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Motivation

• Last 30 years: a lot of progress developing macro models with
rich heterogeneity in income, wealth, consumption in micro data

• Promising tool for macroeconomics

• implications for policies differ: inequality matters for macro
• distributional implications: macro matters for inequality

• Not yet part of policymakers’ toolbox. Two excuses:

1. computational difficulties because distribution endogenous
2. perception that aggregate dynamics similar to rep agent

• Our paper: these excuses less valid than you thought
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These excuses are less valid than you thought

1. Efficient and easy-to-use computational method

• open source Matlab toolbox online now

• extension of linearization (Campbell 1998, Reiter 2009)

• different slopes at each point in state space

• exploit advantages of continuous time (Achdou et al. 2017)

2. Use methodology to illustrate interaction of macro + inequality

• match micro behavior⇒ realistic aggregate C + Y dynamics

• aggregate shocks generate inequality dynamics...

• ... and IRFs in HA model can differ dramatically from RA case
3



Outline

1. Explain methods in one-asset (Krusell-Smith) model
• model description
• linearization
• dimensionality reduction
• illustrative results
• https://sehyoun.com/EXAMPLE_PHACT_KS.html

2. Two applications to illustrate macro + inequality interactions
• richer two-asset (Kaplan-Moll-Violante) model

3. (Not in paper) a simple one-asset HANK model
• https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html
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One-Asset Heterogeneous Agent Model with
Aggregate Shocks (Krusell-Smith)
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Households

max
{cjt}t≥0

E0
∫ ∞
0

e−ρtu(cjt)dt such that

ȧjt = wtzjt + rtajt − cjt

zjt ∈ {zℓ, zh} Poisson with intensities λℓ, λh

ajt ≥ 0

• cjt : consumption
• u: utility function, u′ > 0, u′′ < 0.
• ρ: discount rate
• rt : interest rate
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Production

• Aggregate production function

Yt = e
ZtKαt N

1−α
t with dZt = −νZtdt + σdWt

• Perfect competition in factor markets

wt = (1− α)
Yt
Nt
, rt = α

Yt
Kt
− δ

• Market clearing

Kt =

∫
agt(a, z)dadz,

Nt =

∫
zgt(a, z)dadz ≡ 1
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Warm-Up: Stationary Eq without Aggregate Shocks

• This slide only: turn off aggregate shocks Zt ≡ 0

ρv(a, z) =max
c
u(c) + ∂av(a, z)(wz + ra − c)

+ λz(v(a, z
′)− v(a, z))

(HJB SS)

0 =− ∂a[s(a, z)g(a, z)]− λzg(a, z) + λz ′g(a, z ′) (KF SS)

w = (1− α)Kα, r = αKα−1 − δ,

K =

∫
ag(a, z)dadz

(PRICE SS)
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Equilibrium with Aggregate Shocks
Aggregate state: (gt , Zt)⇒ absorb into time subscript t

• Recursive notation w.r.t. individual states only
• Et is expectation w.r.t. aggregate states only fully recursive

ρvt(a, z) =max
c
u(c) + ∂avt(a, z)(wtz + rta − c)

+ λz(vt(a, z
′)− vt(a, z)) +

1

dt
Et [dvt(a, z)],

(HJB)

∂tgt(a, z) =− ∂a[st(a, z)gt(a, z)]− λzgt(a, z) + λz ′gt(a, z ′), (KF)

wt = (1− α)eZtKαt , rt = αeZtKα−1t − δ (P)

Kt =

∫
agt(a, z)dadz

dZt = −νZtdt + σdWt
Note: 1dtEt [dvt ] means lims↓0 Et [vt+s − vt ] /s
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Linearization
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Extension of standard linearization

1. Compute non-linear approximation to non-stochastic steady state

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation
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Warm Up: Linearizing a Representative Agent Model

• Optimality conditions in RBC model

Et

dCtdKt
dZt

 = f (Ct , Kt , Zt)dt, f : R3 → R3

• Ct = consumption

• Kt = capital

• Zt = productivity

• f1 = Euler equation

• f2 = resource constraint

• f3 = productivity process
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Warm Up: Linearizing a Representative Agent Model

1. Compute non-stochastic steady state (C,K,Z = 0): by hand

2. Compute first-order Taylor expansion of f (Ct , Kt , Zt)
3. Diagonalize matrix B, hope same number of stable eigenvalues as

state variables (2 in this model)
Set control variables ⊥ to unstable eigenvectors⇒ policy function

Ĉt = DKK̂t +DZẐt
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13



Warm Up: Linearizing a Representative Agent Model

1. Compute non-stochastic steady state (C,K,Z = 0): by hand

2. Compute first-order Taylor expansion of f (Ct , Kt , Zt)

Et
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13



Warm Up: Linearizing a Representative Agent Model

1. Compute non-stochastic steady state (C,K,Z = 0): by hand

2. Compute first-order Taylor expansion of f (Ct , Kt , Zt)

Et
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Main Event: Linearizing a Heterogeneous Agent Model

1. Compute
non-linear
approx. of non-stochastic
steady
state

• Finite difference method from Achdou et al. (2017)
• Steady state reduces to sparse matrix equations
• Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation
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Step 1: Compute non-stochastic steady state

ρv(a, z) =max
c
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Step 1: Compute non-stochastic steady state

ρvi ,j =u(ci ,j) + ∂avi ,j(wzj + rai − ci ,j)
+ λj(vi ,−j − vi ,j), with ci ,j = u′−1(∂avi ,j)
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Step 1: Compute non-stochastic steady state

ρv =u (v) + A (v;p) v (HJB SS)

0 =− ∂a[s(a, z)g(a, z)]− λzg(a, z) + λz ′g(a, z ′) (KF SS)

w = (1− α)Kα, r = αKα−1 − δ,

K =

∫
ag(a, z)dadz

(PRICE SS)
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Visualization of A (output of spy(A) in Matlab)
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Step 1: Compute non-stochastic steady state

ρv =u (v) + A (v;p) v (HJB SS)
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Step 1: Compute non-stochastic steady state

ρv =u (v) + A (v;p) v (HJB SS)

0 =A (v;p)T g (KF SS)

w = (1− α)Kα, r = αKα−1 − δ,

K =

∫
ag(a, z)dadz

(PRICE SS)
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Step 1: Compute non-stochastic steady state

ρv =u (v) + A (v;p) v (HJB SS)

0 =A (v;p)T g (KF SS)

p =F (g) (PRICE SS)

• More generals models: (PRICE SS) becomes

0 = F (g,p)
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Linearization: three steps

1. Compute non-linear approximation to non-stochastic steady state

• Finite difference method from Achdou et al. (2017)
• Steady state reduces to sparse matrix equations
• Borrowing constraint absorbed into boundary conditions

2. Compute first-order
Taylor
expansion around
steady
state

• Automatic differentiation: exact numerical derivatives
• Efficient Matlab implementation for sparse systems
• Different slopes at each point in state space

3. Solve linear stochastic differential equation
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Step 2: Linearize discretized system

• Discretized system with aggregate shocks

ρvt = u (vt) + A (vt ;pt) vt +
1

dt
Et [dvt ]

dgt
dt
= A (vt ;pt)

T gt

pt = F (gt;Zt)

dZt= −νZtdt + σdWt

•
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Step 2: Linearize discretized system

• Discretized system with aggregate shocks

ρvt = u (vt) + A (vt ;pt) vt +
1

dt
Et [dvt ]

dgt
dt
= A (vt ;pt)

T gt

pt = F (gt;Zt)

dZt= −νZtdt + σdWt

• Write in general form

Et


dvt
dgt
0

dZt

 = f (vt ,gt ,pt , Zt)dt,

vt
gt
pt
Zt

 =


control
endog state

prices
exog state
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Step 2: Linearize discretized system

• Discretized system with aggregate shocks

ρvt = u (vt) + A (vt ;pt) vt +
1

dt
Et [dvt ]

dgt
dt
= A (vt ;pt)

T gt

pt = F (gt;Zt)

dZt= −νZtdt + σdWt
• Linearize using automatic differentiation (code: @myAD)

Et


d v̂t
d ĝt
0

dZt

 =

Bvv 0 Bvp 0

Bgv Bgg Bgp 0

0 Bpg −I BpZ
0 0 0 −ν


︸ ︷︷ ︸

B


v̂t
ĝt
p̂t
Zt

 dt

19
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Linearization: three steps

1. Compute non-linear approximation to non-stochastic steady state
• Finite difference method from Achdou et al. (2017)
• Steady state reduces to sparse matrix equations
• Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state
• Automatic Differentiation: exact numerical derivatives
• Efficient Matlab implementation for sparse systems
• Different slopes at each point in state space

3. Solve
linear
stochastic differential
equation

• Moderately-sized systems =⇒ standard methods OK
• Large systems =⇒ dimensionality reduction
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Model-Free Reduction Method

• Key insight: only need distribution gt to forecast prices

1. Krusell & Smith: guess moments ex-ante, check accuracy
ex-post

2. Our approach: computer chooses “moments”, guarantee
accuracy

• Approximate N-dimensional distribution with k-dimensional basis
gt ≈ γ1tx1 + ...+ γktxk

⇒ how to choose the basis x1, ..., xk?

• State-space reduction tools from engineering literature (Reiter 2010)
• use “observability” criterion ≡ matching impulse responses
• adapt to problems with forward-looking decisions
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Approximate Aggregation in Krusell & Smith Model
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• Comparison of full distribution vs. k = 1 approximation
=⇒ recovers Krusell & Smith’s “approximate aggregation”
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Approximate Aggregation in Krusell & Smith Model
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• Large-scale models in applications require k = 300
=⇒ no approximate aggregation
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Our Method Is Fast, Accurate in Krusell & Smith Model

Our
method
is
fast

w/o
Reduction w/
Reduction
Steady State 0.082 sec 0.082 sec
Linearize 0.021 sec 0.021 sec
Reduction × 0.007 sec
Solve 0.14 sec 0.002 sec
Total 0.243 sec 0.112 sec

• JEDC comparison project (2010): fastest alternative ≈ 7 minutes

Our
method
is
accurate

Agg Shock σ 0.01% 0.1% 0.7% 1% 5%
Den Haan Error 0.000% 0.002% 0.053% 0.135% 3.347%

• JEDC comparison project: most accurate alternative ≈ 0.16%
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Applications
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A Model of Distribution of Income, Wealth, and MPCs

• Households: two-asset incomplete markets (Kaplan-Moll-Violante)
• liquid asset
• illiquid assets subject to transaction cost

• Aggregate production function with growth rate shocks

Yt = QtK
α
t N
1−α
t

d logQt = Ztdt
dZt = −ηZtdt + σdWt

• Market clearing:
• Kt = illiquid assets
• B = liquid assets (fixed supply)
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Application 1: Inequality Matters for C + Y Dynamics

• Campbell-Mankiw (1989): how match aggregate C + Y dynamics?

• Calibrate model to match

1. Household side: distribution of income, wealth, and MPCs
2. Firm side: dynamics of ∆ log Yt
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• Campbell-Mankiw (1989): how match aggregate C + Y dynamics?

• Calibrate model to match

1. Household side: distribution of income, wealth, and MPCs
2. Firm side: dynamics of ∆ log Yt

Data Models
Rep agent Two-Asset CM

Sensitivity
to
Income
IV(∆ logCt on ∆ log Yt 0.503 0.247 0.656 0.505

using ∆ log Yt−1)
Smoothness
σ(∆ logCt)
σ(∆ log Yt)

0.518 0.709 0.514 0.676
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Application 2: Agg Shocks Matter for Inequality

• With Cobb-Douglas prod’n, labor income inequality exogenous

labor income = wt × zjt

• Modify production function to generate endogenous inequality

Yt =
[
µ(ZUt N

U
t )
σ + (1− µ)

(
λKρt + (1− λ)(NSt )ρ

) σ
ρ

] 1
σ

• NUt : unskilled labor w/ low persistent productivity zjt
• NSt : skilled labor w/ high persistent productivity zjt
• ZUt : unskilled-specific productivity shock

• Calibrate σ and ρ to generate capital-skill complementarity
25



Unskilled-Specific Shock Increases Inequality...
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• Fluctuations in income inequality ≈ aggregate income
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... And Generates Sharp Consumption Bust
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• Many low-skill households hand-to-mouth
=⇒ larger consumption drop than in rep agent model
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One-Asset HANK Model
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One-Asset HANK – Model Outline
• For details see https://github.com/gregkaplan/phact/blob/master/examples/

one_asset_HANK/docs/one_asset_hank_no_capital.pdf

• Households:
• as in Krusell-Smith model + endogenous labor supply
• policy functions ct(a, z), ℓt(a, z), distribution gt(a, z)

• Firms:
• monopolistic intermediate-good producers, labor demand Lt
• quadratic price adjustment costs à la Rotemberg (1982)
• ⇒ New Keynesian Phillips curve

• Government: issues liquid debt Bgt , spends, taxes/transfers

• Monetary authority: sets nominal rate based on a Taylor rule
• Equilibrium:

Bgt =

∫
agt(a, z)dadz, Lt =

∫
ℓt(a, z)gt(a, z)dadz 29
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Walking you through the code

• https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html

30
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Macro With Inequality: No More Excuses!

1. Efficient and easy-to-use computational method
• open source Matlab toolbox online now

2. Use methodology to illustrate interaction of macro + inequality

• match micro behavior⇒ realistic aggregate C + Y dynamics
• aggregate shocks generate inequality dynamics...
• ... and IRFs in HA model can differ dramatically from RA case

3. Check out one-asset HANK model at
https://sehyoun.com/EXAMPLE_one_asset_HANK_web.html

• Estimating models w/ micro data on distributions within reach

• Lots of cool applications: come talk to us!
31
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Fully recursive notation Back

w(g, Z) = (1− α)eZK(g)α, r(g, Z) = αeZK(g)α−1 − δ (P)

K(g) =

∫
ag(a, z)dadz (K)

ρV (a, z, g, Z) = max
c
u(c) + ∂aV (a, z, g, Z)(w(g, Z)z + r(g, Z)a − c)

+ λz(V (a, z
′, g, Z)− V (a, z, g, Z))

+∂ZV (a, z, g, Z)(−νZ) +
1

2
∂ZZV (a, z, g, Z)σ

2

+

∫
δV (a, z, g, Z)

δg(ã, z̃)
(KZg)(ã, z̃)dãdz̃

(∞d HJB)
(KZg)(a, z) = −∂a[s(a, z, g, Z)g(a, z)]− λzg(a, z) + λz ′g(a, z ′)

(KF operator)
s(a, z, g, Z) = w(g, Z)z + r(g, Z)a − c∗(a, z, g, Z)

• δV/δg(a, z): functional derivative of V wrt g at point (a, z)
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	Appendix

