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J Proof of Proposition 2

Xavier Gabaix, Jean-Michel Lasry, Pierre-Louis Lions, Benjamin Moll and Zhaonan Qu

J.1 Proof of Proposition 2: Case without lower bound (“non-

ergodic”).

The proof strategy is roughly as follows. We take an initial distribution that is essentially

completely in the “upper tail” (above some very large R > 0). There, the process is basically

a constant-coefficient process. Then, as in Proposition 1, the speed of convergence is δ. For

an arbitrary initial distribution, there is a small perturbation, with a small mass in the upper

tail, that ensures a speed arbitrarily close to δ.

Take q (x, t) = eδt (p (x, t)− p∞ (x)). Then,

qt = − (µq)x + (Dq)xx , D(x) :=
σ2(x)

2

with initial condition q(x, 0) = q0(x) = p0(x)− p∞(x).

Call S (t) the solution semi-group for the equation qt = − (µq)x + (Dq)xx, i.e. q (x, t) =

(S (t) q0) (x) and S (t+ s) = S (t)S (s).

We define

λ (q) := −limt→∞
1

t
log ‖S (t) q‖L1 (94)

Given that for all t, ‖S (t) q‖L1 ≤ ‖q‖L1 , we have λ (q) ≥ 0.

Observe that semi-group S (t) “removed a factor δ”. Hence, proving the Proposition 2

here is proving that, for a given p0, there is a p̃0 arbitrarily close to p0 such that λ (p̃0 − p∞) =

0.

We start with a generally useful lemma.

Lemma 11 (The slowest convergence wins) Suppose two distributions q, r with λ (q) < λ (r).

Then, λ (q + r) = λ (q).

Hence, if there are two distributions with λ (q) < λ (r), the convergence rate of q + r is

the convergence rate of q, the slowest (if λ (q) = λ (r), we could have λ (q + r) < λ (q)).
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Proof of Lemma 11 The definition (94) implies that, for all ε > 0 small enough,

∃T,∀t ≥ T
1

t
log ‖S (t) q‖ ≤ −λ (q) + ε

and there is a series (tn), tn →∞, such that

1

tn
log ‖S (tn) q‖ ≥ −λ (q)− ε

There is an equivalent characterization of λ (q) that we will use, by exponentiating and

introducing constants: for all ε > 0 small enough, ∃T,C > 0, ∀t ≥ T

‖S (t) q‖ ≤ Ce−(λ(q)−ε)t (95)

and there is a series (tn), tn →∞, and a constant C ′ > 0, such that

‖S (tn) q‖ ≥ C ′e−(λ(q)+ε)tn (96)

Now, given a small ε > 0, the above characterization gives Tq, Cq etc. Set T = max (Tq, Tr).

We have, for all t ≥ T ,

‖S (t) (q + r)‖ ≤ ‖S (t) q‖+ ‖S (t) r‖ ≤ Cqe
−(λ(q)−ε)t + Cre

−(λ(r)−ε)t

‖S (t) (q + r)‖ ≤ (Cq + Cr) e
−(λ(q)−ε)t (97)

Next, we have a series tn such that ‖S (tn) q‖ ≥ C ′qe
−(λ(q)+ε)tn . That implies:

‖S (tn) (q + r)‖ ≥ ‖S (tn) q‖ − ‖S (tn) r‖ ≥ C ′qe
−(λ(q)+ε)tn − Cre−(λ(r)−ε)tn

We suppose that ε is small enough so that λ (q) + ε < λ (r) − ε. For tn large enough,

Cre
−(λ(r)−ε)tn ≤ 1

2
C ′qe

−(λ(q)+ε)tn , so that

‖S (tn) (q + r)‖ ≥ 1

2
C ′qe

−(λ(q)+ε)tn (98)

Letting ε→ 0 proves that λ (q + r) = λ (q).�

We define ‖f‖L1,∞ := ‖f‖L1 + ‖f‖L∞ =
∫
|f | dx + supx |f (x)| is the sum of the L1 and

L∞ norm, which is a norm for L1,∞ := L1 ∩ L∞.

We show a Lemma which means, in some sense, that the worse case speed has to be 0.
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Lemma 12 For all ε > 0,

sup

{
‖S (t) q0‖L1 e

εt : t ≥ 0, ‖q0‖1,∞ ≤ 1,

∫
q0 = 0

}
=∞ (99)

Proof of the Lemma 12 Suppose by contradiction that (99) is not true. There is a

ε > 0 and a C > 0 such that for all ‖q0‖1,∞ ≤ 1,
∫
q0 = 0∫ ∞

−∞
|q (x, t)| dx ≤ Ce−εt. (100)

We will reach a contradiction. Define,

q(R) (x) := q(x+R), µ(R) (x) := µ (x+R) , D(R) (x) := D (x+R)

so that q(R) satisfies the equation

q
(R)
t = −

(
µ(R)q(R)

)
x

+
(
D(R)q(R)

)
xx
.

Let’s consider a given distribution Q0 (x) which is C∞ and with compact support and

with ‖Q0‖1,∞ ≤ 1. Consider the particular initial condition

q(R)(x, 0) = Q0(x). (101)

Consider also the equation qt = − (µq)x+(Dq)xx with initial condition q0 (x) := Q0 (x−R).

Then, for all time t,

q (x, t) = q(R) (x−R, t) . (102)

Also, it follows from (100) that
∫∞
−∞ |q (x, t)| dx ≤ Ce−εt. Given that

∫∞
−∞ |q (x, t)| dx =∫∞

−∞

∣∣q(R) (x, t)
∣∣ dx we have: ∫ ∞

−∞

∣∣q(R) (x, t)
∣∣ dx ≤ Ce−εt.

Now, taking the limit as R → ∞ and using Fatou’s Lemma, we have83 a limit function

83The argument for the existence relies on Prokhorov’s Theorem. The family of measures |qR(x, t)| is
tight, so by Prokhorov’s Theorem there exists a subsequence converging weakly (in the sense of measures)
to some limit. Then pass to the limit in the sense of distributions (say) the limit is a solution of the limit
equation. It is unique and smooth, as in the theory of the heat equation.

43



q(∞), with initial condition q(∞)(x, 0) = Q0(x), such that:∫ ∞
−∞

∣∣q(∞) (x, t)
∣∣ dx ≤ Ce−εt (103)

where q(∞) satisfies

q
(∞)
t = −

(
µ̄q(∞)

)
x

+
(
D̄q(∞)

)
xx
. (104)

But this is exactly the same equation as (69) in the Proof of Proposition 1. And we saw that

the solution q(∞)(x) does not decay exponentially (via the heat equation). This contradicts

(103).�

We next refine Lemma 12 to show the existence of a particular q∗ such that λ (q∗) = 0.

Lemma 13 There is a q∗ ∈ L1 ∩ L∞ with
∫
q∗ = 0 such that λ (q∗) = 0.

Proof of Lemma 13 From the Banach-Steinhaus theorem84 and (99), there is a q∗ ∈
L1, ‖q∗‖L1,∞ ≤ 1,

∫
q∗dx = 0, such that

sup
t≥0
‖S (t) q∗‖L1 e

εt =∞

i.e. λ (q∗) ≤ 0. Given that for all q, λ (q) ≥ 0, we have λ (q∗) = 0.�

Let us conclude the proof. We start from a given p0. If λ (p0 − p∞) = 0, we are all

set. If λ (p0 − p∞) > 0, take a q∗ given by Lemma 13. We consider a nearby density

p̃0 := (1− ε1) p0 + ε1p∞ + ε2q∗, with ε1 > 0 arbitrarily small. To make sure that p̃0 ≥ 0, we

impose: ε2 ‖q∗‖L∞ < ε1 ‖p∞‖L∞ . Next, we have p̃0−p∞ = (1− ε1) (p0 − p∞)+ε2q∗. Applying

Lemma 11 to q = ε2q∗ and r = (1− ε1) (p0 − p∞) with λ (q) = 0 < λ (r) = λ (p0 − p∞), we

obtain: λ (q + r) = λ (q) = 0, i.e., given p̃0 − p∞ = q + r,

λ (p̃0 − p∞) = 0

Hence, we found a p̃0 arbitrarily close to p0, whose speed of convergence is 0.�

J.2 Proof of Proposition 2: Case with a lower bound (“ergodic”)

We here prove the statement for the case with a lower bound on income (either a reflecting

barrier or exit with reinjection). For simplicity, we first focus on the case without death

δ = 0 and constant coefficients µ(x, t) = µ̄, σ(x, t) = σ̄. The generalization to variable

84Here the family of continuous mappings is S(t)eεt indexed by t from L1 to L1.
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coefficients is then relatively straightforward using a “translation at infinity” argument, and

the case δ > 0 will also be a direct generalization. Note that the constant coefficient case

with reflecting barrier has already been proven in Proposition 1. However in this section

we employ a different approach involving “energy methods” that gives a treatment to a

one-parameter family of models emcompassing both reflection and exit with reinjection.

J.2.1 Setting the stage: a unified one-parameter model with a lower bound

We start by remarking that one can embed the model with exit and reinjection and the

model with a reflecting barrier in a one-parameter family of models.

Let A∗ be the operator

A∗p : =
σ2

2

∂2p

∂x2
− µ∂p

∂x
+
σ2

2

1− θ
θ

p(0)ρ(x)

with µ < 0 and boundary condition

σ2

2
px(0)− µp(0) =

σ2

2

1− θ
θ

p(0) (105)

where θ ∈ [0, 1]. This recovers the special cases of pure reflection, θ = 1, and pure exit

with reinjection, θ = 0. When θ = 1, we get A∗ = σ2

2
∂2p
∂x2 − µ ∂p∂x with boundary condition

σ2

2
px(0)−µp(0) = 0, consistent with the pure reflection case. When θ = 0, (105) implies the

boundary condition p(0) = 0 and

lim
θ→0

σ2

2

1− θ
θ

p(0) =
σ2

2
px(0) (106)

and therefore substituting into A∗p = σ2

2
∂2p
∂x2 − µ ∂p∂x + σ2

2
1−θ
θ
p(0)ρ(x), we have A∗p = σ2

2
∂2p
∂x2 −

µ ∂p
∂x

+ σ2

2
px(0)ρ(x) consistent with the exit with reinjection case.

Let p∞ be the solution85 to

A∗p∞ =
σ2

2

∂2

∂x2
p∞ − µ

∂

∂x
p∞ +

σ2

2

1− θ
θ

p∞(0)ρ = 0 (107)

We would like p∞ to be the generalized stationary distribution, that is p ≥ 0 and
∫∞

0
p∞dx =

1. Note that p∞ multiplied by any constant c remains a solution of (107), so we can rescale

p∞ so that 1−θ
θ
p∞(0) ≥ 0. Then −σ2

2
∂2

∂x2p∞+µ ∂
∂x
p∞ ≥ 0 on [0,∞), so by the strong maximum

principle for uniformly elliptic operators, p∞(x) > 0 on (0,∞).

85A sufficient condition for the existence and uniqueness of a decaying solution is µ < 0.
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Integrating the equation above from 0 to x and using the boundary condition for A∗, we

obtain

σ2

2

∂

∂x
p∞(x)− µp∞(x) =

σ2

2

1− θ
θ

p∞(0)

∫ ∞
x

ρ(y)dy (108)

for x ∈ (0,∞). If ρ has compact support, then for all large x, p∞(x) = Ce
2µ

σ2 x. If θ ∈ (0, 1)

and p∞(0) = 0, then σ2

2
∂
∂x
p∞(x) − µp∞(x) = 0 for all x ∈ (0,∞), whence p∞(x) = Ce

2µ

σ2 x,

contradicting p∞(0) = 0. Thus for θ ∈ (0, 1], p∞(0) > 0. Similarly, when θ = 0, ∂
∂x
p∞(0) > 0.

Recall that by Assumption 4, ρ(x) = o(e
2µ

σ2 x) as x → ∞. Thus
∫∞
x
ρ(y)dy = o(e

2µ

σ2 x)

as well. Multiplying (108) by e−
2µ

σ2 x gives
(
σ2

2
∂
∂x
p∞(x)− µp∞(x)

)
e−

2µ

σ2 x = o(1). Thus

σ2

2
∂
∂x

(p∞(x)e−
2µ

σ2 x) = o(1), so p∞(x) ∼ Cθe
2µ

σ2 x as x→∞, where Cθ is a constant depending

on θ. In particular, p∞ is integrable. Also, since p∞(0) = 0 and ∂
∂x
p∞(0) > 0 when θ = 0,

p∞(x) ∼
(
∂
∂x
p∞(0)

)
x as x→ 0.

We can now rescale p∞ so that
∫
p∞dx = 1, i.e. p∞ is a probability distribution on

[0,∞). As shown above p∞ then generalizes the stationary distribution in cases of reflecting

barrier and exit with reinjection.

With A∗ defined above, let

Au : =
σ2

2

∂2

∂x2
u+ µ

∂

∂x
u

where µ < 0 with boundary condition

−θux(0) + (1− θ)
(
u(0)−

∫
u(x)ρ(x)dx

)
= 0 (109)

We can check through integration by parts that A∗ with boundary condition (105) is indeed

the adjoint of A with boundary condition (109). Here we also remark that if a function u

satisfies ∂tu(x, t) = Au(x, t) with the boundary condition for A, and ũ(x, t) = u(x, t) + c for

some constant c, then ∂tũ = Aũ with the boundary condition of A as well. This is because

the boundary condition (109) is invariant when we add a constant to u.

Intuitively, the boundary condition (109) describes the following behavior: if the process

ever reaches x = 0, then, with probability θ, the process is reflected; and with probability

1− θ, the process jumps to some x > 0, drawn from the distribution ρ(x).

46



J.2.2 Proof Strategy for Proposition 2

When θ < 1, i.e. when we depart from the pure reflection case, one can no longer construct

a self-adjoint transformation B of A as in the proof of Proposition 1. Therefore, it is no

longer possible to obtain an explicit formula for the spectral gap of the operator A.86 We

instead follow an alternative approach that works directly with the operator A using “energy

methods” (i.e. techniques techniques involving L2-norms of various expressions – see Evans

(1998) for their usefulness in other applications).

The proof of Proposition 2 has three parts. The first part proves that the cross-sectional

income distribution converges to its stationary distribution exponentially at some rate λ > 0.

This is proved in Lemmas 14 and 15. The second part is to prove that this rate λ satisfies

λ ≤ µ2

2σ2 , which is the content of Lemma 16. The third part simply concludes the proof by

combining the two previous parts.

J.2.3 Part 1: exponential convergence to stationary distribution

A Poincaré-like inequality. We first establish the following Poincaré-like inequality using

energy methods.

Lemma 14 Let p∞ be the solution to (107). Let u be the solution to ∂tu = Au, supplemented

with the boundary condition (109), and with the orthogonality condition
∫
p∞u(x, 0)dx =∫

p∞u0(x)dx = 0. For θ ∈ (0, 1], let

λ :=
1

2
inf
u

{
σ2

∫
u2
xp∞dx+

σ2

2

1− θ
θ

p∞(0)

[(
u(0)−

∫
uρdy

)2

+

∫ (
u−

∫
uρdy

)2

ρdx

]
s.t.

∫
u2p∞dx = 1,

∫
up∞dx = 0

}
. (110)

and when θ = 0, replace σ2

2
1−θ
θ
p∞(0) with σ2

2
(p∞)x(0).

Then ∫
u(x, t)2p∞(x)dx ≤ e−2λt

∫
u0(x)2p∞(x)dx . (111)

Remark: Note that the constraint
∫
up∞dx = 0 is needed to ensure λ > 0, since without

it, λ = 0 with minimizer u ≡ 1.87 As we shall see in the special case θ = 1, this constraint

86It may be possible to have an explicit bound on λ, which requires further investigation of the operator
B∗ defined later.

87More precisely, let C ∈ R be an arbitrary number. Notice that if u satisfies
∫
u2p∞ = 1 and

∫
up∞ = 0
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is also natural as it is closely related to the orthogonality condition when calculating the

second smallest eigenvalue of a self-adjoint operator using the min-max principle.

In the pure reflection case, one indeed recovers λ = µ2

2σ2 . To see this, note that with θ = 1

λ =
1

2
inf
u

{
σ2

∫
u2
xp∞dx s.t.

∫
u2p∞dx = 1,

∫
up∞dx = 0

}
. (112)

The stationary distribution σ2

2
∂2p∞
∂x2 − µ∂p∞

∂x
= 0 with boundary condition σ2

2
p′∞(0) −

µp∞(0) = 0 is given explicitly by p∞ = − e2µx/σ
2

2µ/σ2 . Define v(x) = p
1
2∞u(x). Then v satisfies∫

v2dx = 1 and
∫
vp

1
2∞dx = 0.

Through an integration by parts, we have∫ ∞
0

(vx)
2dx =

∫ ∞
0

(ux)
2p∞dx−

1

4

∫ ∞
0

(
2µ

σ2
)2(up

1
2∞)2dx− 1

2
u2(0)p′∞(0)

whence
σ2

2

∫ ∞
0

(ux)
2p∞dx =

σ2

2

∫ ∞
0

(vx)
2dx+

µ2

2σ2

∫ ∞
0

v2dx+
µ

2
v2(0)

Note that the second term is µ2

2σ2 . The first term is positive while the third term negative,

but it isn’t obvious that under the constraints for v that they can cancel each other.

Recalling from Lemma 6 that v satisfies vt = Bv := σ2

2
vxx− 1

2
µ2

σ2v with boundary condition

then v = u+ C satisfies
∫
vp∞ = C and

∫
v2p∞ =

∫
u2p∞ + C2 = 1 + C2. Moreover, adding a constant to

u does not change the value of the terms in the definition of λ. Now let ũ = v/
√

1 + C2. Then
∫
ũ2p∞ = 1

and
∫
ũp∞ = C/

√
1 + C2. It follows that

λ =
1

2
(1 + C2) inf

ũ

{
σ2

∫
ũ2xp∞dx+

σ2

2

1− θ
θ

p∞(0)

[(
ũ(0)−

∫
ũρdx

)2

+

∫ (
ũ−

∫
ũρdy

)2

ρdx

]

s.t.

∫
ũ2p∞dx = 1,

∫
ũp∞dx =

C√
1 + C2

}
.
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vx(0) = µ
σ2v(0), we see that∫ ∞

0

Bv · vdx =

∫ ∞
0

σ2

2
vxxvdx−

1

2

µ2

σ2

∫ ∞
0

v2dx

= −
∫ ∞

0

σ2

2
(vx)

2dx− 1

2

µ2

σ2

∫ ∞
0

v2dx− σ2

2
vx(0)v(0)

= −
∫ ∞

0

σ2

2
(vx)

2dx− µ2

2σ2

∫ ∞
0

v2dx− µ

2
v2(0)

= −σ
2

2

∫ ∞
0

(ux)
2p∞dx

Thus

λ = inf∫
v2=1,

∫
vp

1
2∞=0

−
∫ ∞

0

Bv · vdx

Since B is self-adjoint with non-positive eigenvalues, and p
1
2∞ satisfies Bp

1
2∞ = 0, the orthogo-

nality condition
∫
vp

1
2∞ = 0 implies, by the min-max principle, that λ is the second smallest

eigenvalue of −B, i.e. µ2

2σ2 .

Proof of Lemma 14: We first show that λ > 0 for all θ ∈ [0, 1] when ρ vanishes for x > 0

large. This condition on ρ implies p∞(x) = Ce−
2µ

σ2 x for all large x. The case of general ρ

follows with minor modifications. Then we show the exponential decay.

To prove λ > 0, we argue by contradiction and assume λ = 0. Since all terms in the

definition of λ are non-negative, there exists a sequence (u(n))n≥1 such that∫ ∞
0

(u(n)
x )2p∞(x)dx→ 0

with
∫∞

0
u(n)(x)p∞(x)dx = 0 and

∫∞
0

(u(n)(x))2p∞(x)dx = 1.

Step 1. We show that the assumption implies that u(n) converge strongly in H1(δ, 1
δ
)

and uniformly on (δ, 1
δ
) to 0 for any 0 < δ < 1, and that u(n)p

1
2∞ converge weakly in L2(0,∞)

to 0.

First recall that p∞(x) > 0 on (0,∞). For any fixed 0 < δ < 1, p∞(x) ≥ cδ > 0 on (δ, 1
δ
).

Thus on (δ, 1
δ
),

∫ 1
δ

δ

(u(n)
x )2dx ≤ 1

cδ

∫ 1
δ

δ

(u(n)
x )2p∞(x)dx ≤ 1

cδ

∫ ∞
0

(u(n)
x )2p∞(x)dx
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Letting n → ∞, the right hand side tends to 0, so that limn→∞
∫ 1
δ

δ
(u

(n)
x )2dx = 0.

Thus u
(n)
x converges strongly in L2(δ, 1

δ
) to 0, and so supn ‖u

(n)
x ‖L2(δ, 1

δ
) < ∞. Moreover,∫∞

0
(u(n)(x))2p∞(x)dx = 1 and the positivity of p∞ implies

∫ 1
δ

δ

(u(n))2dx ≤ 1

cδ

∫ 1
δ

δ

(u(n))2p∞(x)dx ≤ 1

cδ

Thus,

sup
n
‖u(n)‖H1(δ, 1

δ
) <∞

By the Banach-Alaoglu Theorem, we can extract a subsequence of u(n) that converges

weakly in H1(δ, 1
δ
), and by the Rellich Compact Embedding Theorem, we can extract a

further subsequence that converges weakly in H1(δ, 1
δ
), and strongly in L2(δ, 1

δ
) to some

function uδ. Setting δ = 1
m

and using a standard diagonalization argument, we can conclude

that there exists a function u on (0,∞), such that for any δ ∈ (0, 1), u(n) converges weakly

in H1(δ, 1
δ
) and strongly in L2(δ, 1

δ
) to u. Note that the convergence may fail on (0,∞).

Since u
(n)
x converges in L2(δ, 1

δ
) to 0, ux = 0, and u ≡ A for some constant A.

Next, we show u(n)p
1
2∞ converges weakly in L2(0,∞) to Ap

1
2∞. This is because finite linear

combinations of indicator functions of finite open intervals (simple functions) are dense in

L2(0,∞), and for a indicator function g = χ(a,b) with 0 < a < b,

|
∫ ∞

0

(u(n) − A)p
1
2∞gdx| ≤

∫ b

a

|u(n) − A|p
1
2∞dx

≤ (

∫ b

a

(u(n) − A)2dx)1/2 · (
∫ ∞

0

p∞dx)1/2

and this tends to 0 since u(n) → A in L2(a, b).

Since u(n)p∞ = u(n)p
1
2∞ · p

1
2∞, and p

1
2∞ ∈ L2(0,∞), we deduce that

0 = lim
n→∞

∫ ∞
0

u(n)p∞dx =

∫ ∞
0

Ap
1
2∞ · p

1
2∞dx = A

Hence, u(n) converges to 0 strongly in H1(δ, 1
δ
), and thus uniformly on (δ, 1

δ
), since the
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H1(δ, 1
δ
) norm dominates the uniform norm in R:

|f(y)− f(x)| = |
∫ y

x

f ′(t)dt|

≤ (

∫ y

x

|f ′|2dt)1/2|x− y|1/2

≤ |x− y|1/2‖f‖H1(δ, 1
δ

)

and if we let y ∈ (δ, 1
δ
) be such that |f(y)| < infx∈(δ, 1

δ
) |f(x)|+ ε, then for any x ∈ (δ, 1

δ
),

|f(x)| ≤ |f(y)− f(x)|+ |f(y)|

≤ |1
δ
− δ|1/2‖f‖H1(δ, 1

δ
) +

1

|δ − 1
δ
|

∫ 1
δ

δ

(|f(x)|+ ε)dx

= Cδ(‖f‖H1(δ, 1
δ

)) + ε

Notice that if p∞(0) > 0, i.e. θ > 0, then all the above convergence are on (0, 1
δ
) instead of

(δ, 1
δ
) by the same argument since p∞(x) is bounded from below on (0, 1

δ
) for any δ ∈ (0, 1).

Step 2. We show that for any x̄ ∈ [1,∞),
∫ x̄

0
p∞(x)(u(n))2dx → 0. Note that when

p∞(0) > 0, this is clearly true by uniform convergence of u(n) to 0 on (0, 1
δ
).

Suppose p∞(0) = 0. We know that p∞(x) ∼ c0x as x → 0+ for some c0 > 0 and for

ε > 0, we can find δ such that∫ x̄

0

x(u(n)
x )2dx =

∫ x̄

δ

x(u(n)
x )2dx+

∫ δ

0

x(u(n)
x )2dx

≤ x̄

∫ x̄

δ

(u(n)
x )2dx+

∫ δ

0

x(u(n)
x )2dx

≤ x̄

∫ x̄

δ

(u(n)
x )2dx+

∫ δ

0

p∞
c0

(u(n)
x )2dx+ ε

Letting n → ∞, the first two terms vanish, so that limn→∞
∫ x̄

0
x(u

(n)
x )2dx ≤ ε for arbitrary

ε, thus limn→∞
∫ x̄

0
x(u

(n)
x )2dx = 0.
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Next, we write for x ∈ (0, x̄)

|u(n)(x)| ≤ |u(n)(x̄)|+
∫ x̄

x

|u(n)
x (y)|dy

≤ |u(n)(x̄)|+ (

∫ x̄

0

y|u(n)
x (y)|2dy)1/2(

∫ x̄

x

y−1dy)1/2

≤ |u(n)(x̄)|+ | log x̄− log x|1/2(

∫ x̄

0

y(u(n)
x (y))2dy)1/2

Therefore, since u(n)(x̄)→ 0 and
∫ x̄

0
y(u

(n)
x (y))2dy → 0,∫ x̄

0

x(u(n)(x))2dx ≤
∫ x̄

0

x(|u(n)(x̄)|+ | log x̄− log x|1/2(

∫ x̄

0

y(u(n)
x (y))2dy)1/2)2dx

≤ Cx̄εn

where εn → 0 and Cx̄ is a fixed constant depending on x̄. We conclude that, in particular,∫ x̄

0

p∞(x)(u(n))2dx→ 0

since u(n) converges uniformly to 0 on (δ, 1
δ
), and p∞(x) ∼ c0x as x→ 0+.

Step 3. We choose x̄ large enough such that for x ≥ x̄, ρ(x) = 0, hence p∞(x) = Ce
2µ

σ2 x

for some C > 0 and x > x̄.

First, notice that

u(n)(x̄)→ 0∫ ∞
x̄

p∞(u(n)
x )2dx→ 0∫ ∞

x̄

p∞(u(n))2dx→ 1∫ ∞
x̄

p∞u
(n)dx→ 0

using steps 1 and 2. Since
∫∞

0
p∞(x)(u

(n)
x )2dx → 0 and the integrand is nonnegative,∫∞

x̄
p∞(x)(u

(n)
x )2dx→ 0. Since

∫∞
0
p∞(x)(u(n))2dx = 1 and

∫ x̄
0
p∞(x)(u(n))2dx→ 0,

∫∞
x̄
p∞(x)(u(n))2dx→

1. Finally, that u(n)p
1
2∞ converges weakly to 0 in L2(0,∞) implies

∫∞
x̄
p∞u

(n)dx→ 0.
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Next, let v(n)(x) = u(n)(x̄+ x) for x ≥ 0. By a change of variables,

v(n)(0)→ 0∫ ∞
0

(v(n)
x )2p∞dx→ 0∫ ∞

0

v(n)p∞dx→ 0∫ ∞
0

(v(n))2p∞dx→ e−
2µ

σ2 x̄

and this essentially contradicts the explicit spectral gap λ = µ2

2σ2 > 0 shown in the pure

reflection case (θ = 1).

Indeed, we compute∫ ∞
0

(v(n)
x )2p∞dx =

∫ ∞
0

(v(n)
x p

1
2∞)2dx

=

∫ ∞
0

((v(n)p
1
2∞)x − v(n)(p

1
2∞)x)

2dx

=

∫ ∞
0

(v(n)p
1
2∞)2

xdx+
2µ

σ2

∫ ∞
0

(v(n)p
1
2∞)x · v(n)p

1
2∞dx+

µ2

σ4

∫ ∞
0

(v(n))2p∞dx

=

∫ ∞
0

(v(n)p
1
2∞)2

xdx−
µ

σ2
(v(n)(0)p

1
2∞(0))2 +

µ2

σ4

∫ ∞
0

(v(n))2p∞dx

Therefore,
∫∞

0
(v(n))2p∞dx→ 0 and we get a contradiction.

Step 4. When ρ does not have compact support, steps 1 and 2 remain unchanged.

When ρ does not have compact support but satisfies Assumption 4, we have shown that

p∞(x) ∼ Ce
2µ

σ2 x as x→∞. Step 3 follows with minor modifications.

Now we show the exponential decay∫ ∞
0

u(x, t)2p∞(x)dx ≤ e−2λt

∫ ∞
0

u0(x)2p∞(x)dx

In what follows we omit the limits of integration which are always assumed to be from 0 to

∞. Morever we write u(x) to denote u(x, t), whenever time t is implicit.

Step 5. Suppose u(x, t) satisfies ∂tu = Au, with
∫
u2p∞dx = 1 and

∫
up∞dx = 0. Start

by writing the equation for u2:

∂

∂t
u2 −Au2 + σ2u2

x = 0 (113)
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We next show that multiplying this equation by p∞ and integrating we obtain

∂

∂t

∫
u2p∞dx+σ2

∫
u2
xp∞dx+

σ2

2

1− θ
θ

p∞(0)

[(
u(0)−

∫
uρdy

)2

+

∫ (
u−

∫
uρdy

)2

ρdx

]
= 0.

(114)

This is shown by means of the following computations. Using integration by parts, we have∫
(Au2)p∞dx =

∫ ((
σ2

2

∂2

∂x2
+ µ

∂

∂x

)
u2

)
p∞dx

=

∫ (
−σ

2

2

∂

∂x
u2 − µu2

)
∂

∂x
p∞dx−

σ2

2
(u2)x(0)p∞(0)− µu2(0)p∞(0)

=

∫
u2A∗p∞dx−

σ2

2

1− θ
θ

p∞(0)

∫
u2ρdx− σ2

2
(u2)x(0)p∞(0)

+
σ2

2
(u2)(0)(p∞)x(0)− µu2(0)p∞(0)

Next, observe that (u2)x(0) = 2ux(0)u(0). When θ > 0, (109) implies88

ux(0) =
1− θ
θ

(
u(0)−

∫
uρdx

)
,

and by (105),
σ2

2
(p∞)x(0) = µp∞(0) +

σ2

2

1− θ
θ

p∞(0).

Inserting also (107), we obtain∫
u2A∗p∞dx = 0

σ2

2
(u2)x(0)p∞(0) = σ2 1− θ

θ
p∞(0)(u(0)−

∫
uρdx)u(0)

σ2

2
(p∞)x(0)u2(0) = µp∞(0)u2(0) +

σ2

2

1− θ
θ

p∞(0)u2(0)

88When θ = 0, we note that σ2

2 (u2)x(0)p∞(0) = 0 and so need to use u(0)−
∫
uρ = 0 instead of ux(0) =

1−θ
θ

(
u(0)−

∫
uρ
)
. The subsequent calculations follow exactly by replacing σ2

2
1−θ
θ p∞(0) with σ2

2 (p∞)x.
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Summing up, we have∫
Au2p∞dx = −σ

2

2

1− θ
θ

p∞(0)

∫
u2ρdx− σ2

2

1− θ
θ

p∞(0) · 2(u(0)−
∫
uρdx)u(0)

+ µp∞(0)u2(0) +
σ2

2

1− θ
θ

p∞(0)u2(0)− µu2(0)p∞(0)

= −σ
2

2

1− θ
θ

p∞(0)

[∫
u2ρdx− 2u(0)

(∫
ρudx

)
+ u2(0)

]
Furthermore,

u(0)2 − 2u(0)

∫
uρdx+

∫
u2ρdx =

(
u(0)−

∫
uρdy

)2

+

∫ (
u−

∫
uρdy

)2

ρdx.

and so∫
Au2p∞dx = −σ

2

2

1− θ
θ

p∞(0)

[(
u(0)−

∫
uρdy

)2

+

∫ (
u−

∫
uρdy

)2

ρdx

]

Substituting into (113), we obtain (114).

Step 6. We next derive the exponential bound (111). Define

X(t) :=

∫
u(x, t)2p∞(x)dx (115)

Note that the definition of λ in (110) confines attention to functions u that are orthogonal

to p∞,
∫
up∞dx = 0. To check this for our u(x, t) for all t, recall that u0 is orthogonal to

p∞,
∫
u0(x)p∞(x)dx = 0. Moreover, since A∗ is the adjoint of A,

∂

∂t

∫
u(x, t)p∞(x)dx =

∫
Au(x, t)p∞(x)dx

=

∫
u(x, t)A∗p∞(x)dx

= 0

which implies that u(x, t) remains orthogonal to p∞ for all t.

From the definition of λ in (110), it then follows that for all such functions u:

2λX(t) ≤ σ2

∫
u2
xp∞dx+

σ2

2

1− θ
θ

p∞(0)

[(
u(0)−

∫
uρdy

)2

+

∫ (
u−

∫
uρdy

)2

ρdx

]
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Combining with (114), we have

∂tX(t) + 2λX(t) ≤ 0

But then also ∂t(e
2λtX(t)) = e2λt(∂tX(t) + 2λX(t)) ≤ 0 and thus

X(t) ≤ e−2λtX(0), ∀t (116)

or equivalently (111).�

The Exponential Decay Estimate. Next, we want to show that this implies the follow-

ing more general exponential decay estimate.

Lemma 15 Consider p (x, t) with pt = A∗p and initial condition p0 (x) ∈ L1
(0,∞). Then,

there exists a constant C0 such that:∫
|p(x, t)− Jp∞| dx ≤ C0e

−λt (117)

where J :=
∫
p0 (y) dy is not necessarily 1.

The role of J is to facilitate the proof of the general case when δ > 0, where we need

J = 0 instead of J = 1. The desired convergence result in Proposition 2 with δ = 0 and

constant coefficient is the special case J = 1.

Proof: We claim that if u and p satisfy ut = Au and pt = A∗p, with
∫
u2

0p∞dx < ∞ and

the respective boundary conditions, then we have the dual property89∫
u(x, t)p0(x)dx =

∫
u0(x)p(x, t)dx. (118)

89For convenience, we reproduce the proof given earlier. Let I(s) =
∫
u(x, t− s)p(x, s)dx. Then

d

ds
I(s) = −

∫
∂tu(x, t− s)p(x, s)dx+

∫
u(x, t− s)∂sp(x, s)dx =

−
∫
Au(x, t− s)p(x, s)dx+

∫
u(x, t− s)A∗p(x, s)dx = 0

Setting s = 0 and t gives the result.
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Therefore∫ (
u−

∫
u0p∞dy

)
p0dx =

∫
u0pdx− J

∫
u0p∞dy =

∫
u0 (p− Jp∞) dx. (119)

Note that we are no longer requiring
∫
u0p∞dx = 0. But recall

∫
u(x, t)p∞(x)dx =

∫
u0p∞dx,

so ũ = u−
∫
u0p∞dy satisfies ∫

ũ(x, t)p∞(x)dx = 0

for all t ≥ 0. Moreover, ũ also satisfies ũt = Aũ with the required boundary conditions for

A. So we can apply Lemma 14 to ũ(x, t) = u(x, t)−
∫
u0p∞dx.

Applying Cauchy-Schwarz to (119) and Lemma 14 to ũ, we have90

∣∣∣∣∫ u0 (p(x, t)− Jp∞) dx

∣∣∣∣ =

∣∣∣∣∫ (u(x, t)−
∫
u0p∞dy

)
p0dx

∣∣∣∣
=

∣∣∣∣∣∣
∫ ((

u(x, t)−
∫
u0p∞dy

)2

p∞

)1/2
p0

p
1/2
∞
dx

∣∣∣∣∣∣
≤
(∫

(p0)2

p∞
dx

)1/2
(∫ (

u(x, t)−
∫
u0p∞dy

)2

p∞dx

)1/2

≤ C0e
−λt
(∫

(u0 −
∫
u0p∞dy)2p∞dx

)1/2

= C0e
−λt
(∫

(u0)2p∞dx− (

∫
u0p∞dx)2

)1/2

≤ C0e
−λt
(∫

(u0)2p∞dx

)1/2

where we need to show that
(∫ (p0)2

p∞
dx
)1/2

<∞.

Recall Assumption 1, which states that
∫ p2

0(x)

p̄∞
dx < ∞, where p̄∞ = −2µ

σ2 e
2µ

σ2 is the

surrogate steady state, which coincides with the true steady state p∞ when θ = 1 and δ = 0,

90Note that since
∫
u(x, t)p∞(x)dx =

∫
u0(x)p∞(x)dx for all t ≥ 0, the first equality can also be written

as
∣∣∫ u0 (p(x, t)− Jp∞) dx

∣∣ =
∣∣∫ (u(x, t)−

∫
u0p∞dy

)
(p0 − Jp∞)dx

∣∣, resulting in C0 =
(∫ (p0−Jp∞)2

p∞
dx
)1/2

instead of C0 =
(∫ (p0)

2

p∞
dx
)1/2

. There is no fundamental difference here, but C0 =
(∫ (p0−Jp∞)2

p∞
dx
)1/2

will

be used later to show that λ ≤ µ2

2σ2 .
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but are otherwise different. However, we have shown the asymptotic behavior of p̄∞ and p∞

are both O(e
2µ

σ2 x) when x→∞. Moreover, recall that when θ > 0, p∞(0) > 0. When θ = 0,

p∞(x) ∼ cx as x→ 0, but the boundary condition of A∗ also requires p0(0) = 0.91 It follows

that for any θ ∈ [0, 1], ∫
p2

0(x)

p̄∞
dx <∞ ⇐⇒

∫
p2

0(x)

p∞
dx <∞

i.e. Assumption 1 is equivalent to
∫ p2

0(x)

p∞
dx <∞.

Now dividing the inequality
∣∣∫ u0 (p(x, t)− Jp∞) dx

∣∣ ≤ C0e
−λt (∫ (u0)2p∞dx

)1/2
by
(∫

(u0)2p∞dx
)1/2

,

we get ∣∣∫ u0 (p(x, t)− Jp∞) dx
∣∣(∫

(u0)2p∞dx
)1/2

≤ C0e
−λt.

The above inequality holds for any u0 satisfying
∫

(u0)2p∞dx <∞. We would like to choose

u0 = (p(x, t)− Jp∞)/p∞.92 We need to check
∫

(u0)2p∞dx <∞, i.e.∫
(u0)2p∞dx =

∫
(p(x, t))2 − 2Jp∞p(x, t) + J2p2

∞
p∞

<∞

Similar to Lemma 2, |p| is a subsolution associated to A∗, i.e. |p|t ≤ A∗|p|. Thus93

∂t

∫ ∞
0

|p(x, t)| ≤
∫ ∞

0

σ2

2

∂2|p|
∂x2

− µ∂|p|
∂x

+
σ2

2

1− θ
θ
|p(0)|ρ(x)dx

= −σ
2

2
|p|x(0) + µ|p(0)|+ σ2

2

1− θ
θ
|p(0)|

= −σ
2

2
|px(0)|+ µ|p(0)|+ σ2

2

1− θ
θ
|p(0)|

≤ 0

where the last inequality follows from the boundary condition σ2

2
px(0)− µp(0) = σ2

2
1−θ
θ
p(0)

for A∗. We have shown p(x, t) remains bounded in L1 for all t.94

91When θ = 0, recall that the boundary condition of A∗ requires p0(0) = 0, and σ2

2
∂2p0
∂x2 − µ∂p0∂x +

σ2

2
∂p0(0)
∂x ρ = pt(x, 0). Also pt(0, t) = 0 for all t since p(0, t) = 0, so σ2

2
∂2p0(0)
∂x2 − µ∂p0(0)∂x + σ2

2
∂p0(0)
∂x ρ(0) = 0,

or σ2

2
∂2p0(0)
∂x2 = (µ − σ2

2 ρ(0))∂p0(0)∂x , with µ < 0. Thus the first derivative and the second derivative of p0(x)
at x = 0 must have opposite signs or are both zero. In either case, we have p0(x) = O(x) when x→ 0.

92This choice comes from the first order condition of the optimization problem maxu0

∫
u0(p(x, t)−Jp∞)dx

s.t
∫
u20p∞ = 1.

93As before when θ = 0 replace σ2

2
1−θ
θ |p(0)| with σ2

2 |px(0)|.
94We can also show that the L1 norm of p(x, t) = p0 ∗Ft(x) is bounded for all t by using Young’s inequality
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It remains to check
∫ (p(x,t))2

p∞
< ∞. We already know that

∫ (p0(x))2

p∞
< ∞. To prove

this for general t > 0, we define q = pp
− 1

2∞ and show that qt − B∗q = f for some uniformly

elliptic operator −B∗ and some f(x) ∈ L2.95 Then the inequality
∫
q2(x, t)dx =

∫ p2(x,t)
p∞(x)

<∞
will follow from L2 estimates of second order uniformly parabolic equations and the initial

condition
∫ p2

0(x)

p̄∞
< ∞ ⇐⇒

∫
q2

0 =
∫ p2

0(x)

p∞
< ∞ from Assumption 1, where we again note

p̄∞ = −2µ
σ2 e

2µ

σ2 x is in general different from p∞.

First recall the integrated equation for p∞:

σ2

2

∂

∂x
p∞(x)− µp∞(x) =

σ2

2

1− θ
θ

p∞(0)

∫ ∞
x

ρ(y)dy

where ρ(x) = o(e
2µ

σ2 x) as x→∞. Thus r(x) :=
∫∞
x
ρ(y)dy is also o(e

2µ

σ2 x), so

∂

∂x
p∞(x) =

2

σ2

(
µp∞(x) +

σ2

2

1− θ
θ

p∞(0)r(x)

)
,

which we use repeatedly below to replace first order derivative of p∞ with p∞ and r.

We have

qt = ptp
− 1

2∞ = p
− 1

2∞

(
σ2

2

∂2

∂x2
p(x)− µ ∂

∂x
p(x) +

σ2

2

1− θ
θ

p(0)ρ(x)

)

On the other hand,

qx = (pp
− 1

2∞ )x

= pxp
− 1

2∞ −
1

2
pp
− 3

2∞ (p∞)x

= pxp
− 1

2∞ −
1

σ2
pp
− 3

2∞

(
µp∞(x) +

σ2

2

1− θ
θ

p∞(0)r(x)

)
= pxp

− 1
2∞ −

µ

σ2
pp
− 1

2∞ −
1

2

1− θ
θ

pp
− 3

2∞ p∞(0)r(x)

and Gaussian estimates of the L1 norm of Ft.
95One should compare the definition of q = pp

− 1
2∞ to that of v = up

1
2∞ used earlier. Note also that our choice

of notation B∗ is not coincidental. Indeed, as we shall see in the special case θ = 1, B∗ with appropriate
boundary conditions is the adjoint of the operator B defined in Lemma 6.
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Differentiating again,

qxx = (pxx −
µ

σ2
px)p

− 1
2∞ −

1

2
(px −

µ

σ2
p)p
− 3

2∞ (p∞)x −
1

2

1− θ
θ

p∞(0)
(
pp
− 3

2∞ r(x)
)
x

Thus, after some calculations, we obtain

qt =
σ2

2
qxx −

1

2

µ2

σ2
q +

σ2

2

1− θ
θ

p∞(0)(r(x)p−1
∞ )qx +

σ2

4

1− θ
θ

p∞(0) · q
(
p−1
∞ r(x)

)
x

+

(
σ2

8
(
1− θ
θ

)2p2
∞(0)r2(x)p−2

∞

)
q +

σ2

2

1− θ
θ

q(0)ρp
− 1

2∞ p
1
2∞(0)

So qt = B∗q + f(x) where

B∗q =
σ2

2
qxx +

σ2

2

1− θ
θ

p∞(0)(r(x)p−1
∞ )qx

+

[
σ2

4

1− θ
θ

p∞(0) ·
(
p−1
∞ r(x)

)
x
− µ2

2σ2
+

(
σ2

8
(
1− θ
θ

)2p2
∞(0)r2(x)p−2

∞

)]
q

and

f(x) =
σ2

2

1− θ
θ

q(0)p
1
2∞(0)ρ(x)p

− 1
2∞ (x)

In general B∗ is not self-adjoint. However, when θ = 1, qt = B∗q = σ2

2
qxx − µ2

2σ2 q with

boundary condition qx(0) = µ
σ2 q(0). This is the dual structure to Lemma 6 since B defined

there is given by Bv = σ2

2
vxx − µ2

2σ2v with boundary condition vx(0) = µ
σ2v(0). Thus in this

case B is self-adjoint. Also, if ρ has compact support, then r(x) = 0 for all large x, so

B∗q(x) = σ2

2
qxx(x)− µ2

2σ2 q(x) for large x.

Moreover, because ρ, r = o(e
2µ

σ2 x) and p∞ = O(e
2µ

σ2 x), the coefficients of qx and q in B∗q
are both bounded. Recall that Assumption 1 is equivalent to

∫
q2

0 =
∫ p2

0

p∞
< ∞. Since

qt = B∗q + f(x) and −B∗ is uniformly elliptic, by energy estimates for uniformly parabolic

operators96,

‖q(x, t)‖L2 . ‖f‖L2 + ‖q(x, 0)‖L2

≤ C(‖ρp−
1
2∞ ‖L2 + ‖q(x, 0)‖L2) <∞

as was to be shown.

96See for example Evans (1998) Page 376.
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Putting u0 = (p(x, t)− Jp∞)/p∞ into
|∫ u0(p(x,t)−Jp∞)dx|

(
∫

(u0)2p∞dx)
1/2 ≤ C0e

−λt, we obtain(∫
(p(x, t)− Jp∞)2

p∞
dx

)1/2

=

∣∣∫ u0 (p(x, t)− Jp∞) dx
∣∣(∫

(u0)2p∞dx
)1/2

≤ C0e
−λt.

Finally, by Cauchy-Schwarz inequality

∫
|p(x, t)− Jp∞| dx ≤

(∫
(p(x, t)− Jp∞)2

p∞
dx

)1/2(∫
p∞dx

)1/2

︸ ︷︷ ︸
=1

≤ C0e
−λt,

which is the desired result.�

J.2.4 Part 2: the rate of convergence cannot be larger than µ2

2σ2

Note that as an intermediate step in the proof of Lemma 15, we have shown∫
(p(x, t)− Jp∞(x))2

p∞(x)
dx ≤ e−2λt

∫
(p0(x)− Jp∞(x))2

p∞(x)
dx (120)

for all continuous initial probability density p0 with pt = A∗p and A∗p∞ = 0, where λ is

defined in Lemma 14 and J =
∫
p0. In fact, the inequality with J = 0 implies the inequality

with J 6= 0. To see this, note that if
∫
p0 6= 0, then defining p̃0(x) = p0(x) − Jp∞(x) we

see
∫
p̃0 = 0. Moreover, if p̃(x) is the solution to p̃t = A∗p̃ with initial condition p̃0, then

p̃ = p− Jp∞ where p solves pt = A∗p with initial condition p0. So the inequality with J = 0

applied to p̃ tells us
∫ (p̃)2

p∞(x)
dx ≤ Ce−2λt

∫ (p̃0(x))2

p∞(x)
dx, i.e.

∫ (p−Jp∞)2

p∞(x)
dx ≤ Ce−2λt

∫ (p0−Jp∞)2

p∞(x)
dx.

In the pure reflection case θ = 1 with no death δ = 0, we know that λ = µ2

2σ2 . Now we

show that under the sufficient condition µ < 0 for the existence of a unique steady state p∞,

the validity of (120) for all p0 and p(x, t) satisfying pt = A∗p with initial condition p0 implies

λ ≤ µ2

2σ2 for all θ ∈ [0, 1] in the generalized model incorporating reflecting barrier (θ = 1)

and exit with reinjection (θ = 0), with δ = 0.

Lemma 16 For all θ ∈ [0, 1], the constant λ defined in Lemma 14 satisfies λ ≤ µ2

2σ2 .

Proof: We argue by contradiction and suppose that λ > µ2

2σ2 . Then the bound (120) holds

for some C > 0 and all p0, p(x, t) with this λ > µ2

2σ2 . We first prove the lemma in the case

when ρ has compact support.

Define as before q(x) = p(x)p
− 1

2∞ (x). Denote the upper end of the support of ρ by x̄. As

before, A∗p = pt implies qt = B∗q + σ2

2
1−θ
θ
q(0)ρp

− 1
2∞ p

1
2∞(0) with B∗ defined before, and that
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for x > x̄, B∗q = σ2

2
qxx − µ2

2σ2 q, so that for x > x̄

qt −
σ2

2
qxx +

µ2

2σ2
q = 0 (121)

Given the reasoning above, it suffices to derive a contradiction for the inequality with J = 0.

With J = 0, the inequality implies(∫ ∞
0

q(x, t)2dx

) 1
2

≤ c0e
−λt. (122)

We now obtain a contradiction to (122). Let ϕ be a positive, smooth function with compact

support and
∫
ϕ(x)dx = 1. Then let qR0 (x) = ϕ(x − R), and let qR(x, t) be the solution

to the equation qt = B∗q + σ2

2
1−θ
θ
q(0)ρp

− 1
2∞ p

1
2∞(0) with initial condition qR0 (x). On the other

hand, define q̃ to be the solution to (121) on R. Note that qR solves (121) for x > x̄,

but not in general, whereas q̃ is defined to solve (121) on the entire real line, so q̃t 6=
B∗q̃ + σ2

2
1−θ
θ
q̃(0)ρp

− 1
2∞ p

1
2∞(0) for x ≤ x̄. The key to the translation at infinity method is that

for fixed t, qR(x + R, t) converges locally in L2(x) to q̃(x, t) as R → ∞. Given this, since

(122) implies
(∫∞

0
qR(x+R, t)2dx

) 1
2 ≤ c0e

−λt for all R, we have

(∫ ∞
0

q̃(x, t)2dx

) 1
2

≤ c0e
−λt

To show the local convergence, note that intuitively, we are translating the initial condition

p0 further and further to the right by R, then letting it evolve to a certain point t in time

according to qt = B∗q + σ2

2
1−θ
θ
q(0)ρp

− 1
2∞ p

1
2∞(0) (which is just qt − σ2

2
qxx + µ2

2σ2 q for x > x̄),

then translating it back to the left by R. As R gets larger this looks more and more

like qt − σ2

2
qxx + µ2

2σ2 q = 0 starting with p0. More precisely, for every fixed t and x ≤ x̄,

qR(x, t) → 0. By Dini’s Theorem this implies qR(x, t) → 0 uniformly on [0, x̄]. By writing

qR(x, t) = qR(x, t)χ[0,x̄] + qR(x, t)(1 − χ[0,x̄]), with χ[0,x̄] the indicator function, we can show

that for every x > 0, qR(x + R, t) → q̃(x, t) pointwise. Thus on any compact I ⊂ (0,∞),

qR(x+R, t)→ q̃(x, t) in L2, by dominated convergence theorem.

In summary, we have found a function q̃(x, t) which is a solution to qt− σ2

2
qxx + µ2

2σ2 q = 0

on R with ϕ(x) ≡ q0(x) as initial condition, and which satisfies
(∫∞

0
q̃(x, t)2dx

) 1
2 ≤ c0e

−λt.

For simplicity of notation, denote q̃(x, t) simply by q(x, t) from now on.

Using the fact that (121) is the Kolmogorov Forward equation for a Brownian motion
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with death rate µ2

2σ2 , we obtain97

q(x, t) = e−
µ2

2σ2 t

q0(x) ∗ e−
x2

2σ2t

√
2πσ2t

 (123)

where ∗ is the convolution operator. Therefore, for x ≥ 0,

q(x, t) =
e−

µ2

2σ2 t

√
2πσ2t

∫ ∞
−∞

q0(y)e−
(x−y)2

2σ2t dy ≥ e−
µ2

2σ2 t

√
2πσ2t

e−
x2

2σ2t

∫ ∞
0

q0(y)e
xy

σ2t e−
y2

2σ2tdy ≥ c
e−

µ2

2σ2 t

√
2πσ2t

e−
x2

2σ2t

for some c > 0. Thus

lim
t→∞

(∫ ∞
0

q(x, t)2dx

) 1
2

e
µ2

2σ2 t
√

2πσ2tt−1/4 ≥ lim
t→∞

c(

∫ ∞
0

e−
x2

2σ2t t−1/2dx)1/2

= c(

∫ ∞
0

e
−z2
2σ2 dz)1/2 > 0

We now obtain a contradiction to the asymptotic property

lim
t→∞

(∫ ∞
0

q(x, t)2dx

) 1
2

e
µ2

2σ2 t
√

2πσ2t
1
4 > 0 (124)

We have shown
(∫∞

0
q(x, t)2dx

) 1
2 ≤ c0e

−λt with λ > µ2

2σ2 , so
(∫∞
−∞ q(x, t)

2dx
) 1

2
e
µ2

2σ2 t
√

2πσ2t
1
4 ≤

c0e
−λt+ µ2

2σ2 t
√

2πσ2t
1
4 → 0 as t → ∞. However, this contradicts the behavior (124) thereby

proving the result for ρ with compact support.

When ρ does not have compact support, the inequality(∫ ∞
0

q(x, t)2dx

) 1
2

≤ c0e
−λt

97This can be seen by taking the Fourier transform of the equation. Alternatively, the fundamental solution

of the operator ∂t − σ2

2
∂2

∂x2 + µ2

2σ2 is given by 1√
2πσ2t

e−
x2

2σ2t
− µ2

2σ2
t, the heat kernel multiplied by e−

µ2

2σ2
t.
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still holds if J = 0. This time q satisfies

qt = B∗q +
σ2

2

1− θ
θ

q(0)ρp
− 1

2∞ p
1
2∞(0)

=
σ2

2
qxx +

σ2

2

1− θ
θ

p∞(0)(r(x)p−1
∞ )qx

+

[
σ2

4

1− θ
θ

p∞(0) ·
(
p−1
∞ r(x)

)
x
− µ2

2σ2
+

(
σ2

8
(
1− θ
θ

)2p2
∞(0)r2(x)p−2

∞

)]
q

+
σ2

2

1− θ
θ

q(0)ρp
− 1

2∞ p
1
2∞(0)

when θ > 0, and we replace σ2

2
1−θ
θ
p∞(0) with σ2

2
(p∞(0))x when θ = 0, and where r(x) =

∫∞
x
ρ.

Note r(x)p−1
∞ (x) → 0, (p−1

∞ r(x))x → 0, ρp
− 1

2∞ p
1
2∞(0) → 0 as x → ∞. Thus the translation

at infinity argument applies to q, and we can conclude that again λ > µ2

2σ2 results in a

contradiction.98 �

J.2.5 Part 3: conclusion of proof of Prop. 2

Combining Lemmas 15 and 16, we see that when δ = 0 and µ < 0,

− lim
t→∞

1

t
log

∫ ∞
0

|p(x, t)− p∞(x)|dx ≥ λ with λ ≤ µ2

2σ2
.

Now it remains to show that the rate of convergence λ = µ2

2σ2 to p∞ is generically attained.

Now we show that given any p0, an arbitrarily small perturbation will result in a rate

of convergence at most µ2

2σ2 . Then we will have shown that for any initial distribution p0

satisfying Assumption 1, the rate of convergence is at least λ, with λ ≤ µ2

2σ2 , and an arbitrarily

small perturbation of p0 will have a rate of convergence at most λ.

The case θ = 1 was already shown in Section F.2.1. For θ ∈ (0, 1), we recall that

A∗p : =
σ2

2

∂2p

∂x2
− µ∂p

∂x
+
σ2

2

1− θ
θ

p(0)ρ(x)

with boundary condition σ2

2
px(0) − µp(0) = σ2

2
1−θ
θ
p(0). Given f0 a smooth compactly sup-

ported function, uniformly bounded by 1 and with mass concentrated near the origin, with

f solving ft = A∗f with initial condition f0(x), we let η(x, t) = fx − ( 2
σ2µ + 1−θ

θ
)f , so that

98Alternatively we can also use the fact that the fundamental solution F (t, x) of ∂t−B∗ is bounded below

by αe−
µ2

2σ2
t e
− x2

2σ2t√
2πσ2t

for some α > 0. See for example the paper Aronson (1967). Thus q(x, t) = q0 ∗ F ≥

αc e
− µ2

2σ2
t

√
2πσ2t

e−
x2

2σ2t

64



η(0, t) = 0, and thus η(x, t) solves σ2

2
∂2η
∂x2 − µ∂η

∂x
= ηt. We can again extend η to the real

line by reflecting around the origin, and we have come back to the case when θ = 1. Thus

− limt→∞
1
t

log
∫∞

0
|η(x, t)|dx ≤ µ2

2σ2 . By perturbing any initial distribution p0 by εη0(x), we

will obtain a rate of convergence at most µ2

2σ2 .

When θ = 0, the boundary condition for A∗ is already p(0) = 0, and A∗p = σ2

2
∂2p
∂x2−µ ∂p∂x +

σ2

2
px(0)ρ(x). Given f0 a smooth compactly supported function with fR solving ft = A∗f

with initial condition f0(x − R). Using the translation at infinity argument, we can let

R → ∞ and obtain a function f(x, t) that satisfies f(0, t) = 0 and σ2

2
∂2f(x,t)
∂x2 − µ∂f(x,t)

∂x
= 0,

and we can then apply the case θ = 1 as before. Thus the rate of convergence λ = µ2

2σ2 is

generically attained.

When δ > 0, p satisfies

pt =
σ2

2

∂2p

∂x2
− µ∂p

∂x
+
σ2

2

1− θ
θ

p(0)ρ(x)− δp(x) + δψ(x)

where δ is the rate of “death” and “rebirth”, and ψ(x) is the distribution of income from

which a newborn worker is drawn following the death of an individual. The boundary

condition for p remains unchanged:

σ2

2
px(0)− µp(0) =

σ2

2

1− θ
θ

p(0).

Let p∞ satisfy

σ2

2

∂2p∞
∂x2

− µ∂p∞
∂x

+
σ2

2

1− θ
θ

p∞(0)ρ(x)− δp∞(x) + δψ(x) = 0

and define

p̃(x, t) : = eδt(p− p∞)

so that p̃ satisfies

p̃t =
σ2

2

∂2p̃

∂x2
− µ∂p̃

∂x
+
σ2

2

1− θ
θ

p̃(0)ρ(x)

with boundary condition σ2

2
p̃x(0)− µp̃(0) = σ2

2
1−θ
θ
p̃(0). Thus the results for δ = 0 applies to
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p̃. Since J =
∫
p̃0 =

∫
p0 −

∫
p∞ = 0, Lemma 15 with J = 0 applied to p̃ gives

λ = − lim
t→∞

1

t
log ‖p̃‖

which is equivalent to

λ+ δ = − lim
t→∞

1

t
log ‖p(x, t)− p∞(x)‖

as was to be shown.

J.2.6 Extension of Prop. 2 to income-dependent coefficients µ(x, t) and σ(x, t)

So far we have proven 2 when µ and σ are constant. We now extend this to the case when

µ(x, t) and σ(x, t) depend on x and t,99 but satisfy the conditions given in Assumption 2.

Essentially, we need to extend the results Lemmas 14, 15, 16 to the variable coefficient case.

Extension of Lemma 14 First we show that the exponential decay similar to that estab-

lished in Lemma 14 still holds, provided that we make modifications to terms with σ and µ,

and we define A∗, which now depends on time, as

A∗(t)p(x) =

(
σ2(x, t)

2
p

)
xx

− (µ(x, t)p)x +
σ2(0, t)

2

1− θ
θ

p(0)ρ(x)

with the time-dependent boundary condition
(
σ2(x,t)

2
p
)
x

(0) − µ(0, t)p(0) = σ2(0,t)
2

1−θ
θ
p(0),

where we note that σ and µ depend on t. We also define

A(t)u(x) =
σ2(x, t)

2

∂2

∂x2
u+ µ(x, t)

∂

∂x
u

with boundary condition −θux(0) + (1− θ)
(
u(0)−

∫
u(x)ρ(x)dx

)
= 0. We check that with

the above extended definitions, A(t) and A∗(t) are indeed adjoints of each other for fixed

t. Let A∞ and A∗∞ denote the operators with time-independent coefficients σ̃(x) and µ̃(x),

and let p∞(x) be the time-independent steady state solution A∗∞(t)p∞(x) = 0. As before,

p∞ can be rescaled to be a probability distribution function, and p∞(x) ∼ Ce
2µ̄

σ̄2 x as x→∞.

For simplicity of notation, we will sometimes write µ, σ instead of µ(x, t) and σ(x, t) when

there is no confusion.

99The intermediate case when µ(x) and σ(x) depend on x but not on t requires much less work, and can
be obtained by directly adapting the arguments for the constant coefficient case. It is the time-dependent
case that requires some new ideas.
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We start from the equation satisfied by u2:

∂

∂t
u2 −A(t)u2 + σ2(ux)

2 = 0

where we note the time dependence of A(t).

Now multiply the equation by p∞ and perform integration by parts, but pay attention

to the boundary conditions:∫
(Au2)p∞dx =

∫ ((
σ2(x, t)

2

∂2

∂x2
+ µ

∂

∂x

)
u2

)
p∞dx (125)

=

∫
− ∂

∂x
u2 ∂

∂x
(
σ2

2
p∞)− u2 ∂

∂x
(µp∞)dx− σ2

2
(0, t)(u2)x(0)p∞(0)

− µ(0, t)u2(0)p∞(0) (126)

=

∫
u2A∗(t)p∞dx−

σ2(0, t)

2

1− θ
θ

p∞(0)

∫
u2ρdx− σ2(0, t)

2
(u2)x(0)p∞(0)

+ (u2)(0)(
σ2(x, t)

2
p∞)x(0)− µ(0, t)u2(0)p∞(0)

Unlike before,
∫
u2A∗(t)p∞dx 6= 0, but

∫
u2(x, t)dx is bounded by

∫
u2

0dx for all t100, and by

our assumptions on the uniform convergence of µ(x, t) and σ(x, t) and the fact that p∞(x) ∈
L∞[0,∞), A∗(t)p∞(x) → A∗∞p∞(x) = 0 uniformly as t → ∞, so that

∫
u2A∗(t)p∞dx → 0 as

t → ∞. Moreover, when θ > 0, (p∞)x, (p∞)xx ≤ Cp∞, for some universal constant, and

when θ = 0, this is true for x away from 0, since p∞(0) = 0. Therefore, we have the estimate

|
∫
u2A∗(t)p∞dx| ≤ D1(t)(

∫
u2p∞dx+

∫ 1

0

u2dx)

where
∫ 1

0
u2dx is only needed when θ = 0 and p∞(0) = 0. Now a Hardy-inequality type

argument gives ∫ 1

0

u2dx ≤ C1

(∫
u2
xp∞dx+

∫
u2p∞dx

)
for some universal constant C1. Indeed, write

d

dx
(xu2) = 2xuux + u2

100Again by energy estimates of uniformly parabolic equations.
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Integrating this expression from 0 to 1, we find∫ 1

0

u2dx =

∫ 1

0

d

dx
(xu2)dx− 2

∫ 1

0

xuuxdx

≤ u2(1) + 2

(∫ 1

0

xu2dx

)1/2(∫ 1

0

x(ux)
2dx

)1/2

≤ C

∫ 1

0

p∞(u2 + u2
x)dx+ C

(∫ 1

0

p∞u
2dx

)1/2(∫ 1

0

p∞(ux)
2dx

)1/2

≤ C

∫ 1

0

p∞(u2 + u2
x)dx

where we use Sobolev embedding in dimension 1 to bound the uniform norm of u by its

H1(R) norm.

Therefore we have the estimate

|
∫
u2A∗(t)p∞dx| ≤ D1(t)(

∫
u2p∞dx+

∫
u2
xp∞dx) (127)

where D1(t) is independent of u, and satisfies D1(t)→ 0 as t→∞.

Another challenge comes from the other terms, because p∞ does not satisfy the boundary

conditions of A∗(t) with time-dependent σ2(x, t) and µ(x, t). We have to replace them by

σ2(x) and µ(x), and show that the error is vanishingly small as t→∞. This is done next.

Observe that (u2)x(0) = 2ux(0)u(0). When θ > 0, the boundary condition

−θux(0) + (1− θ)
(
u(0)−

∫
u(x)ρ(x)dx

)
= 0

for A implies101

ux(0) =
1− θ
θ

(
u(0)−

∫
uρdx

)
,

and the boundary condtion of A∞∗ gives

(
σ̃2(x)

2
p∞)x(0) = µ̃(0)p∞(0) +

σ̃2(0)

2

1− θ
θ

p∞(0).

where again note coefficients are time-independent.

101When θ = 0, we note that (σ
2

2 u
2)x(0)p∞(0) = 0 and so need to use u(0) −

∫
uρ = 0 instead of

ux(0) = 1−θ
θ

(
u(0)−

∫
uρ
)
. The subsequent calculations follow exactly by replacing σ2(0,t)

2
1−θ
θ p∞(0) with

(σ
2

2 p∞)x(0, t).
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Thus

σ̃2(0)

2
(u2)x(0)p∞(0) = σ̃2(0)

1− θ
θ

p∞(0)(u(0)−
∫
uρ)u(0)

(u2)(0)(
σ̃2(x)

2
p∞)x(0) = µ̃(0)p∞(0)u2(0) +

σ̃2(0)

2

1− θ
θ

p∞(0)u2(0)

We see that in 125 instead of (u2)(0)( σ̃
2(x)
2
p∞)x(0) we have (u2)(0)(σ

2(x,t)
2

p∞)x(0), and sim-

ilarly for other terms. Thus we will replace all the terms with time-dependent coefficients

with those with time-independent coefficients:

−σ
2(0, t)

2

1− θ
θ

p∞(0)

∫
u2ρdx→ − σ̃

2(0)

2

1− θ
θ

p∞(0)

∫
u2ρdx

−σ
2(0, t)

2
(u2)x(0)p∞(0)→ − σ̃

2(0)

2
(u2)x(0)p∞(0)

(u2)(0)(
σ2(x, t)

2
p∞)x(0)→ (u2)(0)(

σ̃2(x)

2
p∞)x(0)

−µ(0, t)u2(0)p∞(0)→ −µ̃(0)u2(0)p∞(0)

Note also that when θ > 0, p∞(0) > 0, so that u2(0, t) ≤ C
∫
u2(x, t)p∞(x)dx for some

universal constant C and all t. Moreover, |
∫
uρdx|2 ≤ (

∫
u2ρdx) ≤ C

∫
u2p∞. If we let R(t)

denote the sum of the differences of these terms, i.e. the “error” term, using these bounds

by
∫
u2p∞, we have the estimate

|R(t)| ≤ D2(t)

∫
u2p∞dx (128)

here D2(t) is independent of u, and D2(t) → 0 as t → ∞, using the convergence of σ(0, t)

and µ(0, t), as well as (∂xσ(x, t)) (0)→ (∂xσ̃(x)) (0).102

Combining the above, we have∫
(Au2)p∞dx = − σ̃

2(0)

2

1− θ
θ

p∞(0)

[(
u(0)−

∫
uρdy

)2

+

∫ (
u−

∫
uρdy

)2

ρdx

]
+R(t) +

∫
u2A∗(t)p∞dx

102When θ = 0, note that u(0) =
∫
uρ, and p∞(0) = 0, so the estimate still holds.
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Thus

d

dt

∫
u2p∞(x)dx+

∫
σ2(x, t)u2

xp∞dx

+
σ̃2(0)

2

1− θ
θ

p∞(0)

[(
u(0)−

∫
uρdy

)2

+

∫ (
u−

∫
uρdy

)2

ρdx

]
−R(t)−

∫
u2A∗(t)p∞dx = 0

Now we would like to replace u with u −
∫
up∞dx, in order to have the orthogonal-

ity condition
∫
up∞dx = 0 for all t. This requires bounding the errors, which we de-

note collectively by F (t), by terms involving
∫
u2p∞ again, and show that they vanish

as t → ∞. This is not hard: For the
∫
u2p∞dx term in |R(t)| ≤ D2(t)

∫
u2p∞dx and

|
∫
u2A∗(t)p∞dx| ≤ D1(t)(

∫
u2p∞dx+

∫ 1

0
u2dx),∫

u2p∞dx−
∫

(u−
∫
up∞dy)2p∞dx = (

∫
up∞dx)2

≤
∫
u2p∞dx

and for d
dt

∫
u2p∞(x)dx,

d

dt

∫
u2p∞(x)dx− d

dt

∫
(u−

∫
up∞dy)2p∞dx = 2

∫
up∞dx ·

∫
utp∞dx (129)

= 2

∫
up∞dx ·

∫
uA∗(t)p∞dx

≤ D3(t)

∫
u2p∞dx

where again D3(t) is independent of u and satisfies D3(t) → 0 as t → ∞. Terms involving

ux do not change because
∫
u(x, t)p∞dx depends only on t.

Therefore we have

d

dt

∫
(u−

∫
up∞dy)2p∞(x)dx

+

∫
σ2(x, t)u2

xp∞dx+
σ̃2(0)

2

1− θ
θ

p∞(0)

[(
u(0)−

∫
uρdy

)2

+

∫ (
u−

∫
uρdy

)2

ρdx

]
−R(t)−

∫
u2A∗(t)p∞dx+ F (t) = 0
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Using σ2(x, t) ≥ γσ̄2 and the estimates (127), (128), and (129) involving D1, D2, and D3,

this gives

d

dt

∫
(u−

∫
up∞dy)2p∞(x)dx

+γσ̄2

∫
u2
xp∞dx+

γσ̄2

2

1− θ
θ

p∞(0)

[(
u(0)−

∫
uρdy

)2

+

∫ (
u−

∫
uρdy

)2

ρdx

]
≤ (D1 +D2 +D3)

∫
u2p∞dx+D3

∫
u2
xp∞dx

Noting that
∫

(u−
∫
up∞dy)dx = 0, we can use the reasoning established in 14 to conclude

that the terms in the second line are bounded above by

γσ̄2

∫
u2
xp∞dx+

γσ̄2

2

1− θ
θ

p∞(0)

[(
u(0)−

∫
uρdy

)2

+

∫ (
u−

∫
uρdy

)2

ρdx

]
≤ λ̄γ

∫
(u−

∫
up∞dy)2p∞dx

where λ̄ is defined in Lemma 14 with σ replaced by σ̄.

Finally, we obtain the desired Grönwall type inequality

d

dt

∫
(u−

∫
up∞dy)2p∞(x)dx+ γ(t)

∫
(u−

∫
up∞dy)2p∞(x)dx ≤ 0

where γ(t)→ λ̄γ > 0. Thus∫
(u−

∫
up∞dy)2p∞(x)dx ≤ Ce−λt

∫
(u0 −

∫
u0p∞dy)2p∞(x)dx

for λ = λ̄γ > 0.

Extension of Lemma 15 Next, to obtain the exponential convergence∫
|p(x, t)− Jp∞(x)|dx ≤ Ce−λt,

recall that ∫
u(x, t)p0(x)dx =

∫
u0(x)p(x, t)dx
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This dual property still holds, using the Feynman-Kac formula, for example. More precisely,∫
u(x, t)p0(x)dx =

∫
E[u0(Xt) | X0 = x]p0(x)dx

=

∫ ∫
P[Xt = y | X0 = x]u0(y)dyp0(x)dx

=

∫ ∫
P[Xt = x | X0 = y]p0(x)dxu0(y)dy

=

∫
E[p0(Xt) | X0 = y]u0(y)dy

=

∫
u0(y)p(y, t)dy

Thus the calculations in Lemma 15 follows with minor modifications:∫ (
u−

∫
u0p∞dy

)
p0dx =

∫
u0pdx− J

∫
u0p∞dy =

∫
u0 (p− Jp∞) dx

and ∣∣∣∣∫ u0 (p(x, t)− Jp∞) dx

∣∣∣∣ =

∣∣∣∣∫ (u(x, t)−
∫
u0p∞dy

)
p0dx

∣∣∣∣
=

∣∣∣∣∣∣
∫ ((

u(x, t)−
∫
u0p∞dy

)2

p∞

)1/2
p0

p
1/2
∞
dx

∣∣∣∣∣∣
≤
(∫

(p0)2

p∞
dx

)1/2
(∫ (

u(x, t)−
∫
u0p∞dy

)2

p∞dx

)1/2

≤ C0e
−λt
(∫

(u0 −
∫
u0p∞dy)2p∞dx

)1/2

= C0e
−λt
(∫

(u0)2p∞dx− (

∫
u0p∞dx)2

)1/2

≤ C0e
−λt
(∫

(u0)2p∞dx

)1/2

where we note that we have
∫ (

u(x, t)−
∫
u0p∞dy

)2
p∞dx instead of

∫ (
u(x, t)−

∫
up∞dy

)2
p∞dx

in the inequality. This is a minor issue, because going back to the Grönwall argument above,

we notice that this alteration causes C0 to depend on
∫
u2

0p∞dx. In later steps, we only

use u0 = p−Jp∞
p∞

, and by energy estimates of uniformly parabolic equations, we see that
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∫
u2

0p∞dx ≤ C
∫ p2

0

p∞
, uniformly bounded. The rest of the proof for exponential convergence

is the same as in Lemma 15. To show that the rate of convergence λ is generically obtained,

use translation at infinity to reduce to the constant-coefficient case.

Extension of Lemma 16 Finally, we extend Lemma 16 and show that if the exponential

convergence ∫
p2(x, t)

p∞
dx ≤ Ce−λt

∫
p2

0(x, t)

p∞
dx

holds for all p, then λ is no larger than µ̄2

2σ̄2 .

In this case, the asymptotic behavior p∞ ∼ Ce
2µ̄

σ̄2 x implies that for any fixed ε > 0, there

exists x̄ > 0 such that

1− ε ≤ p∞

e
2µ̄

σ̄2 x
≤ 1 + ε

for all x ≥ x̄. Therefore, we have∫ ∞
x̄

p2(x, t)

e
2µ̄

σ̄2 x
dx ≤ (1 + ε)

∫ ∞
x̄

p2(x, t)

p∞(x)
dx ≤ (1 + ε)e−2λt

∫ ∞
x̄

p2
0(x, t)

p∞(x)
dx

≤ 1 + ε

1− ε
e−2λt

∫ ∞
x̄

p2
0(x, t)

e
2µ̄

σ̄2 x
dx

An inequality of the form above can only hold when λ ≤ µ̄2

2σ̄2 . This is because p̃(x) = pe−
µ̄

σ̄2 x

solves

∂tp̃− (
σ̃2(x)

2
p̃)xx + (bp̃)x + ap̃+

σ̃2(0)

2

1− θ
θ

p̃(0)ρ(x) = 0

where b = µ̃(x)− µ̄
σ̄2 σ̃

2 and a = − σ̃2(x)
2σ̄4 µ̄

2 + µ̃(x)
σ̄2 µ̄. Note that as x→∞, b→ 0 and a→ µ̄2

2σ̄2 ,

and of course ρ(x) → 0. Then the translation at infinity argument used before shows that

the inequality
∫∞
x̄

p2(x,t)

e
2µ̄

σ̄2 x
dx ≤ 1+ε

1−εe
−2λt

∫∞
x̄

p2
0(x,t)

e
2µ̄

σ̄2 x
dx implies

∫ ∞
x̄

p̃2dx ≤ 1 + ε

1− ε
e−2λt

∫ ∞
x̄

p̃2
0dx

where p̃ satisfies the equation ∂tp − σ̄2

2
pxx + µ̄2

2σ̄2p = 0 on the entire real line R with initial

condition p̃0 = p0e
− µ̄

σ̄2 x, which yields a contradiction if λ > µ̄2

2σ̄2 . Proposition 2 for variable

coefficients σ(x, t) and µ(x, t) under Assumption 2 is complete. �
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K Closed Form Expressions for the Finite-Time Dis-

tributions

Here are some expressions that we found useful in exploring income dynamics. They gener-

alize the Steindl model in the paper.

Closed form with Pareto initial distribution. We here generalize the Steindl case

of Lemma 1 to the case σ > 0. We consider the reflecting barrier case, with death rate δ ≥ 0,

and rebirth at the barrier point, x = 0.

We now obtain the general form of the transition function.

Proposition 11 (Closed form for the transitions of reflected Brownian motion) Take the

reflected Brownian motion with drift and death rate δ ≥ 0 (agents who just died are reborn

at x = 0). Suppose that the counter-CDF P (x, t) := P (xt ≥ x) starts from P (x, 0) = e−αx.

Then, the counter-CDF at time t ≥ 0 is

P (x, t) = e−ζx +Gα (x, t)−Gζ (x, t) (130)

where

Gα (x, t) = e(−δ+µα+ 1
2
α2σ2)t

[
e−αxΦ

(
− (ασ2 + µ) t+ x

σ
√
t

)
− e(α+ 2µ

σ2 )xΦ

(
− (ασ2 + µ) t− x

σ
√
t

)]
(131)

and Φ is the CDF of a standard Gaussian variable.

Proof: One can verify by calculation that:
(
−∂t − µ∂x + σ2

2
∂xx − δ

)
Gα = 0, and

Gα
(
x, 0+

)
= e−αx for all x > 0,

Gα (0, t) = 0 for all t > 0.

�

We can verify that we obtain Lemma 1 as a particular case when σ → 0. 103

103Indeed, take the Steindl case, with σ → 0. Then, µ > 0, and Gα (x, t) = e(−δ+αµ)t−αx1x>µt so

P (x, t) = e−ζx +Gα (x, t)−Gζ (x, t) = e−ζx + e−δt
(
eαµt−αx − eζµt−ζx

)
1x>µt

so (using ζµ = δ), if x > µt,

P (x, t) = e−ζx + e−δteαµt−αx − e−ζx = e−δteαµt−αx = e−αx+(α−ζ)µt.
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Finally, Harrison (1985, p.15, 49) gives a formula for the Brownian motion reflected at

0: F (x, t;x0) := P (Xt ≥ x | X0 = x0):

F (x, t;x0) = Φ

(
−x+ x0 + µt

σ
√
t

)
+ e2µx/σ2

Φ

(
−x− x0 − µt

σ
√
t

)
(132)

for x0, x, t ≥ 0. Given an initial density p0, this gives P (x, t) =
∫∞

0
F (x, t; y) p0 (y) dy.

Equation (130) is more explicit when starting from an exponential p0.

Model without lower bounds. We characterize the time path of the distribution for

σ > 0 and for more general initial conditions p0(x):

Proposition 12 (Closed form solution for the general model without a lower bound) In the

case without a lower bound, the density can be expressed as:

p (x, t) = p∞ (x) + e−δtE [p0 (x−Gt)− p∞ (x−Gt)] (133)

where Gt := µt+ σZt, and the expectation is taken over the stochastic realizations of Gt. If

there are jumps, the expressions are the same, except that Gt := µt + σZt +
∑Nt

i=1 gi, where

Nt denotes the number of jumps gi between 0 and t.

Proof: Take the case with no jumps. Call q (x, t) = e−δt (p (x, t)− p∞ (x)). Then,

qt = −µqx + σ2

2
qxx: this corresponds to the process dGt = µdt+σdZt, with no death. By the

Feynman-Kac formula, q (x, t) = E [q0 (x−Gt)], i.e. (133). The case with jumps is similar.

�

Note that when σ = 0, this leads to the Steindl case (23) for an exponential initial

distribution.

Reflecting barrier. Here is an explicit formula for the case with a reflecting barrier.

Proposition 13 (Explicit formula with a reflecting barrier) Consider the process with a

reflecting barrier at 0. We have the following explicit formula for P (x, t) = P (Xt ≤ x):

P (x, t) = e−
µ2

2σ2 t+
µ

σ2 xE
[
Q̃0 (x+ σZt)

]
where Q̃0 (x) = sign (x)P0 (|x| , 0) e−

µ

σ2 |x|, and Zt is a standard Brownian motion.
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Proof: We normalize σ2 = 1 for notational simplicity (the general case is easy from

dimensional analysis). Given pt = −µpx + 1
2
pxx, define P (x, t) = P (Xt ≤ x) =

∫ x
0
p (y, t) dy,

we have:

Pt = −µPx +
1

2
Pxx

and P (0, t) = 0. Next, define Q (x, t) := e−βxP (x, t) for a β to be determined soon. From

P (x, t) = eβxQ (x, t), we calculate:

Px = eβx (Qx + βQ) ,

Pxx = eβx
(
Qxx + 2βQx + β2Q

)
,

hence

eβxQt = Pt = −µPx +
1

2
Pxx = eβx

(
1

2
Qxx + (β − µ)Qx +

(
1

2
β2 − µβ

)
Q

)
.

So, set β = µ. This gives

Qt =
1

2
Qxx −

µ2

2
Q (134)

and Q (0, t) = 0.

We next define:

Q̃ (x) := Q (x) 1x≥0 −Q (−x) 1x<0 = sign (x)Q (|x|) ,

then Q̃ is defined for all x ∈ R, not just for x ∈ R+, as Q is. Furthermore:

Q̃t =
1

2
Q̃xx −

µ2

2
Q̃ (135)

and Q̃ (0, t) = 0.

Now, set q (x, t) := e
µ2

2
tQ̃ (x, t). We have:

qt = e
µ2

2
t

(
µ2

2
Q̃+ Q̃t

)
= e

µ2

2
t

(
µ2

2
Q̃+

1

2
Q̃xx −

µ2

2
Q̃

)
= e

µ2

2
t1

2
Q̃xx =

1

2
qxx,

qt =
1

2
qxx, (136)

Hence, q (x, t) just follows the heat equation. Note that the speed of convergence of q is

slower than any exponential: λq = 0, so indeed, the speed of convergence of Q̃ is: λQ = −µ2

2
,

i.e. in dimensional units, λQ = −µ2

2σ2 .
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We also obtain: q (x, t) = E [q0 (x+ Zt)] from Feynman-Kac formula, so that:

Q̃ (x, t) = e−
µ2

2
tE
[
Q̃0 (x+ Zt)

]
,

P (x, t) = eµxQ (x, t) = eµxQ̃ (x, t) = e−
µ2

2
t+µxE

[
Q̃0 (x+ Zt)

]
.

In the statement, we add the dimensions in σ2. �
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(http://www.college-de-france.fr/site/pierre-louis-lions/course-2014-11-07-10h00.htm).

Meyn, S. P., and R. L. Tweedie (2009): Markov Chains and Stochastic Stability, Second
Edition. Cambridge University Press.

77


