
When Inequality Matters for Macro
and Macro Matters for Inequality

SeHyoun Ahn Greg Kaplan
Princeton Chicago

Benjamin Moll Tom Winberry
Princeton Chicago

Christian Wolf
Princeton

New York Fed, 29 November 2017
(slides are on my website)

1



Motivation

• Last 30 years: a lot of progress developing macro models with
rich heterogeneity in income, wealth, consumption in micro data

• Promising tool for macroeconomics

• implications for policies differ: inequality matters for macro
• distributional implications: macro matters for inequality

• Not yet part of policymakers’ toolbox. Two excuses:

1. computational difficulties because distribution endogenous
2. perception that aggregate dynamics similar to rep agent

• Our paper: these excuses less valid than you thought

2



Motivation

• Last 30 years: a lot of progress developing macro models with
rich heterogeneity in income, wealth, consumption in micro data

• Promising tool for macroeconomics

• implications for policies differ: inequality matters for macro
• distributional implications: macro matters for inequality

• Not yet part of policymakers’ toolbox. Two excuses:

1. computational difficulties because distribution endogenous
2. perception that aggregate dynamics similar to rep agent

• Our paper: these excuses less valid than you thought

2



Motivation

• Last 30 years: a lot of progress developing macro models with
rich heterogeneity in income, wealth, consumption in micro data

• Promising tool for macroeconomics

• implications for policies differ: inequality matters for macro
• distributional implications: macro matters for inequality

• Not yet part of policymakers’ toolbox. Two excuses:

1. computational difficulties because distribution endogenous
2. perception that aggregate dynamics similar to rep agent

• Our paper: these excuses less valid than you thought
2



These excuses are less valid than you thought

1. Efficient and easy-to-use computational method

• open source Matlab toolbox online now

• extension of linearization (Campbell 1998, Reiter 2009)

• different slopes at each point in state space

• exploit advantages of continuous time (Achdou et al. 2017)

2. Use methodology to illustrate interaction of macro + inequality

• match micro behavior⇒ realistic aggregate C + Y dynamics

• aggregate shocks generate inequality dynamics...

• ... and IRFs in HA model can differ dramatically from RA case
3



Outline

1. Explain methods in one-asset (Krusell-Smith) model
• model description
• linearization
• dimensionality reduction
• illustrative results
• https://sehyoun.com/EXAMPLE_PHACT_KS.html

2. Two applications to illustrate macro + inequality interactions
• richer two-asset (Kaplan-Moll-Violante) model

3. (Not in paper) a simple one-asset HANK model
• https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html

4

https://sehyoun.com/EXAMPLE_PHACT_KS.html
https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html


One-Asset Heterogeneous Agent Model with
Aggregate Shocks (Krusell-Smith)

5



Households

max
{cjt}t≥0

E0
∫ ∞
0

e−ρtu(cjt)dt such that

ȧjt = wtzjt + rtajt − cjt

zjt ∈ {zℓ, zh} Poisson with intensities λℓ, λh

ajt ≥ 0

• cjt : consumption
• u: utility function, u′ > 0, u′′ < 0.
• ρ: discount rate
• rt : interest rate

6



Production

• Aggregate production function

Yt = e
ZtKαt N

1−α
t with dZt = −νZtdt + σdWt

• Perfect competition in factor markets

wt = (1− α)
Yt
Nt
, rt = α

Yt
Kt
− δ

• Market clearing

Kt =

∫
agt(a, z)dadz,

Nt =

∫
zgt(a, z)dadz ≡ 1

7



Warm-Up: Stationary Eq without Aggregate Shocks

• This slide only: turn off aggregate shocks Zt ≡ 0

ρv(a, z) =max
c
u(c) + ∂av(a, z)(wz + ra − c)

+ λz(v(a, z
′)− v(a, z))

(HJB SS)

0 =− ∂a[s(a, z)g(a, z)]− λzg(a, z) + λz ′g(a, z ′) (KF SS)

w = (1− α)Kα, r = αKα−1 − δ,

K =

∫
ag(a, z)dadz

(PRICE SS)

8



Equilibrium with Aggregate Shocks
Aggregate state: (gt , Zt)⇒ absorb into time subscript t

• Recursive notation w.r.t. individual states only
• Et is expectation w.r.t. aggregate states only fully recursive

ρvt(a, z) =max
c
u(c) + ∂avt(a, z)(wtz + rta − c)

+ λz(vt(a, z
′)− vt(a, z)) +

1

dt
Et [dvt(a, z)],

(HJB)

∂tgt(a, z) =− ∂a[st(a, z)gt(a, z)]− λzgt(a, z) + λz ′gt(a, z ′), (KF)

wt = (1− α)eZtKαt , rt = αeZtKα−1t − δ (P)

Kt =

∫
agt(a, z)dadz

dZt = −νZtdt + σdWt
Note: 1dtEt [dvt ] means lims↓0 Et [vt+s − vt ] /s

9



Equilibrium with Aggregate Shocks
Aggregate state: (gt , Zt)⇒ absorb into time subscript t

• Recursive notation w.r.t. individual states only
• Et is expectation w.r.t. aggregate states only fully recursive

ρvt(a, z) =max
c
u(c) + ∂avt(a, z)(wtz + rta − c)

+ λz(vt(a, z
′)− vt(a, z)) +

1

dt
Et [dvt(a, z)],

(HJB)

∂tgt(a, z) =− ∂a[st(a, z)gt(a, z)]− λzgt(a, z) + λz ′gt(a, z ′), (KF)

wt = (1− α)eZtKαt , rt = αeZtKα−1t − δ (P)

Kt =

∫
agt(a, z)dadz

dZt = −νZtdt + σdWt
Note: 1dtEt [dvt ] means lims↓0 Et [vt+s − vt ] /s 9



Linearization

10



Extension of standard linearization

1. Compute non-linear approximation to non-stochastic steady state

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation

11



Warm Up: Linearizing a Representative Agent Model

• Optimality conditions in RBC model

Et

dCtdKt
dZt

 = f (Ct , Kt , Zt)dt, f : R3 → R3

• Ct = consumption

• Kt = capital

• Zt = productivity

• f1 = Euler equation

• f2 = resource constraint

• f3 = productivity process

12



Warm Up: Linearizing a Representative Agent Model

• Optimality conditions in RBC model

Et

dCtdKt
dZt

 = f (Ct , Kt , Zt)dt, f : R3 → R3

• Ct = consumption = control variable

• Kt = capital = endogenous state variable

• Zt = productivity = exogenous state variable

• f1 = Euler equation

• f2 = resource constraint

• f3 = productivity process

12



Warm Up: Linearizing a Representative Agent Model

1. Compute non-stochastic steady state (C,K,Z = 0): by hand

2. Compute first-order Taylor expansion of f (Ct , Kt , Zt)
3. Diagonalize matrix B, hope same number of stable eigenvalues as

state variables (2 in this model)
Set control variables ⊥ to unstable eigenvectors⇒ policy function

Ĉt = DKK̂t +DZẐt

13



Warm Up: Linearizing a Representative Agent Model

1. Compute non-stochastic steady state (C,K,Z = 0): by hand

2. Compute first-order Taylor expansion of f (Ct , Kt , Zt)

Et

dCtdKt
dZt

 = f (Ct , Kt , Zt)dt

3. Diagonalize matrix B, hope same number of stable eigenvalues as
state variables (2 in this model)
Set control variables ⊥ to unstable eigenvectors⇒ policy function

Ĉt = DKK̂t +DZẐt

13



Warm Up: Linearizing a Representative Agent Model

1. Compute non-stochastic steady state (C,K,Z = 0): by hand

2. Compute first-order Taylor expansion of f (Ct , Kt , Zt)

Et

dĈtdK̂t
dẐt

 =
BCC BCK BΛZ
BKC BKK BKZ
0 0 BZZ


︸ ︷︷ ︸

B

ĈtK̂t
Ẑt

 dt

3. Diagonalize matrix B, hope same number of stable eigenvalues as
state variables (2 in this model)
Set control variables ⊥ to unstable eigenvectors⇒ policy function

Ĉt = DKK̂t +DZẐt

13



Warm Up: Linearizing a Representative Agent Model

1. Compute non-stochastic steady state (C,K,Z = 0): by hand

2. Compute first-order Taylor expansion of f (Ct , Kt , Zt)

Et

dĈtdK̂t
dẐt

 =
BCC BCK BΛZ
BKC BKK BKZ
0 0 BZZ


︸ ︷︷ ︸

B

ĈtK̂t
Ẑt

 dt

3. Diagonalize matrix B, hope same number of stable eigenvalues as
state variables (2 in this model)
Set control variables ⊥ to unstable eigenvectors⇒ policy function

Ĉt = DKK̂t +DZẐt

13



Main Event: Linearizing a Heterogeneous Agent Model

1. Compute
non-linear
approx. of non-stochastic
steady
state

• Finite difference method from Achdou et al. (2017)
• Steady state reduces to sparse matrix equations
• Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation

14



Main Event: Linearizing a Heterogeneous Agent Model

1. Compute
non-linear
approx. of non-stochastic
steady
state

• Finite difference method from Achdou et al. (2017)
• Steady state reduces to sparse matrix equations
• Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation

14



Step 1: Compute non-stochastic steady state

ρv(a, z) =max
c
u(c) + ∂av(a, z)(wz + ra − c)

+ λz(v(a, z
′)− v(a, z))

(HJB SS)

0 =− ∂a[s(a, z)g(a, z)]− λzg(a, z) + λz ′g(a, z ′) (KF SS)

w = (1− α)Kα, r = αKα−1 − δ,

K =

∫
ag(a, z)dadz

(PRICE SS)

15



Step 1: Compute non-stochastic steady state

ρvi ,j =u(ci ,j) + ∂avi ,j(wzj + rai − ci ,j)
+ λj(vi ,−j − vi ,j), with ci ,j = u′−1(∂avi ,j)

(HJB SS)

0 =− ∂a[s(a, z)g(a, z)]− λzg(a, z) + λz ′g(a, z ′) (KF SS)

w = (1− α)Kα, r = αKα−1 − δ,

K =

∫
ag(a, z)dadz

(PRICE SS)

15



Step 1: Compute non-stochastic steady state

ρv =u (v) + A (v;p) v (HJB SS)

0 =− ∂a[s(a, z)g(a, z)]− λzg(a, z) + λz ′g(a, z ′) (KF SS)

w = (1− α)Kα, r = αKα−1 − δ,

K =

∫
ag(a, z)dadz

(PRICE SS)

15



Visualization of A (output of spy(A) in Matlab)

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 177 16

spy(A)


Step 1: Compute non-stochastic steady state

ρv =u (v) + A (v;p) v (HJB SS)

0 =− ∂a[s(a, z)g(a, z)]− λzg(a, z) + λz ′g(a, z ′) (KF SS)

w = (1− α)Kα, r = αKα−1 − δ,

K =

∫
ag(a, z)dadz

(PRICE SS)

17



Step 1: Compute non-stochastic steady state

ρv =u (v) + A (v;p) v (HJB SS)

0 =A (v;p)T g (KF SS)

w = (1− α)Kα, r = αKα−1 − δ,

K =

∫
ag(a, z)dadz

(PRICE SS)

17



Step 1: Compute non-stochastic steady state

ρv =u (v) + A (v;p) v (HJB SS)

0 =A (v;p)T g (KF SS)

p =F (g) (PRICE SS)

• More generals models: (PRICE SS) becomes

0 = F (g,p)

17



Linearization: three steps

1. Compute non-linear approximation to non-stochastic steady state

• Finite difference method from Achdou et al. (2017)
• Steady state reduces to sparse matrix equations
• Borrowing constraint absorbed into boundary conditions

2. Compute first-order
Taylor
expansion around
steady
state

• Automatic differentiation: exact numerical derivatives
• Efficient Matlab implementation for sparse systems
• Different slopes at each point in state space

3. Solve linear stochastic differential equation

18



Linearization: three steps

1. Compute non-linear approximation to non-stochastic steady state

• Finite difference method from Achdou et al. (2017)
• Steady state reduces to sparse matrix equations
• Borrowing constraint absorbed into boundary conditions

2. Compute first-order
Taylor
expansion around
steady
state

• Automatic differentiation: exact numerical derivatives
• Efficient Matlab implementation for sparse systems
• Different slopes at each point in state space

3. Solve linear stochastic differential equation

18



Step 2: Linearize discretized system

• Discretized system with aggregate shocks

ρvt = u (vt) + A (vt ;pt) vt +
1

dt
Et [dvt ]

dgt
dt
= A (vt ;pt)

T gt

pt = F (gt;Zt)

dZt= −νZtdt + σdWt

•

19



Step 2: Linearize discretized system

• Discretized system with aggregate shocks

ρvt = u (vt) + A (vt ;pt) vt +
1

dt
Et [dvt ]

dgt
dt
= A (vt ;pt)

T gt

pt = F (gt;Zt)

dZt= −νZtdt + σdWt

• Write in general form

Et


dvt
dgt
0

dZt

 = f (vt ,gt ,pt , Zt)dt,

vt
gt
pt
Zt

 =


control
endog state

prices
exog state


19



Step 2: Linearize discretized system

• Discretized system with aggregate shocks

ρvt = u (vt) + A (vt ;pt) vt +
1

dt
Et [dvt ]

dgt
dt
= A (vt ;pt)

T gt

pt = F (gt;Zt)

dZt= −νZtdt + σdWt
• Linearize using automatic differentiation (code: @myAD)

Et


d v̂t
d ĝt
0

dZt

 =

Bvv 0 Bvp 0

Bgv Bgg Bgp 0

0 Bpg −I BpZ
0 0 0 −ν


︸ ︷︷ ︸

B


v̂t
ĝt
p̂t
Zt

 dt

19

@myAD


Linearization: three steps

1. Compute non-linear approximation to non-stochastic steady state
• Finite difference method from Achdou et al. (2017)
• Steady state reduces to sparse matrix equations
• Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state
• Automatic Differentiation: exact numerical derivatives
• Efficient Matlab implementation for sparse systems
• Different slopes at each point in state space

3. Solve
linear
stochastic differential
equation

• Moderately-sized systems =⇒ standard methods OK
• Large systems =⇒ dimensionality reduction

20



Linearization: three steps

1. Compute non-linear approximation to non-stochastic steady state
• Finite difference method from Achdou et al. (2017)
• Steady state reduces to sparse matrix equations
• Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state
• Automatic Differentiation: exact numerical derivatives
• Efficient Matlab implementation for sparse systems
• Different slopes at each point in state space

3. Solve
linear
stochastic differential
equation
• Moderately-sized systems =⇒ standard methods OK
• Large systems =⇒ dimensionality reduction

20



Model-Free Reduction Method

• Key insight: only need distribution gt to forecast prices

1. Krusell & Smith: guess moments ex-ante, check accuracy
ex-post

2. Our approach: computer chooses “moments”, guarantee
accuracy

• Approximate N-dimensional distribution with k-dimensional basis
gt ≈ γ1tx1 + ...+ γktxk

⇒ how to choose the basis x1, ..., xk?

• State-space reduction tools from engineering literature (Reiter 2010)
• use “observability” criterion ≡ matching impulse responses
• adapt to problems with forward-looking decisions

21



Approximate Aggregation in Krusell & Smith Model

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

0 10 20 30 40 50
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40 50
-0.5

0

0.5

1

1.5

2

2.5

• Comparison of full distribution vs. k = 1 approximation
=⇒ recovers Krusell & Smith’s “approximate aggregation”

22



Approximate Aggregation in Krusell & Smith Model

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

0 10 20 30 40 50
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40 50
-0.5

0

0.5

1

1.5

2

2.5

• Large-scale models in applications require k = 300
=⇒ no approximate aggregation

22



Our Method Is Fast, Accurate in Krusell & Smith Model

Our
method
is
fast

w/o
Reduction w/
Reduction
Steady State 0.082 sec 0.082 sec
Linearize 0.021 sec 0.021 sec
Reduction × 0.007 sec
Solve 0.14 sec 0.002 sec
Total 0.243 sec 0.112 sec

• JEDC comparison project (2010): fastest alternative ≈ 7 minutes

Our
method
is
accurate

Agg Shock σ 0.01% 0.1% 0.7% 1% 5%
Den Haan Error 0.000% 0.002% 0.053% 0.135% 3.347%

• JEDC comparison project: most accurate alternative ≈ 0.16%

22



Our Method Is Fast, Accurate in Krusell & Smith Model

Our
method
is
fast

w/o
Reduction w/
Reduction
Steady State 0.082 sec 0.082 sec
Linearize 0.021 sec 0.021 sec
Reduction × 0.007 sec
Solve 0.14 sec 0.002 sec
Total 0.243 sec 0.112 sec

• JEDC comparison project (2010): fastest alternative ≈ 7 minutes

Our
method
is
accurate

Agg Shock σ 0.01% 0.1% 0.7% 1% 5%
Den Haan Error 0.000% 0.002% 0.053% 0.135% 3.347%

• JEDC comparison project: most accurate alternative ≈ 0.16%
22



Applications

22



A Model of Distribution of Income, Wealth, and MPCs

• Households: two-asset incomplete markets (Kaplan-Moll-Violante)
• liquid asset
• illiquid assets subject to transaction cost

• Aggregate production function with growth rate shocks

Yt = QtK
α
t N
1−α
t

d logQt = Ztdt
dZt = −ηZtdt + σdWt

• Market clearing:
• Kt = illiquid assets
• B = liquid assets (fixed supply)

23



Application 1: Inequality Matters for C + Y Dynamics

• Campbell-Mankiw (1989): how match aggregate C + Y dynamics?

• Calibrate model to match

1. Household side: distribution of income, wealth, and MPCs
2. Firm side: dynamics of ∆ log Yt

0
400

0.1

0.2

300 30

0.3

20

0.4

200 10

0.5

0.6

0
100 -10

-200

24



Application 1: Inequality Matters for C + Y Dynamics

• Campbell-Mankiw (1989): how match aggregate C + Y dynamics?

• Calibrate model to match

1. Household side: distribution of income, wealth, and MPCs
2. Firm side: dynamics of ∆ log Yt

Data Models
Rep agent Two-Asset CM

Sensitivity
to
Income
IV(∆ logCt on ∆ log Yt 0.503 0.247 0.656

using ∆ log Yt−1)
Smoothness
σ(∆ logCt)
σ(∆ log Yt)

0.518 0.709 0.514
24



Application 1: Inequality Matters for C + Y Dynamics

• Campbell-Mankiw (1989): how match aggregate C + Y dynamics?

• Calibrate model to match

1. Household side: distribution of income, wealth, and MPCs
2. Firm side: dynamics of ∆ log Yt

Data Models
Rep agent Two-Asset CM

Sensitivity
to
Income
IV(∆ logCt on ∆ log Yt 0.503 0.247 0.656 0.505

using ∆ log Yt−1)
Smoothness
σ(∆ logCt)
σ(∆ log Yt)

0.518 0.709 0.514 0.676
24



Application 2: Agg Shocks Matter for Inequality

• With Cobb-Douglas prod’n, labor income inequality exogenous

labor income = wt × zjt

• Modify production function to generate endogenous inequality

Yt =
[
µ(ZUt N

U
t )
σ + (1− µ)

(
λKρt + (1− λ)(NSt )ρ

) σ
ρ

] 1
σ

• NUt : unskilled labor w/ low persistent productivity zjt
• NSt : skilled labor w/ high persistent productivity zjt
• ZUt : unskilled-specific productivity shock

• Calibrate σ and ρ to generate capital-skill complementarity
25



Unskilled-Specific Shock Increases Inequality...

1 2 3 4 5 6 7 8 9 10
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

• Fluctuations in income inequality ≈ aggregate income
26



... And Generates Sharp Consumption Bust

1 2 3 4 5 6 7 8 9 10
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

• Many low-skill households hand-to-mouth
=⇒ larger consumption drop than in rep agent model

27



One-Asset HANK Model

28



One-Asset HANK – Model Outline
• For details see https://github.com/gregkaplan/phact/blob/master/examples/

one_asset_HANK/docs/one_asset_hank_no_capital.pdf

• Households:
• as in Krusell-Smith model + endogenous labor supply
• policy functions ct(a, z), ℓt(a, z), distribution gt(a, z)

• Firms:
• monopolistic intermediate-good producers, labor demand Lt
• quadratic price adjustment costs à la Rotemberg (1982)
• ⇒ New Keynesian Phillips curve

• Government: issues liquid debt Bgt , spends, taxes/transfers

• Monetary authority: sets nominal rate based on a Taylor rule
• Equilibrium:

Bgt =

∫
agt(a, z)dadz, Lt =

∫
ℓt(a, z)gt(a, z)dadz 29

https://github.com/gregkaplan/phact/blob/master/examples/one_asset_HANK/docs/one_asset_hank_no_capital.pdf
https://github.com/gregkaplan/phact/blob/master/examples/one_asset_HANK/docs/one_asset_hank_no_capital.pdf


Walking you through the code

• https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html

30

https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html


Macro With Inequality: No More Excuses!

1. Efficient and easy-to-use computational method
• open source Matlab toolbox online now

2. Use methodology to illustrate interaction of macro + inequality

• match micro behavior⇒ realistic aggregate C + Y dynamics
• aggregate shocks generate inequality dynamics...
• ... and IRFs in HA model can differ dramatically from RA case

3. Check out one-asset HANK model at
https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html

• Estimating models w/ micro data on distributions within reach

• Lots of cool applications: come talk to us!
31

https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html


Fully recursive notation Back

w(g, Z) = (1− α)eZK(g)α, r(g, Z) = αeZK(g)α−1 − δ (P)

K(g) =

∫
ag(a, z)dadz (K)

ρV (a, z, g, Z) = max
c
u(c) + ∂aV (a, z, g, Z)(w(g, Z)z + r(g, Z)a − c)

+ λz(V (a, z
′, g, Z)− V (a, z, g, Z))

+∂ZV (a, z, g, Z)(−νZ) +
1

2
∂ZZV (a, z, g, Z)σ

2

+

∫
δV (a, z, g, Z)

δg(ã, z̃)
(KZg)(ã, z̃)dãdz̃

(∞d HJB)
(KZg)(a, z) = −∂a[s(a, z, g, Z)g(a, z)]− λzg(a, z) + λz ′g(a, z ′)

(KF operator)
s(a, z, g, Z) = w(g, Z)z + r(g, Z)a − c∗(a, z, g, Z)

• δV/δg(a, z): functional derivative of V wrt g at point (a, z)
32


	Appendix

