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C Micro-foundation of Income Process (1)

Time is continuous, and there is a continuum of workers with preferences

E0

∫ ∞
0

e−ρt log citdt (41)

A worker’s consumption cit equals her wage wit, which is given by

wit = w̄hit(1− eit). (42)

Here w̄ is an exogenous skill price that we normalize to one, hit is her human capital or her

skills, eit is the fraction of time spent accumulating human capital. Workers die (retire) at

rate δ, in which case they are replaced by a young worker with human capital hi0 drawn

from a distribution ψ̃(h). A worker’s human capital evolves as

dhit = γ̃(eit)hit + σhitdZit + githitdNit (43)

where Zit is a standard Brownian motion, Nit is a Poisson process with intensity φ, and git is

drawn from a distribution f . The function γ̃ is increasing and concave. Workers maximize

(41) subject to (42) and (43).

Lemma 8 Worker’s optimal investment decision e∗ is independent of her human capital hit.

The resulting wage dynamics are given by

dwit = γwitdt+ σwitdZit + gitwitdNit, (44)

where γ := γ̃(e∗). By Ito’s formula therefore xit = logwit satisfies (1) with µ = γ − σ2/2.

Proof of Lemma: Define the value function v(h) = maxe E0

∫∞
0
e−ρt log citdt where the

expectation E0 is conditional on hi0 = h. A worker’s HJB equation is

ρv(h) = max
e

log((1− e)h) + v′(h)γ̃(e)h+
1

2
v′′(h)σ2h2 + φ

∫ ∞
0

(v(gh)− v(h))f(g)dg (45)

1



with corresponding first-order condition 1
1−e = v′(h)γ̃′(e)h. We proceed with a guess-and-

verify strategy. We guess that the value function takes the form

v(h) = A+B log h (46)

for constants A and B to be determined. Then the FOC implies e is independent of h and

satisfies 1
1−e = Bg′(e). Plugging this and (46) into (45) we have

ρ(A+B log h) = log((1− e)h) +Bγ̃(e)− 1

2
Bσ2 + φB

∫ ∞
0

log gf(g)dg.

Collecting the terms involving h, we have ρB log h = log h or B = 1/ρ. Hence the optimal

choice e∗ solves 1
1−e = γ̃′(e)/ρ, which is independent of h as asserted in the Lemma. Multi-

plying (43) by 1 − e∗ and using wit = (1 − e∗)hit yields (44). For completeness, A satisfies

ρA = log(1− e∗) + 1
ρ
γ̃(e∗)− 1

2
1
ρ
σ2 + φ1

ρ

∫∞
0

log gf(g)dg.�

Labor Force Participation: To motivate exit with reinjection (or a reflecting barrier),

extend the model above by assuming that workers have an early retirement option: if they

choose to retire, they receive an income stream b instead of wit each period. Once retired,

they can never re-enter the labor force and are instead replaced by a new entrant with human

capital drawn from a distribution ρ̃(h). Workers therefore solve a stopping time problem,

and one can show that they optimally retire when their wage drops below some threshold w.

D Stationary Distributions of the Standard Random

Growth Process

Consider the process for income (44) or equivalently the process for log income (1) with

µ = γ − σ2/2. We here provide a complete characterization of the stationary distributions

of the process for the various “stabilizing forces” discussed in Section 3.1. We first consider

the case without jumps φ = 0 and then turn to the case with jumps φ > 0. The results for

the former case are well-known (see e.g. Gabaix, 2009) and we state them without proof.

D.1 Stationary Distributions without Jumps φ = 0

The following two assumptions will be used multiple times throughout this section and we

collect them here to avoid unnecessary repetition.
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Assumption 3 The distribution of starting wages following death, ψ, satisfies:

lim
x→∞

ψ(x)

e−ζ+x
= lim

x→−∞

ψ(x)

e−ζ−x
= 0

where ζ− < 0 < ζ+ are the two roots of (2).

Assumption 4 The distribution of starting wages following exit, ρ, satisfies:

lim
x→∞

ρ(x)

e−ζ+x
= lim

x→−∞

ρ(x)

e−ζ−x
= 0

where ζ− < 0 < ζ+ are the two roots of (2). Furthermore, ρ(x) = 0 for all x ≤ 0.

Stabilizing Force 1: Poisson Death, No Lower Bound on Income. Consider the

process (44) or equivalently (1) with death at rate δ > 0 and no lower bound on income. We

first analyze the case with rebirth at x = 0 (equivalently w = 1), i.e. ψ is the Dirac delta

function at x = 0, and then turn to general ψ.

With rebirth at x = 0, the process has a stationary distribution given by the double

Pareto distribution

f∞(w) = cmin{w−ζ−−1, w−ζ+−1},

where c = −ζ−ζ+/(ζ+ − ζ−) and where ζ− < 0 < ζ+ are the two roots of (2). Equivalently,

the stationary distribution of the logarithm of income or wealth x = logw is given by

p∞(x) = cmin{e−ζ−x, e−ζ+x}. (47)

Note that f∞(w) has a Pareto tail, that is P(wit > w) ∼ Cw−ζ+ as w → ∞ and p∞(x) has

an exponential tail, P(xit > x) ∼ Ce−ζ+x. The expression for ζ in (3) is the expression for

the positive root ζ+.

The derivation is standard (see e.g. Gabaix, 2009) and can be carried out either in terms

of f∞(w) or p∞(x). We here briefly restate the latter derivation. For x 6= 0 (outside of the

point of rebirth), the stationary version of the Kolmogorov Forward equation (5) is

0 = −µpx +
σ2

2
pxx − δp. (48)

Guess that p(x) = ce−ζx and hence px(x) = −ζce−ζx and pxx(x) = ζ2ce−ζx. Substituting

this guess into (48), we get the quadratic (2) which has two roots ζ− < 0 < ζ+. Hence the
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general solution of (48) for x 6= 0 is

p∞(x) =

c−e−ζ−x + c+e
−ζ+x, x < 0

C−e
−ζ−x + C+e

−ζ+x, x > 0

The two different cases come from the fact that (48) does not hold at x = 0 and hence p∞(x)

may not be differentiable (though it does have to be continuous). Because p∞(x) has to

be integrable as x → ∞ and ζ− < 0, we require C− = 0. Similarly, that p∞(x) has to be

integrable as x→ −∞ and ζ+ > 0 imposes c+ = 0. Given that p∞(x) has to be continuous

at x = 0, we finally have c− = C+ = c and so the solution can be written as (47). Finally,

the constant c is pinned down by the requirement that the distribution integrates to one.

Now consider the case of a general distribution of starting wages ψ(x). One can no longer

obtain an analytic solution of the form (47). But one can show that there exists a unique

stationary distribution under Assumption 3, and that this stationary distribution satisfies

p∞(x) ∼

e−ζ+x, x→∞,
e−ζ−x, x→ −∞,

where ζ− < 0 < ζ+ are the two roots of (2), i.e. the asymptotic tail behavior of the

distribution is the same as (47). Intuitively, Assumption 3 ensures that the endogenously

generated part of the tail dominates any exogenous tail of ψ.

Stabilizing Force 2: Reflecting Barrier. Consider the process (44) with a reflecting

barrier at w = 1 or equivalently (1) with a reflecting barrier at x = 0. If µ = γ − σ2/2 < 0,

the process has a stationary distribution given by

f∞(w) = ζw−ζ−1, w ≥ 1, ζ = − µ

σ2/2
= 1− γ

σ2/2
.

Equivalently, the stationary distribution of the logarithm of income or wealth x = logw is

given by p∞(x) = ζe−ζx, x ≥ 0. Note that again f∞(w) has a Pareto tail and p∞(x) has an

exponential tail.

Stabilizing Force 3: Exit and Reinjection. Consider first the case where reinjection

occurs at a point x∗ > 0, i.e. ρ is the Dirac delta function at x∗. If µ < 0, then there exists
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a unique stationary distribution equal to

f∞(w) = cw−ζ−1 min
{
wζ+1 − 1, wζ+1

∗ − 1
}
, ζ = − µ

σ2/2

or equivalently

p∞(x) = ce−ζx min
{
eζx − 1, eζx∗ − 1

}
, ζ = − µ

σ2/2
, (49)

where c is pinned down by the requirement that the distribution integrates to one. This is

a simplified version of equation (20) in Luttmer (2007). See his Figure II for a graphical

representation. Finally note that as x∗ ↓ 0, (49) converges to p∞(x) = ζe−ζx, i.e. the

stationary distribution of the process with exit and entry converges to one associated with

a reflecting barrier at x = 0.

The derivation of (49) is straightforward. The stationary Kolmogorov Forward equation

outside of the point of reinjection, i.e. for x 6= x∗, is

0 = −µpx +
σ2

2
pxx (50)

with boundary condition p(0) = 0. We solve this equation using a guess-and-verify strategy

as before. Guess that

p(x) =

c
(
1− e−ζx

)
, x < x∗

Ce−ζx, x > x∗
(51)

for c, C > 0. Note that this guess satisfies p(0) = 0 and p(x) → 0 as x → ∞. Take x < x∗.

We have px = cζe−ζx and pxx = −cζ2e−ζx. Plugging into (50) and canceling terms we have

ζ = −2µ/σ2 as asserted. One can check that this ζ can also be obtained by solving the

branch of p for x > x∗. Since p has to be continuous at x∗, c
(
1− e−ζx∗

)
= Ce−ζx∗ or

equivalently C = c
(
eζx∗ − 1

)
. Plugging this into (51), we have (49).

Next, one can relax the assumption that reinjection is at x = x∗ to allow for reinjection

with a wage drawn from an arbitrary distribution ρ(x) satisfying Assumption 4. While one

can no longer obtain an analytic solution, one can then show that p has an asymptotic Pareto

tail: p(x) ∼ e−ζx for large x with the same tail exponent ζ as in (49).

Stabilizing Force 4: Reflecting Barrier and Poisson Death. Consider the process

(44) with Poisson death at rate δ and both rebirth and a reflecting barrier at w = 1 or

equivalently (1) with both rebirth and a reflecting barrier at x = 0. If either δ > 0 or
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µ = γ − σ2/2 < 0, the process has a stationary distribution given by

f∞(w) = ζw−ζ−1, w ≥ 1,

where ζ is the positive root of 0 = σ2

2
ζ2 + ζµ − δ. Equivalently, the stationary distribution

of the logarithm of income or wealth x = logw is given by p∞(x) = ζe−ζx, x ≥ 0. Note that

again f∞(w) has a Pareto tail and p∞(x) has an exponential tail. As above, the assumption

that rebirth occurs at x = 0 can be relaxed to rebirth from any function ψ satisfying

Assumption 3. In this case again p∞(x) ∼ e−ζx for large x.

Stabilizing Force 5: Additive Income Term ydt. Consider the process (54), i.e. a

standard random growth process with the addition of an additive income term ydt, or equiv-

alently (55). If y > 0 and µ = γ − σ2/2 < 0, the process has a stationary distribution,

i.e. this additive term acts as a stabilizing force. No closed form solution exists but the

distribution has a Pareto tail: for w →∞ and a constant c

f∞(w) ∼ cw−ζ−1, ζ = − µ

σ2/2
= 1− γ

σ2/2
. (52)

Equivalently, the stationary distribution of the logarithm of income or wealth x = logw has

an exponential tail: p∞(x) ∼ ce−ζx for x→∞.

D.2 Stationary Distributions with Jumps φ > 0

Before characterizing the stationary distribution of the process with jumps, we report a useful

result that allows one to conclude that a distribution has a Pareto tail from a characterization

of its Laplace transform alone and to characterize the corresponding tail exponent.

D.2.1 From Laplace Transform to Pareto Tail: A Tauberian Result

As we noted in the main text, if a distribution p has a Pareto tail, that is p(x) ∼ ce−ζx

x → ∞ for constants c and ζ, then the Laplace transform (16) satisfies p̂(ξ) ∼ c
ζ+ξ

as

ξ ↓ −ζ. Therefore ζ = − inf{ξ : p̂(ξ) < ∞}. Note that this characterization only applies

if we already know that p has a Pareto tail. However, there are situations in which it is

not known whether p has a Pareto tail but in which we still have a characterization of the

Laplace transform p̂. It is therefore natural to ask whether there also is a converse result, i.e.

whether we can say anything about a distribution’s tail from its Laplace transform alone?

The answer is “yes, we can.”
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There are a number of results along these lines, all of which are typically referred to

as “Tauberian” results. These in turn are applications of Karamata’s theory of regular

variation. The most well-known example is Karamata’s Tauberian Theorem. We here cite

one Tauberian result that applies to our setup in which we would like to say something

about the exponential decay of p given knowledge of the Laplace transform p̂. The result is

Corollary 1.4 from Mimica (2013). It makes use of the concept of a function’s “abscissa of

convergence” which we define before stating the result.

Definition 1 (Negative Abscissa of Convergence of p̂) Since p is a density on (−∞,∞),

there exists a real number ξ∗ ∈ (−∞, 0] such that the integral defining the Laplace transform

p̂ in (16) converges for ξ ∈ (ξ∗, 0], diverges for ξ < ξ∗ and has a singularity at ξ∗. The

number ξ∗ is known as the negative abscissa of convergence.

The following result is from Mimica (2013).60 In addition to the “abscissa of convergence”

we just defined, it also uses the concept of the “pole” of a function. Roughly, a pole of a

function f(ξ) is a singularity of f at ξ∗ that behaves like 1/(ξ−ξ∗)n for some positive integer

n. For a complete definition, see any book on Complex Analysis.

Proposition 7 (Mimica (2013)) Consider the Laplace transform p̂(ξ, t) defined in (16)

with the negative abscissa of convergence ξ∗ ∈ (−∞, 0], and assume that ξ∗ is a pole of p̂.

Then

lim
x→∞

1

x
logR(x, t) = ξ∗ < 0,

where R(x, t) :=
∫∞
x
p(y, t)dy is the right-CDF corresponding to the density p. That is,

R(x, t) ∼ Ce−ζx or equivalently p(x, t) ∼ ce−ζx as x → ∞ with ζ = −ξ∗. This means that

p, the density of log income, has an exponential tail with parameter ζ = −ξ∗ or equivalently

the density of the level of income w = ex has a Pareto tail with that same tail parameter.

With this useful result in hand, we now go on to characterize the stationary distribution

of the process with jumps.

D.2.2 Stationary Distributions with Jumps φ > 0

As we will see, a sufficient condition for ensuring the existence of a unique stationary distri-

bution with a Pareto tail is:

60Note that Mimica’s result is stated in terms of the one-sided Laplace transform (which is the more
commonly used version). It is easy to extend the result to the two-sided Laplace transform by using the fact
that the two-sided Laplace transform is the sum of two one-sided Laplace transforms.
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Assumption 5 The distribution of jumps in the income growth rate satisfies:

lim
g→∞

f(g)

e−β+g
= lim

g→−∞

f(g)

e−β−g
= 0

where β− < 0 < β+ are the two roots of (2), i.e. the tail coefficients in the absence of jumps.

We here denote the tail coefficients in the absence of jumps by β−, β+ so as to distinguish

them from the tail coefficients with jumps ζ−, ζ+. We characterize the stationary distribution.

Proposition 8 Under Assumptions 3 and 5, there is a unique stationary distribution with

an asymptotic Pareto tail p∞(x) ∼ e−ζx as x→∞ where ζ is the unique solution of

P (ζ) := µζ +
σ2

2
ζ2 − δ + φ(f̂(−ζ)− 1) = 0 (53)

and satisfies 0 < ζ ≤ β+, i.e. the tail is at least as fat as that in the model without jumps.

Proof: Consider the Laplace transform of the stationary distribution p̂∞(ξ) in equation

(21) in Proposition 3. Assumptions 3 and 5 guarantee that ψ̂(ξ) < ∞ and f̂(ξ) < ∞ for

all β− ≤ −ξ ≤ β+. Therefore the stationary Laplace transform p̂∞(ξ) in (21) exists for

β− ≤ −ξ ≤ β+ (at least). By the Tauberian result in Proposition 7, the underlying stationary

distribution p∞(x) has an exponential tail (and the distribution of w = ex a Pareto tail) if

the Laplace transform p̂∞(ξ) has a finite negative abscissa of convergence that also is a pole.

We now show that this is the case.

Consider a point ξ∗ < 0 at which the denominator in (21) equals zero, i.e. µξ∗− σ2

2
(ξ∗)2 +

δ − φ(f̂(ξ∗) − 1) = 0. Equivalently, ζ = −ξ∗ > 0 satisfies (53). We first show that there

is a unique such point and that ζ ≤ β+. To this end, note that f̂(−ζ) :=
∫∞
−∞ e

ζgf(g)dg is

strictly increasing in ζ with f̂(0) = 1 and f̂(−ζ) ≥ 1 for ζ > 0. The function P is then the

sum of the quadratic function (2), which has a positive root β+, and a strictly increasing

function φ(f̂(−ζ)− 1). Therefore, it can only have one positive root. Next, note that

P (0) = −δ < 0,

P (β+) = µβ+ +
σ2

2
β2

+ − δ + φ(f̂(−β+)− 1) = φ(f̂(−β+)− 1) ≥ 0,

where the last equality follows from the definition of β+. Therefore, the unique positive root

ζ of (53) satisfies δ < ζ ≤ β+.

Summarizing, ξ∗ = −ζ is the negative abscissa of convergence of p̂∞(ξ). Furthermore, as-

suming that f̂ is an analytic function (in the complex analysis sense) for ξ in a neighborhood

8



of ξ∗ in the complex plane, this abscissa of convergence ξ∗ is also a pole of p̂∞. Therefore

by the Tauberian result in Proposition 7, p has an exponential tail (and the distribution of

w = ex a Pareto tail) with parameter ζ = −ξ∗ which satisfies (53).�

E The Dynamics of Wealth Inequality

In this appendix we explore the implications of our results for the dynamics of wealth in-

equality. We first provide a brief overview of the facts, and then show how our theoretical

results can be extended to a simple model of top wealth inequality. We then ask whether an

increase in r − g, the gap between the after-tax average rate of return and the growth rate,

can explain the increase in top wealth inequality observed in some datasets as suggested by

Piketty (2014).

E.1 Motivating Facts: the Evolution of Top Wealth Inequality

Figure 7 presents facts about the evolution of top wealth inequality, analogous to those

about top income inequality in Figure 1. Panel (a) shows the time path of the top 1%
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(a) Top Wealth Inequality
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(b) Relative Wealth Shares

Figure 7: Evolution of Top Wealth Inequality

wealth share from two different data sources. The first is the Survey of Consumer Finances

(SCF) and the second is a series constructed by Saez and Zucman (2015) by capitalizing

capital income data.61 The two series suggest quite different conclusions. In particular, data

61The SCF data for 1989 to 2013 is from the Online Appendix of Saez and Zucman (2015) available at
http://gabriel-zucman.eu/files/SaezZucman2014MainData.xlsx in Sheet DataFig1-6-7-11-12. The
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from the SCF suggest a relatively gradual rise in the top 1% wealth share, whereas Saez and

Zucman’s estimates suggest a much more dramatic rise, a discrepancy that has generated

some controversy (see e.g. Kopczuk, 2015; Bricker, Henriques, Krimmel, and Sabelhaus,

2015).62 Finally, comparing Figures 1 and 7 one can also see that wealth is much more

unequally distributed than income.

Panel (b) plots the evolution of relative wealth shares which are informative about the

fatness of the Pareto tail of the wealth distribution as discussed in Section 2. The finding

depends again on the underlying data source, with the SCF showing no clear pattern and

the capitalization method suggesting a large thickening of the tail of the wealth distribution.

There are three main takeaways from this section. First, top wealth shares appear to have

increased though it is unclear by how much. Second, it is ambiguous whether the thickness

of the tail of the wealth distribution has increased over time. And finally, wealth is more

unequally distributed than income and, relatedly, the wealth distribution has a fatter Pareto

tail than the income distribution.

E.2 A Simple Model of Top Wealth Inequality

The following simple model captures the main features of a large number of models of

the upper tail of the wealth distribution.63 Time is continuous and there is a continuum of

individuals that are heterogeneous in their wealth w̃it. At the individual level, wealth evolves

as

dw̃it = (1− τ)w̃itdRit + (yt − cit) dt

where τ is the capital income tax rate, dRit is the rate of return on wealth which is stochas-

tic, yt is labor income and cit is consumption. To keep things simple, we make the following

assumptions. First, capital income is i.i.d. over time and, in particular, dRit = r̃dt+ ν̃dZit,

where r̃ and ν̃ are parameters, and Zit is a standard Brownian motion, which reflects id-

iosyncratic returns to human capital or to financial capital (this idiosyncratic shock captures

SCF data for 1962 and 1983 is from Wolff (1987, Table 3). The 1962 dataset is a precursor of the SCF called
the “Survey of Financial Characteristics of Consumers” or SFCC. Note that the pre- and post-1989 data use
different wealth definitions and may therefore not be directly comparable. See the discussion in Kopczuk
(2015) and Roine and Waldenström (2015), and the data appendix of Roine and Waldenström (2015) for
alternative series that extend the SCF back in time.

62Kopczuk (2015) notes that a third method of measuring top wealth shares, the estate-tax multiplier
technique, suggests an even smaller increase in the top one percent wealth share than the SCF. Also see
critique of Piketty (2014) by Auerbach and Hassett (2015).

63See e.g. Wold and Whittle (1957), Benhabib, Bisin, and Zhu (2011, 2015a,b), Piketty and Zucman
(2014b), Jones (2015) and Acemoglu and Robinson (2015).
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the undiversified ownership of an entrepreneur, for instance).64 Second, we assume that indi-

viduals consume an exogenous fraction θ of their wealth at every point in time, cit = θw̃it.
65

Third, we assume that all individuals earn the same labor income yt, which grows determin-

istically at a rate g, yt = yegt. Given these assumptions, it is easy to show that detrended

wealth wit = w̃ite
−gt follows the stochastic process

dwit = (y + γwit)dt+ σwitdZit, γ := r − g − θ (54)

where r = (1 − τ)r̃ is the after-tax average rate of return on wealth and σ = (1 − τ)ν̃ is

the after-tax wealth volatility. Note that (54) is a standard random growth process with the

addition of an additive income term ydt. This income term acts as a stabilizing force. Many

other shocks (e.g. demographic shocks or shocks to saving rates) result in a similar reduced

form. From Ito’s formula, the logarithm of wealth xit = logwit satisfies

dxit = (ye−xit + µ)dt+ σdZit, µ := r − g − θ − σ2

2
. (55)

The properties of the stationary wealth distribution are again well understood. Applying

the standard results from Appendix D, one can show that the stationary wealth distribution

has a Pareto tail with tail inequality

η =
1

ζ
=

σ2/2

σ2/2− (r − g − θ)
(56)

provided that r − g − θ − σ2/2 < 0. Intuitively, tail inequality is increasing in the gap

between the after-tax rate of return to wealth and the growth rate r − g. Similarly, tail

inequality is higher the lower the marginal propensity to consume θ and the higher the after-

tax wealth volatility σ. Given that r = (1 − τ)r̃ and σ = (1 − τ)ν̃, top wealth inequality

is also decreasing in the capital income tax rate τ . Intuitively, a higher gap between r and

g works as an “amplifier mechanism” for wealth inequality: for a given structure of shocks

(σ), the long-run magnitude of wealth inequality will tend to be magnified if the gap r− g is

higher (Piketty and Zucman, 2014b). However, this leaves unanswered the question whether

increases in top wealth inequality triggered by an increase in r − g will come about quickly

or take many hundreds of years to materialize.

The model can easily be extended to the case where labor income is stochastic, i.e. y

64Benhabib, Bisin, and Luo (2015) argue that, in the data, such uninsured capital income risk is the main
determinant of the wealth distribution’s right tail. In Section 5.3 we additionally consider common shocks.

65A consumption rule with such a constant marginal propensity to consume can also be derived from
optimizing behavior, at least for large wealth levels wit.
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in (54) follows some stochastic process. As long as the income process does not itself have

a fat-tailed stationary distribution, this does not affect the tail parameter of the wealth

distribution (56). Intuitively, as wealth wit → ∞, labor income becomes irrelevant as an

income source.

E.3 Dynamics of Wealth Inequality: Theoretical Results

We now show how our theoretical results can be extended to wealth dynamics. The addition

of the labor income term y in (55) introduces some difficulties for extending Proposition

1. However, note that for large wealth levels this term becomes negligible, which makes it

possible to derive a tight upper bound on the speed of convergence of the cross-sectional

distribution.

Proposition 9 (Speed of convergence for wealth dynamics) Consider the wealth process

(55). Under Assumption 1, and if µ < 0, the cross-sectional distribution p(x, t) converges

to its stationary distribution. The rate of convergence λ := − limt→∞
1
t

log ||p(x, t)− p∞(x)||
satisfies

λ ≤ 1

2

µ2

σ2
+ δ

where 1{·} is the indicator function, and with equality for |µ| below a threshold |µ∗|.

We conjecture that with µ > 0, λ = δ, as in Proposition 1.

With the process (55), it is not possible to obtain an exact formula for the speed of con-

vergence. However, the speed of convergence is bounded above and, in particular, is equal

to or less than the speed with a reflecting barrier from Proposition 1. It is also no longer

possible to characterize the corresponding Kolmogorov Forward equation by using Laplace

transforms (due to the presence of the term ye−xt). Numerical experiments nevertheless con-

firm our results from section 4.2 that the speed of convergence in the tail can be substantially

lower than the average speed of convergence characterized in Proposition 9.

E.4 Wealth Inequality and Capital Taxes

In this section we ask whether an increase in r − g, the gap between the (average) after-tax

rate of return on wealth and the economy’s growth rate, can explain the increase in wealth

inequality observed in some data sets, as suggested by Piketty (2014). To do so, we first

construct a measure of the time series of r − g. This requires three data inputs: on the

average pre-tax rate of return, on capital income taxes, and on a measure of the economy’s

growth rate. We use data on the average before-tax rate of return from Piketty and Zucman
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(2014a), the series of top marginal capital income tax rates from Auerbach and Hassett

(2015) and data on the growth rate of per capita GDP of the United States from the Penn

World Tables. Panel (a) of Figure 8 plots our time series for r−g, displaying a strong upward

trend starting in the late 1970s, which coincides with the time when top wealth inequality

started to increase (Figure 1).66 The figure therefore suggests that, a priori, the theory using

variations in r − g is a potential candidate for explaining increasing wealth inequality.
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Figure 8: Dynamics of Wealth Inequality in the Baseline Model

We now ask whether the simple model of wealth accumulation from Section 3 has the

potential to explain the different data series for wealth inequality in Figure 1. To this end,

recall equation (54) and note that the dynamics of this parsimonious model are described by

two parameter combinations only, r− g − θ, where θ is the marginal propensity to consume

out of wealth, and the cross-sectional standard deviation of the return to capital, σ. Our

exercise proceeds in three steps. First, we obtain an estimate for σ. We use σ = 0.3, which

is on the upper end of values estimated or used in the existing literature.67 Second, given

σ and our data for r − g in 1970, we calibrate the marginal propensity to consume θ so as

to match the tail inequality observed in the data in 1970, η = 0.6. Third, we feed the time

path for r − g from panel (a) of Figure 8 into the calibrated model.

Before comparing the model’s prediction to the evolution of top wealth inequality in the

66We have tried a number of alternative exercises with different data series for the return on capital and
taxes, e.g. we set the pre-tax r equal to the yields of 10-year government bonds as in Auerbach and Hassett
(2015) and Piketty and Zucman (2014a). Results are very similar.

67Overall, good estimates of σ are quite hard to come by and relatively dispersed. Campbell (2001)
provides the only estimates for an exactly analogous parameter using Swedish wealth tax statistics on asset
returns. He estimates an average σ of 0.18. Moskowitz and Vissing-Jorgensen (2002) argue for a σ of 0.3.
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data, we make use of our analytic formulas from Section 4 to calculate measures of the speed

of convergence. To this end, revisit the average speed of convergence in Proposition 1, and

in particular the formula in terms of inequality (13). To operationalize this formula, we use

the tail exponent observed in 2010 in the SCF of η = 0.65 together with our other parameter

values.68 With these numbers in hand, we obtain a half-life of

t1/2 ≥
log(2)× 8× η2

σ2
=

log(2)× 8× (0.65)2

0.32
≈ 26 years.

That is, on average, the distribution takes 26 years to cover half the distance to the new

steady state. Panel (b) of Figure 8 displays the results of our experiment using the parameter

values just discussed. The main takeaway is that the baseline random growth model cannot

even explain the gradual rise in top wealth inequality found in the SCF. It fails even more

obviously in explaining the rise in top wealth inequality found by Saez and Zucman (2015).

E.5 Fast Dynamics of Wealth Inequality

What, then, explains the dynamics of wealth inequality observed in the data? The lessons

from Section 5 still apply. In particular, processes of the form (26) that feature deviations

from Gibrat’s law in the form of “type dependence” or “scale dependence” have the potential

to deliver fast transitions. We view both as potentially relevant for the case of wealth

dynamics. Wealth dynamics at the individual level depend on both rates of returns and

saving rates, and heterogeneity or wealth-dependence in either would result in such deviations

from Gibrat’s law.

With regard to rates of returns, Fagereng, Guiso, Malacrino, and Pistaferri (2016), using

high-quality Norwegian administrative data, find evidence for type dependence across the

entire support of the wealth distribution. Additionally, they find some evidence for scale

dependence particularly above the 95th percentile of the wealth distribution, mostly because

wealthier people take more risk and compensated in the form of higher returns. This is also

consistent with evidence in Bach, Calvet, and Sodini (2015) using Swedish administrative

data, as well as Kacperczyk, Nosal, and Stevens (2014). With regard to saving rates, scale

dependence may arise because the saving rates of the super wealthy relative to those of the

wealthy may change over time (Saez and Zucman, 2015).69

68Ideally, one would use an estimate of tail inequality in the new stationary distribution η. Since λ is
decreasing in inequality, we use the tail exponent observed in 2010 in the SCF of η = 0.65, which provides
an upper bound on the speed of convergence λ. Since inequality in the new stationary distribution may be
even higher, true convergence may be even slower.

69Finally, it is natural to ask whether the extension to multiple distinct growth regimes of Section 5.2
can generate fast transition dynamics in response to the increase in r − g from Section E.4. Numerical
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E.6 Proof of Proposition 9

The proof follows steps exactly analogous to the proof of Proposition 1, particularly the

“ergodic case” in Appendix A.2. The only difference to the earlier proof is that some of the

arguments need to be adjusted to account for the presence of the term ye−xitdt in the wealth

process (55). We again present the proof for the case δ = 0. Denote the drift of wealth by

b(x) = µ+ ye−x.

Consider the Kolmogorov Forward equation corresponding to (55)

pt = A∗p, A∗p = −(b(x)p)x +
σ2

2
pxx (57)

and its adjoint

Au = b(x)ux +
σ2

2
uxx.

As in the proof of Proposition 1, the strategy is again to construct a self-adjoint transfor-

mation B of A, which is again found as the operator corresponding to v = up
1/2
∞ where p∞

is the stationary distribution corresponding to (57). To find p∞, define B(x) := −ye−x + µx

such that B′(x) = b(x) and write

0 = −(B′p)′ +
σ2

2
p′′ ⇒ p′

p
=

2B′

σ2
⇒ p∞(x) ∝ e2B(x)/σ2

.

Since µ < 0 and y > 0, B(x)→ −∞ as x→ ±∞. Hence p∞(x)→ 0 for x→ ±∞ and there

is a well-defined stationary distribution.

The rest of the proof establishes analogous versions of Lemmas 6 and 7.

Lemma 9 Consider u satisfying ut = Au and the corresponding stationary distribution,

p∞(x) = ce2B(x)/σ2
. Then v = up

1/2
∞ := ueB(x)/σ2

satisfies

vt = Bv, Bv =
σ2

2
vxx −

1

2σ2

(
µ2 + y2e−2x + 2ye−xµ− σ2ye−x

)
v. (58)

Furthermore, B is self-adjoint.

Proof.

We have vt = eB(x)/σ2
b(x)ux + σ2

2
eB(x)/σ2

uxx. We need to check that the right hand side

experiments suggest that the answer is no.
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is equal to σ2

2
vxx − 1

2σ2 (µ2 + y2e−2x + 2ye−xµ− σ2ye−x) v. For this, we need to calculate

vx = uxe
B(x)/σ2

+
b(x)

σ2
eB(x)/σ2

u

vxx = uxxe
B(x)/σ2

+ 2
b(x)

σ2
uxe

B(x)/σ2

+
−ye−x

σ2
eB(x)/σ2

u+ (
b(x)

σ2
)2eB(x)/σ2

u

b(x)2 = µ2 + 2µye−x + y2e−2x

and so

σ2

2
vxx =

σ2

2
uxxe

B(x)/σ2

+ b(x)uxe
B(x)/σ2

+
−ye−x

2
eB(x)/σ2

u+
µ2 + 2µye−x + y2e−2x

2σ2
eB(x)/σ2

u

which gives the desired result. �

Lemma 10 The first eigenvalue of B is λ1 = 0. The second eigenvalue satisfies the following

properties: there exists −∞ < µ∗ < 0 such that λ2 = −1
2
µ2

σ2 for |µ| ≤ |µ∗| and λ2 ≤ −1
2
µ2

σ2 for

all µ < 0. All remaining eigenvalues satisfy |λ| > |λ2|. Put differently, the spectral gap of B
satisfies |λ2| ≤ 1

2
µ2

σ2 .

The conclusion of the proof (from spectral gap to L1-norm) is unchanged from that of

Proposition 1.

F Proof Complements

F.1 Intuition Why Second Eigenvalue Matters

With a lower bound, the key step in the proof of Proposition 1 was to derive an expression

for the second eigenvalue of the operator B defined in (37) (see section A.2). We here provide

some additional intuition for why it is the second eigenvalue that determines the speed of

convergence. Rather than considering the infinite-dimensional case studied in the paper, we

consider a finite-state Markov chain. One can then study the speed of convergence using

standard linear algebra tools. See Lawler (2006, Chapter 7.2) for an excellent introductory

treatment.70

Consider a finite-state Markov chain for xit ∈ {x1, ..., xn} with some n × n transition

matrix B. The distribution of xit is a vector p(t) = (p1(t), ..., pn(t)) which satisfies

ṗ = B′p, p(0) = p0

70See also http://en.wikipedia.org/wiki/Markov_chain#Convergence_speed_to_the_stationary_

distribution.
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Assume that B is symmetric so that all its eigenvalues are real. Further assume that B is

diagonalizable, and denote its eigenvalues by (Λ1, ...,Λn) and the corresponding eigenvectors

by (v1, ..., vN). One can always decompose the initial density as p0 =
∑n

i=1 civi for some

weights ci. Then

p(t) =
n∑
i=1

cie
Λitvi.

If the process has a stationary distribution, the first (principal) eigenvalue is zero and the

stationary distribution is given by the first eigenvector v1 that has only positive entries

(Perron-Frobenius Theorem). It can be seen that p(t) → c1v1 as t → ∞ (the stationary

distribution is proportional to the first eigenvector). The speed of convergence is instead

governed by the second eigenvalue. To see this note that for large t (assuming that the

initial distribution p0 is not orthogonal to the second eigenvector v2 and so c2 6= 0)

p(t) ≈ c1v1 + c2e
Λ2tv2

because all remaining terms go to zero faster due to the fact that |Λi| > |Λ2| for i > 2.71

For example, consider a two-dimensional Poisson process with symmetric intensity φ. In

that case the transition matrix is

B =

[
−φ φ

φ −φ

]
which has eigenvalues Λ1 = 0,Λ2 = −2φ (the two roots of 0 = det(B−ΛI) = (φ+ Λ)2−φ2).

Intuitively, the speed of convergence Λ2 is larger the higher is the Poisson intensity φ.

Proposition 1 generalizes this argument to the infinite-dimensional operator B in (37).

F.2 Complements to the Proof of Proposition 1

F.2.1 Last part of the proof: from spectral gap to L1 norm

Denoting λ = µ2

2σ2 , it remains to show that under Assumption 1, the following two statements

are true. First, ∫ ∞
0

|p(x, t)− p∞(x)| dx ≤ ke−λt. (59)

This inequality proves that the cross-sectional distribution p(x, t) converges to its stationary

distribution p∞(x) in the total variation norm for any initial distribution p0(x). Second, we

71If the initial condition is orthogonal to the second eigenvector, the asymptotic speed of convergence is
faster than |Λ2|. For instance, if the initial condition is proportional to the third eigenvector, p0 = c3v3, the
asymptotic speed of convergence is |Λ3|. But cases like this are knife-edge and for generic initial conditions,
the speed of convergence is governed by the second eigenvalue.
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need to show that the inequality in (59) is tight, in the sense that the upper bound in (59)

(with speed λ) is attained asymptotically for generic initial conditions p0.72 As in the main

proof, we continue to consider the case δ = 0, which contains all the difficulty. The general

case is an easy extension.

The difficult part is to show the first part, the inequality in (59), and we show it below.

The easier part is to show that the upper bound (with speed λ) is indeed generically attained.

The logic is exactly the same as in the finite-dimensional case analyzed in Appendix F.1:

there could in principle be initial conditions that are exactly orthogonal to the eigenvector

corresponding to the largest non-trivial eigenvalue. But such initial conditions are knife-edge

and the second eigenvalue governs the speed of convergence for any perturbations of such

initial conditions. The same phenomenon holds for continuous spectra (e.g. Kato 1995).

Proof of (59): The key difficulty is contained in the case δ = 0, so we start with it.

First (and central) case: δ = 0. The following applies both to the plain constant-

coefficient case (µ, σ constant) and to the more general case with varying µ (x) , σ (x) of

Proposition 2. First note that Assumption 1 implies the condition we truly need, which is:73

∫ ∞
0

(p0(x)− p∞ (x))2

p̄∞(x)
dx <∞, (60)

where p̄∞ (x) := ζ̄e−ζ̄x with ζ̄ := −2µ
σ2 in the constant coefficient case, and in the more general

case with varying coefficients,

p̄∞ (x) =
K

σ2 (x)
e
∫ x
1

2µ(y)

σ2(y)
dy

(61)

with K a normalization constant. Here p̄∞ is a surrogate steady state distribution, for a

process with δ = 0.

Note that in (60), the numerator features p∞, the true steady state density (which de-

pends on δ, and the location of births ψ (x)), while the denominator features p̄∞ (which does

not depend on δ and the location of births). We have p∞ = p̄∞ with reflected barrier and no

death, but not in general. As we will see, the power 2 in the numerator shows up because

the argument converts a statement involving the L2-norm (63) into a statement involving

the L1-norm (59).

72To be precise, note that in (59) the constant k depends on the initial condition p0. In contrast, the rate
of decay λ is independent of this initial condition.

73We have chosen to use Assumption 1, rather than the more complex (60), to have a simple formulation.
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We now move to the core statement of this proof. Consider p (x, t) with pt = A∗p and

initial condition p0 (x). Our main goal here is to prove that there is a constant C0 such that:∫
|p(t)− Jp̄∞| dx ≤ C0e

−λt (62)

where J :=
∫
p0 (y) dy is not necessarily 1. Indeed, when we later apply this result to the

case δ > 0, we shall take p0 to be the difference between two densities, so that p0 can take

negative values and J can be 0.

Next, consider v = up̄
1/2
∞ defined in Lemma 6 satisfying vt = Bv, i.e. (37). We appeal to

the standard spectral decomposition of a self-adjoint operator.74 We use the fact that the

eigenfunction corresponding to the 0 eigenvalue is m = p̄
1/2
∞ =

(
−2µ
σ2

)1/2
e(µ/σ2)x from Lemma

7 in the constant coefficient case.75 Hence:(∫
|v(x, t)− cm(x)|2 dx

)1/2

≤
(∫
|v0(x)− cm(x)|2 dx

)1/2

e−λt, (63)

where we suppress the limits of integration which are always 0 and ∞ for the remainder of

the proof and where the constant c is given by (using v = um)

c :=
〈v0,m〉
〈m,m〉

=

∫
v0(y)m(y)dy(∫
(m(y))2dy

)1/2
=

∫
u0(y)m(y)2dy(∫
(m(y))2dy

)1/2
=

∫
u0 (y) p̄∞(y)dy. (64)

To see why (63) is true, consider the finite-dimensional case as an analogy, as in Section

F.1. Calling 0 = Λ1 ≥ Λ2 ≥ ... ≥ Λn the eigenvalues of B and e1, ..., en the corresponding

eigenvectors (normalized to have unit norm), we decompose v(0) =
∑n

i=1 ciei. Then, v̇ = Bv

implies v(t) =
∑n

i=1 cie
Λitei. Note also that m is the eigenvector corresponding to Λ1 = 0:

e1 = m. Also, Λ2 = −λ is the first non-trivial eigenvalue. Then, c := 〈v(0),m〉
〈m,m〉 = c1 is the

projection of v (0) on the top eigenvector, e1. Next, we have

v(t)− cm = v (t)− c1e1 =
n∑
i=2

cie
Λitei.

Denoting by || · ||2 the L2-norm (for any x ∈ Rn, ||x||2 := (
∑n

i=1 x
2
i )

1/2
), using the fact that

74This is the infinite-dimensional analogue of the diagonalization of a symmetric matrix.
75Unfortunately, when µ and σ vary spatially, the generalization of B is no longer self-adjoint. However,

it is still true that Bm = 0 with m =
√
p̄∞ (x) =

√
K

σ2(x)e
∫ x
1

2µ(y)

σ2(y)
dy

and Bv = mA(m−1v).
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the eigenvectors are orthogonal (because B is self-adjoint):

‖v(t)− cm‖2
2 =

∥∥∥∥∥
n∑
i=2

cie
Λitei

∥∥∥∥∥
2

2

=
n∑
i=2

∥∥cieΛitei
∥∥2

2
=

n∑
i=2

c2
i e

2Λit

≤
n∑
i=2

c2
i e

2Λ2t = e−2λt

n∑
i=2

c2
i = e−2λt ‖v(0)− cm‖2

2

i.e.

‖v(t)− cm‖2 ≤ ‖v(0)− cm‖2 e
−λt. (65)

Equation (63) is simply the infinite-dimensional analogue of (65).76

Next, we note that if u and p satisfy ut = Au and pt = A∗p, then∫
u(x, t)p0(x)dx =

∫
u0(x)p(x, t)dx. (66)

76Complications from boundary conditions and unboundedness of B renders the extension technically
involved. Instead, we can prove the infinite-dimensional analogue of this equation (up to a constant) using
an energy argument. More precisely, note that

∫
v(t)mdx =

∫
v0mdx, so that v(t)− cm is always orthogonal

to m. Note that ṽ = v − cm also satisfies ṽt = Bṽ if vt = Bv. Denote ṽ by v and assume
∫
v(t)mdx = 0 for

all t. Multiply the equation vt = Bv = σ2

2 vxx −
µ2

2σ2 v by 2v and integrate from 0 to ∞, we get

d

dt

∫
v2dx = σ2

∫
vxxvdx−

µ2

σ2

∫
v2dx

= −σ2

∫
v2xdx−

µ2

σ2

∫
v2dx− µv2(0)

= −σ2

∫
v2xdx−

µ2

σ2

∫
v2dx+ 2µ

∫
vxvdx

= −σ2

∫
(vx −

µ

σ2
v)2dx

using boundary condition vx(0) = µ
σ2 v(0) for B. The term

∫
(vx − µ

σ2 v)2dx = 0 only if vx = µ
σ2 v for all x,

i.e. v = m or v = 0. However, since
∫
vmdx = 0,

∫
(vx − µ

σ2 v)2dx > 0 for all t. It follows that
∫
v2dx → 0.

Moreover, letting w(x) = vx(x) − µ
σ2 v(x) we have Bw = wt and w(0) = 0 for all t. Running the same

argument, we see that d
dt

∫
w2dx = −σ2

∫
w2
xdx −

µ2

σ2

∫
w2dx, so that

∫
w2dx = Θ(e−2λt) where λ ≥ µ2

2σ2 .

Now w2(x) = v2x + µ2

σ4 v
2 − 2µ

σ2 vvx, so that

d

dt

∫
v2dx = −σ2

∫
w2(x)dx

and so
∫
v2dx ≤ C

∫
v20dxe

−2λt ≤ C
∫
v20dxe

−2( µ
2

2σ2
)t, as was to be shown.
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To prove this “dual equation”, let I(s) =
∫
u(x, t− s)p(x, s)dx. Then

d

ds
I(s) = −

∫
∂tu(x, t− s)p(x, s)dx+

∫
u(x, t− s)∂sp(x, s)dx

=−
∫
Au(x, t− s)p(x, s)dx+

∫
u(x, t− s)A∗p(x, s)dx = 0

Setting s = 0 and t gives the result. Therefore∫ (
u−

∫
u0p̄∞dy

)
p0dx =

∫
up0dx− J

∫
u0p̄∞dy =

∫
u0 (p− Jp̄∞) dx. (67)

Substituting (64) into (63),

L :=

∫
|v(x, t)− cm(x)|2 dx =

∫
|m (x)u(x, t)− cm(x)|2 dx =

∫
m (x)2 |u(x, t)− c|2 dx

=

∫
p̄∞ (x) |u(x, t)− c|2 dx,

L ≤ e−2λt

∫
|v0(x)− cm(x)|2 dx = e−2λt

∫
m (x)2 |u0(x)− c|2 dx

= e−2λt

∫
p̄∞ |u0(x)− c|2 dx,

hence, using c =
∫
u0p̄∞dy,(∫

p̄∞

(
u−

∫
u0p̄∞dy

)2

dx

)1/2

≤ e−λt

(∫
p̄∞

(
u0 −

∫
u0p̄∞dy

)2

dx

)1/2

. (68)

Next, define J :=
∫
p0dx (as mentioned above, J = 1 is typical but J may also equal

zero if p0 is the difference between two densities as in the proof of the case δ > 0). Using
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(67), we have:∣∣∣∣∫ u0 (p(t)− Jp̄∞) dx

∣∣∣∣ =

∣∣∣∣∫ (u(t)−
∫
u0p̄∞dy

)
p0dx

∣∣∣∣ =

∣∣∣∣∣
∫ ((

u(t)−
∫
u0p̄∞dy

)
p̄1/2
∞

)
p0

p̄
1/2
∞
dx

∣∣∣∣∣
≤
(∫

(p0)2

p̄∞
dx

)1/2
(∫ (

u(t)−
∫
u0p̄∞dy

)2

p̄∞dx

)1/2

≤ C0e
−λt
(∫

(u0 −
∫
u0p̄∞)2p̄∞dx

)1/2

= C0e
−λt
(∫

(u0)2p̄∞dx− (

∫
u0p̄∞dx)2

)1/2

≤ C0e
−λt
(∫

(u0)2p̄∞dx

)1/2

where the inequality in the second line follows from the Cauchy-Schwarz inequality and the

inequality in the third line follows from (60) and (68).

Dividing by
(∫

u2
0p̄∞dx

)1/2
,∣∣∫ u0 (p(t)− Jp̄∞) dx

∣∣(∫
u2

0p̄∞dx
)1/2

≤ C0e
−λt.

We next optimize on u0 to extract, so to speak, the maximum information from this in-

equality. The maximum of the left-hand side is attained at u0 = (p(t)− Jp̄∞)/p̄∞.77 Hence,

applying the above inequality to u0 = (p(t)− Jp̄∞)/p̄∞,(∫
(p(t)− Jp̄∞)2

p̄∞
dx

)1/2

=

∣∣∫ u0 (p(t)− Jp̄∞) dx
∣∣(∫

u2
0p̄∞dx

)1/2
≤ C0e

−λt.

77To see this, note that the optimal u0 is only determined up to a constant. Therefore, the problem is
equivalent to

max
u0

∫
u0 (p(t)− Jp̄∞) dx s.t.

(∫
u20p̄∞dx

)1/2

= 1

The Lagrangian is L =
∫
u0 (p(t)− p̄∞) dx+ ν

(
1−

(∫
u20p̄∞dx

)1/2)
with first-order condition p(t)− p̄∞ =

ν
(∫
u20p̄∞dx

)−1/2
u0p̄∞ and so u0 is proportional to (p(t)− p̄∞)/p̄∞. Technically, we still need to show that

for our choice of u0,
∫
u20p̄∞dx <∞. This is delayed till when we prove the more general case of Proposition

2.
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Finally, using the Cauchy-Schwarz inequality

∫
|p(t)− Jp̄∞| dx ≤

(∫
(p(t)− Jp̄∞)2

p̄∞
dx

)1/2(∫
p̄∞dx

)1/2

︸ ︷︷ ︸
=1

≤ C0e
−λt,

which is the desired result.

To show that the convergence rate λ is generically attained, we note that given an initial

p0, we can form p̃0 by p̃0(x) = ∂xp0 − 2µ
σ2p0 so that p̃0(0) = 0. Then extend p̃0(x) to the real

line by reflecting p̃0 with respect to the origin and using the boundary condition p̃0(0) = 0.

Then we find the solution p̃ to the equation p̃t = σ2

2
∂2p̃
∂x2 − µ ∂p̃∂x on the real line with initial

condition p̃0.

Now it can be verified that if p̃t = σ2

2
∂2p̃
∂x2 − µ ∂p̃∂x and σ2

2
∂2p∞
∂x2 − µ∂p∞∂x = 0, then q(x, t) =

p̃(x, t)p
−1/2
∞ (with p

−1/2
∞ extended to R as an even function) satisfies

qt −
σ2

2
qxx +

µ2

2σ2
q = 0

the Kolmogorov Forward equation for a Brownian motion with death rate µ2

2σ2 . The solution

to the above equation on R is given by q(x, t) =
∫∞
−∞

1√
2πσ2t

e−
(x−y)2

2σ2t
− µ2

2σ2 tq0(y)dy, where

q0 = p̃0(x)p
−1/2
∞ , which is an odd function by construction.

The crucial property of q(x, t) is that q(x, t) = −q(−x, t), i.e. q is an odd function.

Thus in fact p̃(x, t) restricted to x ≥ 0 gives the solves A∗p̃ = p̃t with boundary condition

p̃(0, t) = 0 and initial condition p̃0. Now it is a standard result that the L1 norm of solution

to the heat equation is conserved. Thus∫ ∞
0

|q(x, t)|dx =
1

2

∫ ∞
−∞
|q(x, t)|dx

=
1

2

∫ ∞
−∞
|
∫ ∞
−∞

1√
2πσ2t

e−
(x−y)2

2σ2t
− µ2

2σ2 tq0(y)dy|dx

=
1

2
e−

µ2

2σ2 t

∫ ∞
−∞
| 1√

2πσ2t
e−

(x−y)2

2σ2t q0(y)dy|dx

=
1

2
e−

µ2

2σ2 t

∫ ∞
−∞
|q0(x)|dx =

1

4
e−

µ2

2σ2 t

∫ ∞
0

q0(x)dx

and we can conclude that limt→∞−1
t

log
∫∞

0
|q(x, t)|dx = µ2

2σ2 . Finally,
∫∞

0
|p̃(x, t)|p−1/2

∞ dx =∫∞
0
|q(x, t)|dx, and if we choose p0 with mass concentrated near the origin and uniformly

bounded above by 1, then
∫∞

0
|p̃(x, t)|dx ≥ C

∫∞
0
|p̃(x, t)|p−1/2

∞ dx, so that limt→∞−1
t

log
∫∞

0
|p̃(x, t)|dx ≤
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µ2

2σ2 .

Thus given f uniformly bounded by 1 with mass concentrated near the origin, we can

form η(x) = (∂xf − 2µ
σ2f), and given any initial distribution p0, we can perturb p0 by εη(x),

and p0 + εη(x) will have rate of convergence at most µ2

2σ2 .

This concludes the proof of (62), and of Proposition 1 for the case δ = 0.

Case with δ > 0. Define an operator: C∗p := −µpx + σ2

2
pxx, so that A∗ = C∗ − δ.

Suppose an initial condition p0 (x). Given pt = A∗p+ δψ and 0 = A∗p∞+ δψ, the difference

q := p − p∞ satisfies qt = A∗q = C∗q − δq. Next, define Q (x) := q (x) eδt. This gives:

Qt = C∗Q. But operator C∗ has no “death” rate, and Q has the right boundary condition, so

that the previous case (δ = 0) applies to Q. Note also that
∫
Q (x) dx = 0. Then, equation

(62) gives:
∫
|Q(t)| dx ≤ C0e

−λt, i.e.∫
|p(x, t)− p∞ (x)| dx ≤ C0e

−(λ+δ)t.

This concludes the proof of Proposition 1 in the case δ > 0.

Comment on the use of Assumption 1: Note that Assumption 1 is only used for

one particular step, namely to go from the spectral decomposition of the operator B to the

asymptotic behavior of the L1-norm ||p−p∞||. This really comes from the fact that a spectral

decomposition is an “L2-statement” which we then convert into an “L1-statement” (this is

also why a power 2 shows up). Put differently, the main step in the proof – that the spectral

gap of B is λ – is true regardless of whether Assumption 1 holds. The only step that relies

on Assumption 1 is converting this into a statement about the rate of convergence of the

L1-norm.

F.2.2 Proof of Lemma 4

Define r(x, t) by q(x, t) = e−δtr(x, t). Therefore
∫ +∞
−∞ |q(x, t)|dx = e−δt

∫ +∞
−∞ |r(x, t)|dx, i.e.

r(x, t) captures the extra rate of decay additional to δ (if any). The remainder of the proof

shows that this extra rate is zero. To see this, note that r satisfies

rt = −µrx +
σ2

2
rxx. (69)

Note further that ∫ +∞

−∞
|r(x, t)|dx =

∫ +∞

−∞
|r̃(x, t)|dx (70)
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where r̃(x, t) = r(x + µt, t). Note that this works only because the limits of integration are

±∞ and hence one can simply “translate everything” by µt, i.e. it does not work with a

lower bound. From (69), and using that r̃t = rt + µrx, r̃ solves the standard heat equation

r̃t =
σ2

2
r̃xx. (71)

It is well-appreciated in the theory of partial differential equations that the solution to the

heat equation does not decay exponentially. For completeness, we provide a proof of this

fact (the difficulty being only that r̃ (x, t) could change sign). Suppose by contradiction that∫ ∞
−∞
|r̃ (x, t)| dx ≤ Ce−γt

for some constant C, and some γ > 0. Then, for all β ∈ (0, γ), we have
∫∞
−∞ e

βt |r̃ (x, t)| dx ≤
Ce−(γ−β)t, so that∫ ∞

t=0

∫ ∞
x=−∞

eβt |r̃ (x, t)| dxdt ≤
∫ ∞
t=0

Ce−(γ−β)tdt =
C

γ − β
<∞

i.e. eβtr̃ (x, t) ∈ L1 (R+ × R). Hence R (x) :=
∫∞

0
eβtr̃ (x, t) dt is defined and R (·) ∈ L1.

Using the heat equation (71) (normalizing without loss of generality σ2 = 2), we have

R′′ (x) =

∫ ∞
0

eβtr̃xx (x, t) dt =

∫ ∞
0

eβtr̃t (x, t) dt =
[
eβtr̃ (x, t)

]∞
0
−
∫ ∞

0

βeβtr̃ (x, t) dt

= −r̃ (0, x)− βR (x) = −r̃0 (x)− βR (x)

i.e. R′′ + βR = −r̃0. Hence, taking the Fourier transform (R̂ (ξ) :=
∫
e−iξxR (x) dx),

R̂ (ξ)
(
− |ξ|2 + β

)
= −̂̃r0 (ξ) . (72)

This implies that ̂̃r0 (ξ) = 0 for ξ = β1/2 (we just plug the value ξ = β1/2 in (72)).

But the argument worked for any β ∈ (0, γ). Hence, ̂̃r0 (ξ) = 0 for any ξ ∈
(
0, γ1/2

)
.

We assume that |r̃0 (x)| ≤ Ae−kx for a constant A, k > 0 (see also Assumption 1), which

guarantees that ̂̃r0 is analytic. Given that ̂̃r0 is analytic and equal to 0 on a segment, we

have ̂̃r0 (ξ) = 0 for all ξ, and r̃0 = 0. We have reached a contradiction. �
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G Proof of Proposition 2

Xavier Gabaix, Jean-Michel Lasry, Pierre-Louis Lions, Benjamin Moll and Zhaonan Qu

August 9, 2016

Due to space constraints, we here only outline a sketch of the proof of Proposition 2. For

the complete proof, see Appendix J on the authors’ websites.

G.1 Existence and uniqueness of the steady state with non-constant

coefficients

We expand on the indications given in the text for the existence and uniqueness of a steady

state for the process (14) with non-constant coefficients: dxit = µ(xit, t)dt + σ(xit, t)dZit,

with rebirth after death. Here are simple sufficient conditions. Assumption 2 imposes that

µ(x, t)→ µ̃(x) and σ(x, t)→ σ̃(x) uniformly in x as t→∞ and that µ̃(x)→ µ̄ and σ̃(x)→ σ̄

as x → ∞. Naturally, only the asymptotic coefficients µ̃(x) and σ̃(x) are relevant for the

stationary distribution. We assume that σ̃(x) and µ̃(x) are continuous, bounded, and that

σ̃(x) ≥ σ for some σ > 0 (this ensures that the process is always remixed, and does not get

stuck in a zone of 0 volatility), and (i) in the ergodic case: µ̄ < 0 (ii) in the non-ergodic

case: there are positive constants C0, C1 such that |µ̃ (x)| ≤ C0 + C1 |x| for x → ∞, δ > 0

(this is so that the large incomes get killed faster than they “escape to infinity”).

Ergodic case. A sufficient condition is that µ̄ < 0 (in the general case, that µ̃ (x) ≤ C0

with C0 < 0). A necessary and sufficient condition is that, starting from a point x0 > 1, the

expected time to reach x = 1 is finite. This is developed in Meyn and Tweedie (2009) and

Lions (2014).

Non-ergodic case. A sufficient condition is that there are positive constants C0, C1

|µ̃ (x)| ≤ C0 + C1 |x| for x→∞. This implies that operator −A∗ (with A∗p = δp− (µ̃p)′ +(
σ̃2

2
p
)′′

) is “accretive” (which is a form of generalization of monotonicity): for all p, all λ > 0,

‖(λI −A∗) p‖ ≥ λ ‖p‖. See Kato (1970), https://en.wikipedia.org/wiki/Dissipative operator,

and https://fr.wikipedia.org/wiki/Opérateur accrétif.

G.2 Sketch of Proof of Proposition 2: Case without lower bound

(“non-ergodic”)

In Section J.1 we prove Proposition 2 in the case without lower bound, i.e. non-ergodic.

We use a translation-at-infinity argument to ensure that the process stays at large spatial

domain, so that the coefficients are essentially constant. Then we can apply results from
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Proposition 1 to conclude that there exists a particular q∗ whose rate of convergence is

exactly δ. Finally, we conclude the proof by showing that a small perturbation of any initial

condition by q∗ yields a speed of convergence that is exactly δ.

G.3 Sketch of Proof of Proposition 2: Case with lower bound (“er-

godic”)

Section J.2 is dedicated to the proof in the ergodic case with a lower bound. The techniques

employed there are based on energy methods that are different from the proof of Proposition

1. Thus for simplicity, we first demonstrate the proof in the case of constant coefficients.

The generalization to space dependent but time-independent coefficients is then through a

“translation at infinity argument”, similar to the one employed in Section J.1, to essentially

reduce the problem to the constant-coefficient case. The generalization to time- and space-

dependent coefficients requires some new ideas, but the essence is still approximation by the

time-independent coefficient case and bounding the error effectively. This we carry out in

Section J.2.6.

G.3.1 Setting the stage: a unified one-parameter model with a lower bound

Section J.2.1 sets the stage for the energy method for constant coefficients by establishing

a unified one-parameter model that encompasses both the model with exit and reinjection

and the model with a reflecting barrier. More precisely, we let A∗ be the operator

A∗p : =
σ2

2

∂2p

∂x2
− µ∂p

∂x
+
σ2

2

1− θ
θ

p(0)ρ(x)

with µ < 0 and boundary condition σ2

2
px(0)− µp(0) = σ2

2
1−θ
θ
p(0) where we recall ρ(x) is the

distribution of the reinjection point following exit, subject to Assumption 4. When θ = 0

(taking θ → 0 first) we recover the model with exit and reinjection, and when θ = 1 we obtain

the model with reflecting barrier. We show that A∗ has a unique invariant distribution p∞:

A∗p∞ = 0 and p∞ can be rescaled to be a probability distribution. Moreover, p∞(x) ∼
Cθe

2µ

σ2 x.

Corresponding to A∗ we have its adjoint operator A:

Au : =
σ2

2

∂2

∂x2
u+ µ

∂

∂x
u

where µ < 0 with boundary condition −θux(0) + (1 − θ)
(
u(0)−

∫
u(x)ρ(x)dx

)
= 0. Intu-

itively, this boundary condition describes the following behavior: if the process ever reaches
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x = 0, then, with probability θ, the process is reflected; and with probability 1 − θ, the

process jumps to some x > 0, drawn from the distribution ρ(x).

G.3.2 Proof Strategy for Proposition 2

When θ < 1, i.e. when we depart from the pure reflection case, one can no longer construct

a self-adjoint transformation B of A as in the proof of Proposition 1. Therefore, it is no

longer possible to obtain an explicit formula for the spectral gap of the operator A. We

instead follow an alternative approach that works directly with the operator A using “energy

methods” (i.e. techniques techniques involving L2-norms of various expressions – see Evans

(1998) for their usefulness in other applications).

The proof of Proposition 2 has three parts. The first part proves that the cross-sectional

income distribution converges to its stationary distribution exponentially at some rate λ > 0.

The second part is to prove that this rate λ satisfies λ ≤ µ2

2σ2 . The third part simply concludes

the proof by combining the two previous parts.

G.3.3 Part 1: exponential convergence to stationary distribution

The first parts proves that the cross-sectional income distribution converges to its stationary

distribution exponentially at some rate λ > 0, i.e.∫ ∞
0

|p(x, t)− p∞(x)|dx ≤ e−λt
∫ ∞

0

|p0(x, t)− p∞(x)|dx

for some λ > 0. This is proved in Lemmas 14 and 15 in Section J.2.3.

Lemma 14, which is the heart of the matter, establishes a Poincaré-like energy inequality.

More precisely, let ∂tu = Au, and
∫
p∞u0dx = 0. For θ ∈ (0, 1], let

λ :=
1

2
inf
u

{
σ2

∫
u2
xp∞dx+

σ2

2

1− θ
θ

p∞(0)

[(
u(0)−

∫
uρdy

)2

+

∫ (
u−

∫
uρdy

)2

ρdx

]
s.t.

∫
u2p∞dx = 1,

∫
up∞dx = 0

}
.

and when θ = 0, replace σ2

2
1−θ
θ
p∞(0) with σ2

2
(p∞)x.

Then ∫
u(x, t)2p∞(x)dx ≤ e−2λt

∫
u0(x)2p∞(x)dx .

Next, Lemma 15 establishes the bridge from this energy inequality to the exponential
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convergence of the cross-sectional income distribution:∫ ∞
0

|p(x, t)− p∞(x)|dx ≤ e−λt
∫ ∞

0

|p0(x, t)− p∞(x)|dx.

G.3.4 Part 2: the rate of convergence cannot be larger than µ2

2σ2

The second part of the proof of Proposition 2 is to show that this λ defined in Lemma 14

satisfies λ ≤ µ2

2σ2 , and that for arbitrarily small perturbations of any initial distribution, the

bound µ2

2σ2 is indeed achieved. This is done in Lemma 16 in Section J.2.4. The proof of

Lemma 16 features the translation-at-infinity argument that brings the PDE to arbitrarily

large spatial domain to obtain a Kolmogorov Forward equation for a Brownian motion, whose

solution can be explicitly represented by a convolution with the heat kernel multiplied by

e−
µ2

2σ2 t. Then through explicit calculations a contradiction is obtained when we assume

λ > µ2

2σ2 .

G.3.5 Part 3: conclusion of proof of Prop. 2

Combining Lemmas 15 and 16, we see that when δ = 0 and µ < 0,

− lim
t→∞

1

t
log

∫ ∞
0

|p(x, t)− p∞(x)|dx ≥ λ with λ ≤ µ2

2σ2
.

Appendix J.2.5 further shows that the rate of convergence λ = µ2

2σ2 to p∞ is generically

attained.

G.3.6 Extension of Prop. 2 to income-dependent coefficients µ(x, t) and σ(x, t)

Section J.2.6 extends the proof to the case of time and space dependent coefficients µ(x, t)

and σ(x, t). This is done by extending Lemmas 14, 15, and 16. In this case the operators A
and A∗ are time dependent:

A∗(t)p(x) =

(
σ2(x, t)

2
p

)
xx

− (µ(x, t)p)x +
σ2(0, t)

2

1− θ
θ

p(0)ρ(x)

with the time-dependent boundary condition
(
σ2(x,t)

2
p
)
x

(0) − µ(0, t)p(0) = σ2(0,t)
2

1−θ
θ
p(0),

and

A(t)u(x) =
σ2(x, t)

2

∂2

∂x2
u+ µ(x, t)

∂

∂x
u
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with boundary condition −θux(0) + (1− θ)
(
u(0)−

∫
u(x)ρ(x)dx

)
= 0.

H Proofs of Propositions 3 –5

H.1 Proof of Proposition 3

Equations (19) to (21) follow from integrating (18). The speed of convergence

− lim
t→∞

1

t
log ||p(x, t)− p∞(x)||ξ = λ(ξ) (73)

is obtained in two steps. The first is to show that the rate of convergence of the weighted

L1-norm is at least λ(ξ). The second is to show that it is at most λ(ξ). For the first step,

define q(x, t) := p(x, t) − p∞(x) and note that from Lemma 278, |q(x, t)| is a subsolution of

the same equation as q(x, t):

|q|t ≤ −µ|q|x +
σ2

2
|q|xx − δ|q|+ φ [|q| ∗ f − |q|]

Applying the Laplace transform |̂q|(ξ, t) :=
∫∞
−∞ e

−ξx|q(x, t)|dx:

∂ |̂q|(ξ, t)
∂t

≤ −λ(ξ)|̂q|(ξ, t), λ(ξ) = ξµ− ξ2σ
2

2
+ δ − φ(f̂(ξ)− 1).

Therefore, by Grönwall’s lemma, |̂q|(ξ, t) ≤ e−λ(ξ)t|̂q0|(ξ) or equivalently∫ ∞
−∞

e−ξx|p(x, t)− p∞(x)|dx ≤ e−λ(ξ)t|̂q0|(ξ) = Ae−λ(ξ)t (74)

where A > 0. This proves that the rate of convergence is at least λ(ξ). For the second step∫ ∞
−∞
|p(x, t)− p∞(x)|e−ξxdx ≥

∣∣∣∣∫ ∞
−∞

(p(x, t)− p∞(x))e−ξxdx

∣∣∣∣ = |p̂(ξ, t)− p̂∞(ξ)|

= e−λ(ξ)t |p̂0(ξ)− p̂∞(ξ)| = ae−λ(ξ)t,

(75)

where a > 0, i.e. the rate of convergence is at most λ(ξ). (74) and (75) imply (73). Finally

the Laplace transform of f satisfies f̂(ξ) = E[e−ξg] ≥ e−ξE[g] ≥ 1 for ξ < 0 where the weak

inequality follows from Jensen’s inequality and the assumption that E[g] ≥ 0.�

78There is a difference here since in the equation satisfied by q, there is an extra term φ [q ∗ f − q] involving
jump, but φ(|q| ∗ f) ≥ 0, so the proof of Lemma 2 goes through.
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H.2 Proof of Proposition 4

We have ||p(x, t) − p∞(x)||ξ = ||p̃(x, t) − p̃∞(x)|| where p̃ (x, t) := e−ξxp (x, t). Next, since

p(x, t) satisfies (5), simple calculations show that p̃ (x, t) satisfies

p̃t = −µ̃(ξ)p̃x +
σ2

2
p̃xx − δ̃(ξ)p̃+ δψ̃(x), µ̃(ξ) := µ− ξσ2, δ̃(ξ) := µξ − σ2

2
ξ2 + δ

and where ψ̃(x) := e−ξxψ(x). Similarly, the new surrogate state ˜̄p∞(x) ∼ e−ζ̃x where ζ̃ =

ζ̄ + 2ξ. Hence Assumption 1 implies∫ ∞
−∞

(p̃0(x))2

e−ζ̃x
dx =

∫ ∞
−∞

(p0(x))2e−2ξx

e−ζ̄xe−2ξx
dx <∞,

i.e. an identical assumption in terms of p̃. But from Proposition 1 we know that the speed

of convergence of ||p̃(x, t)− p̃∞(x)|| is λ (ξ) = 1
2
µ̃(ξ)2

σ2 1{µ̃(ξ)≤0}+ δ̃ (ξ). Substituting in for δ̃(ξ)

and µ̃(ξ), we obtain (22).

H.3 Proof of Proposition 5

First consider the stationary Laplace transforms which satisfy the stationary version of (29)

and (30)

0 = −λH(ξ)p̂H(ξ) + βH , 0 = −λL(ξ)p̂L(ξ) + αp̂H(ξ) + βL

with solution

p̂H∞(ξ) =
βH
λH(ξ)

, p̂L∞(ξ) =
βL + αp̂H(ξ)

λL(ξ)
=

βL
λL(ξ)

+ α
βH

λL(ξ)λH(ξ)
.

Adding these two expressions we obtain

p̂∞(ξ) =
βH
λH(ξ)

+
βL
λL(ξ)

+ α
βH

λL(ξ)λH(ξ)
. (76)

As explained in section 4.2 (particularly footnote 37), the tail exponent of the distribution

p∞(x) equals ζ = − inf{ξ : p̂∞(ξ) < ∞}, i.e. it is the critical value of ζ such that p̂∞(ξ)

ceases to exist for ξ < −ζ. Examining (76) we see that ζ is as asserted in the Proposition.

Next consider the dynamics of the Laplace transform (29) and (30). Defining q̂j = p̂j−p̂j∞

q̂Ht (ξ, t) = −λH(ξ)q̂H(ξ, t),

q̂Lt (ξ, t) = −λL(ξ)q̂L(ξ, t) + αq̂H(ξ, t),
(77)
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with solution

q̂H(ξ, t) = e−λH(ξ)tq̂H0 (ξ),

q̂L(ξ, t) = e−λL(ξ)tq̂L0 (ξ) +
α

λH(ξ)− λL(ξ)

(
e−λL(ξ)t − e−λH(ξ)t

)
q̂H0 (ξ).

(78)

Summing these two equations and collecting terms, we obtain the expression for the cross-

sectional distribution p̂(ξ, t) = p̂L(ξ, t)+p̂H(ξ, t) in (32). The constants of integration referred

to in the Proposition are given by:

cH(ξ) :=
λH(ξ)− λL(ξ)− α
λH(ξ)− λL(ξ)

(p̂H0 (ξ)− p̂H∞(ξ)),

cL(ξ) := (p̂L0 (ξ)− p̂L∞(ξ)) +
α

λH(ξ)− λL(ξ)
(p̂H0 (ξ)− p̂H∞(ξ)).�

I Complements to Section 5

I.1 Stationary Distribution of the Augmented Random Growth

Model

We now provide sufficient conditions under which (26) has a unique stationary distribu-

tion. More precisely, we allow for time variation in the stochastic process capturing scale-

dependence χt, and we provide conditions under which there exists a stationary distribution

for the process for yit, which we restate here for the reader’s convenience:

dyit = µjdt+ σjdZit + gjitdNjit + Injection−Death. (79)

In this case, there will be a unique stationary distribution for xit = χ
bj
t yit if χt is constant.

More generally though, we want to allow for time-variation in χt, thereby capturing secular

changes in skill prices or shocks disproportionately affecting high incomes at business-cycle

frequencies.

Proposition 10 Assume that δ > 0, αj,k ≥ 0 for all j 6= k, there is no lower bound on

income and that Assumption 3 holds. Then there exists a unique vector of stationary type-

specific distributions pj∞(y), j = 1, ..., J and therefore also an overall stationary distribution

p∞(y) =
∑J

j=1 p
j
∞(y). This stationary distribution has a Pareto tail p∞(y) ∼ e−ζy for large y

with ζ > 0. If αj,k = 0, j > k or αj,k = 0, j < k (analogously to the triangular case in Section

5.2), then ζ = min{ζ1, ..., ζJ} and where for each j = 1, ..., J , ζj is the unique positive root
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of

0 = ζ2
σ2
j

2
+ ζµj + φj(f̂j(−ζ)− 1)−

∑
k 6=j

αj,k − δ. (80)

Proof: The Kolmogorov Forward equation corresponding to (79) is

pjt = −µjpjy +
σ2
j

2
pjyy + φjEj[pj(y − g)− pj(y)]−

∑
k 6=j

αj,kp
j +
∑
k 6=j

αk,jp
k − δpj + δθjψ (81)

for j = 1, ..., J . The Laplace transform of (81) is given by

p̂jt = −λj(ξ)p̂j +
∑
k 6=j

αk,j p̂
k + δθjψ̂ (82)

λj(ξ) := ξµj − ξ2
σ2
j

2
− φj(f̂j(ξ)− 1) +

∑
k 6=j

αj,k + δ (83)

or in matrix notation

p̂t = −M(ξ)p̂ + δψ̂θ (84)

where p̂ = (p̂1(ξ, t), ..., p̂J(ξ, t))T , M(ξ) is a J×J with diagonal entries λ1(ξ), ..., λJ(ξ) and off-

diagonal entries −αj,k for j 6= k, and θ = (θ1, ..., θJ)T . When ξ = 0, λj(0) =
∑

k 6=j αj,k + δ.

Therefore, for ξ sufficiently close to zero, M(ξ) is strictly diagonally dominant. Strictly

diagonally dominant matrices are invertible. Therefore, for ξ sufficiently close to zero, there

is a unique stationary Laplace transform that solves

p̂∞ = M(ξ)−1(δψ̂θ).

Since there is a unique vector of stationary type-specific Laplace transforms p̂j∞, j = 1, ..., J

for ξ sufficiently close to zero, there is also a unique vector of type-specific stationary distri-

butions pj∞(y), j = 1, ..., J .

As we take ξ more and more negative, the matrix M(ξ) ceases to be invertible and hence

the Laplace transform p̂∞ ceases to exist. That is, p̂∞ has a finite negative abscissa of

convergence ξ∗. If additionally ξ∗ is a pole of p̂∞, then it follows from the Tauberian result

in Proposition 7 that the stationary distribution p∞ has a Pareto tail with tail parameter

ζ = −ξ∗. In this case, ζ = − inf{ξ : det(M(ξ)) 6= 0}. More can be said in the case where

αj,k = 0, j > k or αj,k = 0, j < k and hence M(ξ) is triangular. In this case

det(M(ξ)) = λ1(ξ)× λ2(ξ)× ...× λJ(ξ).
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Therefore let ξ∗ = inf{ξ : λj(ξ) > 0, all j}. Then ξ∗ is indeed a pole and hence the p∞ has a

Pareto tail with tail parameter ζ = −ξ∗. Equivalently, ζ = min{ζ1, ..., ζJ} and where for each

j = 1, ..., J , ζj is the unique positive root of (80). That this equation has a unique positive

root can be shown in exactly the same way as in the proof of Proposition 8 in Appendix D.�

I.2 Speed of Convergence with Type Dependence and J Types

We here provide an informal discussion how the model with type dependence and J ≥ 2 types

can be analyzed. Following exactly the same steps as in the proof of Proposition 10, one

can show that the vector p̂ = (p̂1(ξ, t), ..., p̂J(ξ, t))T satisfies (84). Equivalently, q̂ := p̂− p̂∞

satisfies

q̂t = −M(ξ)q̂ (85)

This is a simple system of J ordinary differential equations that can be analyzed using

standard methods, in particular by diagonalizing the matrix M(ξ). More can be said in

special cases. In the triangular case αj,k = 0, j > k or αj,k = 0, j < k, the eigenvalues

are simply given by λ1(ξ), ..., λJ(ξ). Since all of these are strictly positive, the steady state

Laplace transform p̂∞ is globally stable and the asymptotic speed of convergence is given by

the eigenvalue that is closest to zero. In fact, we have assumed in the previous section that

M(ξ) is invertible for the stationary Laplace transform p̂∞ to exist. Since M(ξ) is invertible

it must also be positive definite, as none of its eigenvalues can cross 0 and thus must remain

positive for the range of ξ we consider.

I.3 A Microfoundation for “Scale Dependence”

Here we provide an example of a micro foundation for scale dependence. It is based on a

dynamic generalization of the Gabaix and Landier (2008) model.

I.3.1 Summary of the Static Gabaix and Landier (2008) Model

We first summarize the static Gabaix and Landier (2008) model (GL for short) before show-

ing its dynamic version in the next subsection. We paraphrase the summary contained in

Edmans, Gabaix, and Landier (2009). A continuum of firms and potential managers are

matched together. Firm n ∈ [0, N ] has size S (n) and manager m ∈ [0, N ] has talent T (m).

Low n denotes a larger firm and low m a more talented manager: S ′ (n) < 0, T ′ (m) < 0.

n (m) can be thought of as the rank of the manager (firm), or a number proportional to it,

such as its quantile of rank.
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We consider the problem faced by one particular firm. The firm has a “baseline” value

of S. At t = 0, it hires a manager of talent T for one period. The manager’s talent increases

the firm’s value according to

S ′ = S + CTSγ, (86)

where C parameterizes the productivity of talent. If large firms are more difficult to change

than small firms, then γ < 1. If γ = 1, the model exhibits constant returns to scale (CRS)

with respect to firm size.

We now determine equilibrium wages, which requires us to allocate one CEO to each

firm. Let w (m) denote the equilibrium compensation of a CEO with index m. Firm n,

taking the market compensation of CEOs as given, selects manager m to maximize its value

net of wages:

max
m

CS (n)γ T (m)− w (m) .

The competitive equilibrium involves positive assortative matching, i.e. m = n, and so

w′ (n) = CS (n)γ T ′ (n). Let wN denote the reservation wage of the least talented CEO

(n = N). Hence we obtain the classic assignment equation (Sattinger, 1993):

w (n) = −
∫ N

n

CS (u)γ T ′ (u) du+ wN . (87)

Specific functional forms are required to proceed further. We assume a Pareto firm size

distribution with exponent 1/α:

S (n) = An−α (88)

Using results from extreme value theory, GL use the following asymptotic value for the

spacings of the talent distribution: T ′ (n) = −Bnβ−1. These functional forms give the wage

equation in closed form, taking the limit as n/N → 0:

w (n) =

∫ N

n

AγBCu−αγ+β−1du+w =
AγBC

αγ − β
[
n−(αγ−β) −N−(αγ−β)

]
+wN ∼

AγBC

αγ − β
n−(αγ−β).

(89)

Therefore using (88), the equilibrium pay of a CEO of talent rank n is

w(n) = Gn−χ, χ := αγ − β, G =
AγBC

αγ − β
(90)

To interpret equation (89), we consider a reference firm, for instance firm number 250 –

the median firm in the universe of the top 500 firms. Denote its index n∗, and its size S(n∗).
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We obtain Proposition 2 from GL, which we repeat here. In equilibrium, manager n runs a

firm of size S (n), and is paid according to the “dual scaling” equation

w (n) = D (n∗)S(n∗)
β/αS (n)γ−β/α (91)

where S(n∗) is the size of the reference firm and D (n∗) = −Cn∗T ′ (n∗) / (αγ − β) is a

constant independent of firm size.79

I.3.2 Dynamic Version

In the dynamic model, a CEO of talent Tit increases the value of a firm of size Sit by CtS
γt
it Tit.

We define yit := − log nit to be the relative talent (so that a high yit corresponds to a

high talent, and a fraction e−yit of managers are better than manager i). So, CEO i’s relative

talent yit evolves stochastically as

dyit = µtdt+ σtdZit

with death rate δt.
80 From equation (89), the wage of a CEO with talent rank nit is given

by wit ∝ n
−(αγ−β)
it . Therefore, using the definition of the log talent quantile yit := − log nit,

the log wage xit = logwit of individual i is given by

xit = χtyit + at. (92)

with

χt = αγt − β. (93)

and where at is common across all individuals. Note that χt and at depend on economy-wide

forces, while xit, yit are specific to each CEO.81 Hence this is a process exactly like xit = χtyit

79The derivation is as follows. Since S(n) = An−α from (88), S(n∗) = An−α∗ , n∗T
′ (n∗) = −Bnβ∗ , we can

rewrite equation (89) as follows:

(αγ − β)w (n) = AγBCn−(αγ−β) = CBnβ∗ ·
(
An−α∗

)β/α · (An−α)(γ−β/α)
= −Cn∗T ′ (n∗)S(n∗)

β/αS (n)
γ−β/α

.

80By construction, the quantile nit = e−yit has a uniform distribution. Therefore yit must have an
exponential distribution with exponent 1 which imposes the restriction µt + 1

2σ
2
t − δt = 0.

81We have at = ln
(
AγtBCt
αγt−β

)
. Under the appropriate parametrization of Ct, we can have at a constant.

Otherwise, equation (92) suggests an enrichment of the model with both “multiplicative” forces (γt) and
“additive” forces (at). However, only the multiplicative force γt changes the local Pareto exponent.
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and changes in χt = αγt−β exactly generate scale dependence. We took parameter γt to be

a technology parameter, which changes over time. That gives a time-varying χt. (We could

also vary α and β, so that χt = αtγt − βt, but we keep the simplest formulation here).

Recall that a CEO of talent Tit increases the value of a firm of size Sit by CtS
γt
it Tit. Hence,

when the “reach” of the CEO is larger, γt increases. Hence, when γt increases, “effective

scale” of the CEO impact is large. In the context of this model, it is just a technological

parameter.82

The bottomline is the “scale dependence” model can be microfounded by a dynamic

version of existing static models. It would be interesting to analyze this in a quantitative

papers with micro data, but this is outside the scope of the present study.

I.4 Additional Parameterizations/Experiments in Section 5.4

Since we do not have precise estimates for the parameters ψ and µH , we have explored a

number of alternative parameterizations. We computed results for both higher and lower

switching rates ψ = 1/3 and ψ = 1/12. In each case, we use (33) to recalibrate the initial

µH so as to match the tail inequality observed in the data. As expected given our theoretical

results, transitions are fastest when ψ and µH are high, i.e. when individuals can experience

very short-lived, very high-growth spurts, what one may call “live-fast-die-young dynamics”.

On the other hand, the speed of convergence becomes close to that in the benchmark model

as ψ and µH become small. Indeed, as ψ → 0 the model collapses to the one-type model of

Section 4.3. This is because in this case we need µH → µL so as to still match data on the

tail exponent ζ (see (33)). In their ongoing work using a very similar model, Jones and Kim

(2014) propose such a “live-fast-die-young” calibration with very high ψ and µH .

Second, we have also conducted experiments in which we feed in a gradual increase in

µH rather than a once-and-for-all increase. We find that in this case a higher switching rate

ψ is needed than the one used in our baseline experiment. A parameter combination that

generates time paths quite similar to those in Figure 5 is a gradual increase over a time

period of 20 years (1973 to 1993) of µH by 11%, together with ψ = 1/4. This is still more

conservative than the calibration of Jones and Kim who feature a larger increase of µH and

a higher ψ.

Third, in the quantitative discussion in section 4.3 we studied the speed of change in

inequality after an increase in σ (Figure 4). However, in section 5.4 which studies a model

with type dependence we examine the dynamics of inequality after an increase in the gap

82See Garicano and Rossi-Hansberg (2006) and Geerolf (2014) for more microfoundation of this type of
“scope” of CEO talent.
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µH − µL (Figure 5). Readers may therefore wonder how type dependence affects the speed

of changes in inequality if we subject the two models to the same shocks. To answer this

question, Figure 9 examines the dynamics following an increase in σH in the model with

type dependence (note that only σH matters for the fatness of the right tail as discussed in

Section 5.4). To focus on the speed of transition only, we choose the increase in σH so as to
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Figure 9: Transition Dynamics in Model with Type Dependence: Alternative Experiment

match the level of top inequality in the new steady state (the vertical dashed line labelled

“Model Steady State” in Figure 9 is the same as that in Figure 4). It can be seen that,

as expected, the transition in the model with type dependence is considerably faster than

the transition in the baseline model. The model does not match the time paths of the two

measures of top inequality as well as in Figure 5. This is mainly because in this experiment

inequality in the new steady state is smaller than after an increase in µH − µL.
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