
 - continuum of firms of different size $S \sim \text{Pareto}(1/\alpha_t)$.
 - continuum of managers with different talent T, distribution

$$T(n) = T_{\max} - \frac{B}{\beta}n^{\beta_t}$$

where n := rank/quantile of manager talent

- Match generates firm value: constant $imes TS^{\gamma_t}$
- Can show: $w(n) = e^{a_t} n^{-\chi_t} (= e^{a_t + \chi_t y_{it}}, y_{it} = -\log n_{it})$

$$\chi_t = \alpha_t \gamma_t - \beta_t$$

- Increase in χ_t due to
 - β_t, γ_t: (perceived) importance of talent in production, e.g. due to ICT (Garicano & Rossi-Hansberg, 2006)
- Other assignment models (e.g. with rent-seeking, inefficiencies) would yield similar microfoundation

Empirical Evidence on "Superstar shocks"

1 Acemoglu and Autor (2011): "convexification" of skill prices

2 Recall

$$dx_{it} = \mu dt + x_{it} dS_t + \sigma dZ_{it}, \quad S_t := \log \chi_t \neq 0$$

Parker and Vissing-Jorgenson (2009) and Guvenen (2014) find evidence of S_t shocks at business cycle frequencies

Revisiting the Rise in Income Inequality

- Casual evidence: very rapid income growth rates since 1980s (Bill Gates, Mark Zuckerberg)
- Jones and Kim (2015): in IRS/SSA data, average growth rate in upper tail of the growth rate distribution ↑ since late 1970s
- Experiment in model with het. growth rates: in 1973 growth rate of *H*-types ↑ by 8%

Wealth Inequality and Capital Taxes

• A simple model of top wealth inequality based on Piketty and Zucman (2015, HID), Piketty (2015, AERPP),...

$$dw_{it} = [y + (r - g - \theta)w_{it}]dt + \sigma w_{it}dZ_{it}$$
$$r = (1 - \tau)\tilde{r}, \quad \sigma = (1 - \tau)\tilde{\sigma}$$

- y: labor income
- $R_{it}dt = rdt + \sigma dZ_{it}$: after-tax return on wealth
- τ: capital tax rate
- g: economy-wide growth rate
- θ : MPC out of wealth
- Stationary top inequality

$$\eta = \frac{1}{\zeta} = \frac{\sigma^2/2}{\sigma^2/2 - (r - g - \theta)}$$

• Can *r* – *g* explain observed dynamics of wealth inequality?

Wealth Inequality and Capital Taxes

- Compute $r_t g_t = \widetilde{r}_t(1 au_t) g_t$ with lacksquare details
 - \tilde{r}_t from Piketty and Zucman (2014)
 - τ_t = capital tax rates from Auerbach and Hassett (2015)
 - $g_t =$ smoothed growth rate from PWT

- $\sigma = 0.3 =$ upper end of estimates from literature
- θ calibrated to match inequality in 1978

Dynamics of Wealth Inequality

Note: PL exponent $\eta = 1 + \log_{10} \frac{S(0.1)}{S(1)}$ (from $\frac{S(0.1)}{S(1)} = 10^{\eta-1}$)

OK, so what drives top wealth inequality then?

- Rise in **rate of returns** of super wealthy relative to wealthy (top 0.01 vs. top 1%)
 - better investment advice?
 - better at taking advantage of "tax loopholes"?
 - Kacperczyk, Nosal and Stevens (2015) provide some evidence
- Rise in saving rates of super wealthy relative to wealthy
 - Saez and Zucman (2014) provide some evidence

Conclusion

- Transition dynamics of standard random growth models **too slow** relative to those observed in the data
- Two parsimonious deviations that generate fast transitions
 - 1 heterogeneity in mean growth rates
 - 2 "superstar shocks" to skill prices
- Rise in top **income** inequality due to
 - simple tax stories, stories about Var(permanent earnings)
 - rise in superstar growth (and churn) in two-regime world
 - "superstar shocks" to skill prices
- Rise in top wealth inequality due to
 - increase in *r* g due to falling capital taxes
 - rise in saving rates/RoRs of super wealthy