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A Derivations and Proofs for the Baseline Model

A.1 Task Model Micro-foundation and Details

This appendix provides a micro-foundation for the aggregate production function in equation

(2). The appendix also provides a derivation of equation (9) and primitive conditions to

ensure Assumption 1 holds.

Each skill type z works in a different sector that produces output Yz. The economy

produces a final good Y using these sectoral outputs according to a Cobb-Douglas aggregator

Y = A
∏
z

Y ηz
z with

∑
z

ηz = 1.

Here, ηz denotes the importance of the sectoral output produced by skill type z in production.

The productivity shifter A captures the role of factor-neutral technological improvements.

The production of sectoral output Yz involves the completion of a unit continuum of tasks

u, which are then combined via a Cobb-Douglas aggregator:

lnYz =

ˆ 1

0

lnYz(u)du.

These tasks can be produced using capital and skill-z labor as follows:

Yz(u) =

{
ψz`z(u) + kz(u) if u ∈ [0, αz]

ψz`z(u) if u ∈ (αz, 1].

The threshold αz summarizes the possibilities for the automation of tasks performed by

workers of skill z. Tasks u ∈ [0, αz] are technologically automated and can be produced by

capital kz(u) or labor `z(u). The remaining tasks are not technologically automated and

must be produced by labor.

The unit cost of producing a task with capital is R and that of producing it with labor

is wz/ψz. Denote by pz(u) the price of task Yz(u), and by pz the price of sector z output Yz.

Cost minimization in the production of sector z output implies that the quantity of task u

used is given by

Yz(u) =
pzYz
pz(u)

Assumption 1 implies that all tasks u ∈ [0, αz] are produced with capital. It follows that

A-1



for those tasks, pz(u) = R and the quantity of capital required to produce Yz(u) is pzYz/R.

It follows that the total amount of capital used in sector z is:

Kz =
αzpzYz
R

(A1)

Assumption 1 implies that all tasks u ∈ (αz, 1] are produced with labor. It follows that

for those tasks, pz(u) = wz
ψz

and the quantity of labor required to produce Yz(u) is pzYz/wz.

It follows that the total amount of labor of skill z used in sector z is:

`z =
(1− αz)pzYz

wz
(A2)

With perfect competition, the price of sector z output equals the marginal cost of pro-

duction. Because tasks are combined via a Cobb-Douglas aggregator, the price is given by

the dual ln(pz) =
´ 1

0
ln(pz(u))du. It follows that

pz = Rαz

(
wz
ψz

)1−αz
. (A3)

Combining the formula for pz in (A3) with capital and labor demand conditions (A1)

and (A2) gives the production of sector z as a function of the total capital and labor used

in this sector, Kz and `z:

Yz =

(
Kz

αz

)αz ( ψz`z
1− αz

)1−αz
(A4)

We now turn to aggregate output. We normalize the price of the final good to 1, so that

the demand for sector z output satisfies pzYz = ηzY .

Using equations (A1), we can compute the demand for capital in sector z as

Kz =
αzpzYz
R

=
αzηzY

R
.

Adding this formula across sectors, it follows that the total amount of capital used in the

economy is

K = α
Y

R
, (A5)

where recall that α :=
∑

z αzηz. The share of capital allocated to sector z is therefore equal

to

Kz = K
αzηz
α

. (A6)

Substituting this formula into (A4) we get:

Yz =
(
K
ηz
α

)αz ( ψzLz
1− αz

)1−αz
. (A7)
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Substituting sectoral outputs into the aggregate production function we obtain the formula

in equation (2), with

A := Aα−α
∏
z

(ηz(1− αz))−ηz(1−αz)
∏
z

ηηzz (A8)

Proof of the expression for productivity gains from automation. The formula in

equation (2) can be written as

Y = A
∏
z

ηηzz

(
K

α

)α∏
z

(
ψz`z

ηz(1− αz)

)ηz(1−αz)

.

It follows that

d lnY =ηz ln

(
K

α

)
− ln

(
ψz`z

ηz(1− αz)

)
+ αd lnK

=ηz ln

(
Y

R

)
− ln

(
ψz

Y

wz

)
+ αd lnK

=ηz ln

(
wz
ψzR

)
+ αd lnK > 0.

The third row substitutes factor prices for their marginal products. Subtracting αd lnY from

both sides of this equation and dividing through by 1− α yields the formula in (9).

Lemma A1 (Lemma ensuring adoption of automation technologies) Suppose that for

all z, the following inequality holds:

(ρ+ pσ + δ)−
1

1−αA
1

1−αα
α

1−α >
1

(1− αz)ηz
`zψz∏

v(`vψv)
ηv(1−αv)

1−α

, (A9)

where A is defined in (A8). The equilibrium will involve the adoption of all available au-

tomation technologies. The above inequality holds for values of A above a threshold Ā.

Proof. We assume that all automation technologies are adopted and verify that in equilib-

rium, the condition above ensures that w∗z > ψzR
∗.

In steady state, we have that ρ + pσ > r∗, which can be seen from the fact that r∗ =

ρ+ pσα∗net. Using the fact that r∗ + δ = α Y
K

, we can rewrite ρ+ pσ > r∗ as

(K/Y )∗ >
α

ρ+ pσ + δ
. (A10)
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Turning to wages, we have that

w∗z =(1− αz)
ηz
`z
Y ∗

=(1− αz)
ηz
`z
A

1
1−α (K/Y )∗

α
1−α
∏
v

(ψv`v)
ηz(1−αz)

1−α

>
(1− αz)ηz

`z
A

1
1−αα

α
1−α
∏
z

(ψz`z)
ηz(1−αz)

1−α (ρ+ pσ + δ)−
α

1−α ,

where the last line uses inequality (A10).

Finally, because ψz(ρ+ pσ + δ) > ψzR
∗, a sufficient condition to ensure w∗z > ψzR

∗ is

(1− αz)ηz
`z

A
1

1−αα
α

1−α
∏
z

(ψz`z)
ηz(1−αz)

1−α (ρ+ pσ + δ)−
α

1−α > ψz(ρ+ pσ + δ).

This inequality is equivalent to (A9). Finally, the definition of A in (A8) implies that

(A9) holds for large values of A, concluding the proof of the lemma.

A.2 Propositions for Baseline Model A

Proof of Lemma 1. Let xz,t := wz/r + az,t denote effective wealth. Equation (1) can be

rewritten as:

max
{cz,t,xz,t}t≥0

ˆ ∞
0

e−ρt
c1−σ
z,t

1− σ
dt (A11)

s.t. ẋz,t = rxz,t − cz,t, and xz,t ≥ 0

The Hamiltonian associated with this maximization problem is

H(cz, xz, λz) :=
c1−σ
z

1− σ
+ λ(rxz − cz), (A12)

where λz is the co-state for effective wealth.

We can write the candidate solution given in Lemma 1 as (time arguments are ignored

to save on notation)

ẋz =
r − ρ
σ

xz cz =

(
r − r − ρ

σ

)
xz. (A13)

We will show that the unique solution to this system of differential equations starting from

xz,0 = wz/r solves the maximization problem in (A11).

Theorem 7.14 in Acemoglu (2009) implies that this candidate path reaches an optimum

if there exists a co-state variable λz such that:
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1. the path satisfies the restrictions ẋz = rxz − cz, and xz ≥ 0;

2. the following necessary conditions hold:

c−σz =λz,

ρλz − λ̇z =rλz;

3. the maximized Hamiltonian M(xz, λz) = maxcH(c, xz, λz) is concave in xz along the

candidate path;

4. the transversality condition holds. That is, for the candidate path, we have

lim
s→∞

e−ρsxzλz =0.

and for all other feasible paths, x̂z, we have

lim
s→∞

e−ρsx̂zλz ≥0.

To prove condition 1, note that starting from any xz,0 ≥ 0, we will have xz ≥ 0. Moreover,

for any path satisfying equations (A13) the flow budget constraint holds:

rxz − cz = rxz −
(
r − r − ρ

σ

)
xz

=
r − ρ
σ

xz

= ẋz.

To prove condition 2, define λz := (r − (r − ρ)/σ)−σ x−σz > 0 (here we used the condition

r > (r − ρ)/σ). By construction, c−σz = λz. Moreover:

ρλz − λ̇z =ρ

(
r − r − ρ

σ

)−σ
x−σz +

(
r − r − ρ

σ

)−σ
σx−σ−1

z,t ẋz

=

(
ρ+ σ

ẋz
xz

)(
r − r − ρ

σ

)−σ
x−σz

=

(
ρ+ σ

ẋz
xz

)
λz

=

(
ρ+ σ

r − ρ
σ

)
λz

=rλz.
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To prove condition 3, note that

max
c
H(c, xz, λz) =

λ
σ−1
σ

z

1− σ
+ λz(rxz − λ

− 1
σ

z ),

which is concave (linear) in xz.

To prove the first part of condition 4, note that along the candidate path, xz grows at a

rate r−ρ
σ

, and λz at a rate ρ− r. It follows that the first part of the transversality condition

holds if

−ρ+
r − ρ
σ

+ ρ− r < 0,

which is equivalent to the condition r > (r − ρ)/σ.

The second part of the transversality condition follows from the fact that, along any

feasible path, we have x̂z ≥ 0.

It follows that the candidate paths given in Lemma 1 provide optimal paths for consump-

tion and asset accumulation in a steady state.

Proof of Proposition 1.

The main text presents the derivations of the supply curve (equation 6) and the demand

curve (equation 7).

The supply curve (K/w̄)s increases from zero to infinity as r increases from ρ to ρ+ pσ.

For r < ρ households supply no capital. For r > ρ + pσ, households amass a divergent

amount of capital.

The demand curve (K/w̄)s decreases from (α/(1− α))/(ρ + δ) > 0 to (α/(1− α))/(ρ +

pσ + δ) > 0 as r increases from ρ to ρ+ pσ.

These observations imply that equation (4) has a unique solution r∗ and that this unique

solution lies in (ρ, ρ+ pσ). In fact, r∗ can be computed analytically as

r∗ =
−((1− α)δ − ρ− αpσ) +

√
((1− α)δ − ρ− αpσ)2 + 4(1− α)ρδ

2
(A14)

The equilibrium return r∗ determines the remaining aggregates as follows. First, the

capital-output ratio is given by

(K/Y )∗ =
α

r∗ + δ
.

The output level is given by

Y ∗ = A
1

1−α

(
α

r∗ + δ

) α
1−α ∏

z

(`zψz)
ηz(1−αz)

1−α .
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These two equations combined imply

K∗ = A
1

1−α

(
α

r∗ + δ

) 1
1−α ∏

z

(`zψz)
ηz(1−αz)

1−α . (A15)

Turning to wages, we have that w∗z = (1− αz)ηz`z Y
∗, which implies

w∗z = (1− αz)
ηz
`z
A

1
1−α

(
α

r∗ + δ

) α
1−α ∏

z

(`zψz)
ηz(1−αz)

1−α .

Finally, equation (5) can be derived from the household side. As explained in the main

text, in steady state we must have

0 =
r∗ − ρ
σ

(
K∗ +

w̄∗

r∗

)
− pK∗.

This expression can be rearranged as

r∗ = ρ+ pσ
r∗K∗

r∗K∗ + w̄∗
= ρ+ pσα∗net.

Note that the condition r∗ > (r∗−ρ)/σ, which is needed to ensure the households’ policy

functions are an optimum is equivalent to ρ + pα∗net(σ − 1) > 0, which we assume holds

throughout.

Turning to the comparative statics exercises, we can rearrange (4) as:(
1− ρ

r∗

)
(r∗ + δ)

pσ + ρ− r∗
=

α

1− α
.

The right hand side of this equation is increasing in r∗, and the left is increasing in α. It

follows that r∗ is increasing in α.

The household accumulation rate is given by (r∗ − ρ)/σ, and so it also increases with α.

The net capital share satisfies the identity in equation (5), and so it increases with α.

Denote the capital-output ratio by (K/Y )∗. We have

α∗net =
r∗(K/Y )∗

1− δ(K/Y )∗
.

Rearranging this equation and using the fact that r∗ = ρ+ pσα∗net, we obtain

(K/Y )∗ =
α∗net

ρ+ (pσ + δ)α∗net
, (A16)

which is an increasing function of α∗net, and hence α.
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Finally, turning to output, from equation (2) we have

d lnY ∗ =
1

1− α
d ln TFPα +

α

1− α
d ln(K/Y )∗.

Because d ln TFPα > 0 and d ln(K/Y )∗ > 0 following any increase in the αz’s, we have that

automation always increase output.

Proof of Proposition 2. Equilibrium factor prices imply that relative wages satisfy

wz
wv

=
(1− αz)
(1− αv)

ηz
ηv

`v
`z
.

It follows that an increase in αz reduces wz/wv for v 6= z.

Turning to the wage bill, we can add up individual wages for all z to obtain:

w̄ = (1− α)Y.

It follows that

d ln w̄ = − 1

1− α
∑

ηzdαz +
1

1− α
d ln TFPα +

α

1− α
d ln(K/Y )∗.

We now show that the terms d ln TFPα and d ln(K/Y )∗ are both decreasing in p and converge

to zero as p increases. Because the term −(1/(1− αz))
∑
ηzdαz is negative, this establishes

the existence of the threshold p̄.

We first analyze the term d ln TFPα. This is given by

d ln TFPα =
∑
z

ηz ln

(
w∗z
ψzR∗

)
=
∑
z

ηz ln

(
K∗

α

)
− ηz ln

(
ψz`z

ηz(1− αz)

)
,

where we used the formulas for equilibrium factor prices. It is enough to show that K∗ is

decreasing in p and that K∗ converges to zero as p increases. Because K∗ is given by (A15),

it is enough to show that r∗ is increasing in p and that r∗ converges to infinity as p increases.

The fact that r∗ increases in p follows from equation (4). An increase in p contracts the

supply of capital, which results in a higher r∗. Moreover, equation (A14) shows that r∗ →∞
as p→∞. Note that the formal limit of d ln TFPα as p→∞ is zero, since as K∗ declines,

we eventually reach a point where Assumption 1 starts failing and increases in αz do not

affect productivity.

We now turn to the term d ln(K/Y )∗. We have that

α = (K/Y )∗(ρ+ pσα∗net + δ).
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Differentiating this expression we obtain

1 =
pσα∗net

ρ+ pσα∗net + δ

∂ lnα∗net
∂ lnα

+
∂ ln(K/Y )∗

∂ lnα
. (A17)

Moreover, equation (A16) implies that

∂ ln(K/Y )∗

∂ lnα
=

ρ

ρ+ (pσ + δ)α∗net

∂ lnα∗net
∂ lnα

. (A18)

Solving equations (A17) and (A18), we obtain:

∂ ln(K/Y )∗

∂ lnα
=

1

1 +
pσα∗net

ρ+ pσα∗net + δ

ρ+ (pσ + δ)α∗net
ρ

.

We now show that the elasticity ∂ ln(K/Y )∗

∂ lnα∗net
converges to zero as p rises. A sufficient

condition for this to be the case is that α∗net is nondecreasing in p, which holds when δ = 0

and α∗net = α. To show this is the case more generally, start from the fact that α = R(K/Y ).

Rewriting the right hand side in terms of α∗net, we obtain

α = (ρ+ pσα∗net + δ)
α∗net

ρ+ (pσ + δ)α∗net
.

This equation can be rearranged as

α

(
1− δ(1− α∗net)

ρ+ pσα∗net + δ

)
= α∗net.

This equation defines α∗net implicitly as a function of α and p. The left hand side is increasing

in α∗net and intercepts the right-hand side (the 45-degree line) from above at a single equi-

librium point. An increase in p shifts the left-hand side upwards, which results in a higher

equilibrium value for α∗net as claimed.

The above argument shows that there exists some p̄ such that, for p > p̄, d ln w̄ < 0.

To conclude the proof, we show that p̄ > 0. This follows from the fact that, for p = 0,

d ln w̄ > 0.

To show this, note that for p = 0 we get

d ln(K/Y )∗ =
dα

α
=

1

α

∑
z

ηzdαz,

and therefore

d ln w̄ =− 1

1− α
∑

ηzdαz +
1

1− α
d ln TFPα +

α

1− α
1

α

∑
z

ηzdαz =
1

1− α
d ln TFPα > 0.
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Proof of Proposition 3. Below we derive the effective wealth distribution, the wealth

distribution, and the income distribution. To save on notation, we do not include asterisks

when denoting steady state objects.

Effective wealth distribution: Denote the stationary density of effective wealth conditional

on a given skill type z by fz(x). fz satisfies the Kolmogorov Forward Equation (KFE)

0 = −∂x
(
r − ρ
σ

xfz(x)

)
− pfz(x)

on (wz/r,∞). We guess and verify that f is Pareto, i.e. fz(x) = cζx−ζ−1 for some constants

c and ζ. Substituting in the guess

0 = ζ
r − ρ
σ

cζx−ζ−1 − pcζx−ζ−1

0 = ζ
r − ρ
σ
− p

1

ζ
=
r − ρ
pσ

= αnet

Since fz(x) = cζx−ζ−1 must integrate to 1 on (wz/r,∞), we must have c = (wz/r)
−ζ . Hence

this is a Pareto distribution with tail parameter ζ = 1
αnet

and scale parameter xz(0) = wz/r.

Because the distribution of effective wealth is Pareto, the conditional counter-CDF for

effective wealth of each skill type z is of the form:

Pr(effective wealth ≥ x|z) =

(
x

wz/r

)− 1
αnet

, x ≥ wz/r. (A19)

Wealth distribution: We now derive the counter-CDF for wealth. Recall that effective

wealth x is x := a+ wz/r. Therefore

Pr(wealth ≥ a|z) = Pr(effective wealth ≥ a+ wz/r|z) =

(
a+ wz/r

wz/r

)− 1
αnet

, a ≥ 0

To find the unconditional distribution, we add across the different skill-types, which yields

Pr(assets ≥ a) =
∑
z

`z

(
a+ wz/r

wz/r

)− 1
αnet

.

Income Distribution: We now derive the counter-CDF for income. The income of a

person with effective wealth x is rx. Therefore

Pr(income ≥ y|z) = Pr(effective wealth ≥ y/r|z) =

(
y/r

wz/r

)− 1
αnet

, y ≥ wz.
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To find the unconditional distribution, we add across the different skill-types, which yields

Pr(income ≥ y) =
∑
z

(
max {y, wz}

wz

)− 1
αnet

.

Finally, when δ = 0, we have αnet = α and 1
ζ

= α. When δ > 0, Proposition 1, implies

that 1
ζ

is increasing in α.

B Derivations and Proofs for the Extended Model

B.1 Derivations and Lemmas

Before presenting the proofs, we generalize the model in the text so that investors could also

face a borrowing constraint of the form

−bz,t ≤ θaz,t +
wz + T

rB − g
,

where θ ∈ (0, 1] parameterizes the extent to which investors can pledge their capital.44 The

results in the main text follow in the special case with θ = 1. We also provide a lemma

characterizing investors policy functions.

Lemma A2 (Achdou et al. (2022)) Let rI = κrK+(1−κ)rB. Investors’ policy functions

are given by

cz,t =
ρ+ (σ − 1)rI − 1

2
(σ − 1)γν2κ2

σ
xz,t,

κ = min

{
1

1− θ
,
rK − rB
γν2

}
.

which imply that effective wealth follows a random growth process:

dxz,t =
rI − ρ+ 1

2
(σ − 1)γν2κ2

σ
xz,tdt+ κνxz,tdWt.

Proof. Using the definition of effective wealth and the fact that in a balanced growth

equilibrium wages and tax revenue grow at a constant rate g, we have

dxz,t = daz,t + dbz,t + g
wz + T

rB − g
dt.

44The usual formulation used in the literature is −bz,t ≤ θaz,t. Relative to this, our formulation assumes
that human wealth is pledgeable, which makes the model more tractable.
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Substituting the investors’ budget constraint in place of daz,t + dbz,t and rearranging terms

we obtain

dxz,t =rB

(
az,t + bz,t +

wz + T

rB − g

)
dt+ (rK − rB)az,tdt+ νaz,tdWt − cz,tdt

=rBxz,tdt+ (rK − rB)az,tdt+ νaz,tdWt − cz,tdt.

Let κ denote the share of effective wealth held in equity, so that az,t = κxz,t. We can

rewrite the budget constraint as

dxz,t = (rIxz,t − cz,t)dt+ νκxz,tdWt. (A20)

In what follows, we drop the subscript z and time t, and examine the savings problem in

terms of the state variable x—effective wealth. The HJB equation for this problem is

0 = max
c>0,κ∈[0,1/(1−θ)]

f(c, v(x)) + (rIx− c)v′(x) +
1

2
ν2κ2x2v′′(x).

Using the Duffie–Lions aggregator and guessing v(x) = Λx1−γ/(1 − γ), the HJB equation

becomes

ρΛx1−γ

1− σ
= max

c>0,κ∈[0,1/(1−θ)]

ρΛx1−γ

1− σ

( c

Λ1/(1−γ)x

)1−σ
+ (rIx− c)Λx−γ −

γ

2
ν2κ2Λx1−γ.

The optimal consumption and portfolio choice are given by

c =ρ
1
σΛ−

1
σ

1−σ
1−γ x κ = min

{
1

1− θ
,
rK − rB
γν2

}
.

Plugging into the HJB equation and canceling terms, we get

ρ

1− σ
=

ρ

1− σ

(
ρ

1
σΛ−

1
σ

1−σ
1−γ

Λ1/(1−γ)

)1−σ

+ rI − ρ
1
σΛ−

1
σ

1−σ
1−γ − 1

2
γν2κ2.

This is an equation in c/x = ρ
1
σΛ−

1
σ

1−σ
1−γ , which yields

c/x =
ρ+ (σ − 1)rI − 1

2
(σ − 1)γν2κ2

σ
.

The policy function for cz,t follows from this expression, and the behavior of xz,t follows after

plugging this policy function in the the budget constraint in equation (A20).
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B.2 Propositions for Extended Model

Proof of Proposition 4. Lemma A2 implies that investors accumulate wealth at a rate

µI =
rW − ρ
σ

. (A21)

Lemma 1 applies to the remaining households, whose wealth then grows at a rate

µH =
rB − ρ
σ

.

In what follows, we will describe the BGE in terms of rW and rB. In particular, we define

h(rW − rB) = rK − rB and m(rW − rB) = κ implicitly as the solution to

rW − rB =mh+
1

2
(σ − 1)γν2m2 m = min

{
1

1− θ
,
h

γν2

}
.

We can then write the return to capital and portfolio choice implicitly as:

rK =h(rW − rB) + rB κ =m(rW − rB),

where h is a continuous and increasing function and m is continuous and nondecreasing.

Denote byXI the aggregate effective wealth of investors and byXH the aggregate effective

wealth of the remaining households, and bond holdings by BI and BH , respectively. Optimal

household saving behavior combined with the dissipation shocks implies that

ẊI =µIXI − p(K +BI), ẊH =µHXH − pBH .

Moreover, because the value of capital installed in firms must be equal to the total capital

owned by investors, aggregate effective wealths are given by

XI =K +BI + χ
w̄ + T

rB − g
XH =BH + (1− χ)

w̄ + T

rB − g
.

Human wealth now depends on the sum of wages and transfers, whose present discounted

value is obtained by dividing them by rB − g to account for their growth over time. It is

convenient to analyze the BGE in terms of capital and bonds normalized by the value of

human wealth, which are constant along a BGE:

kn =
K

(w̄ + T )/(rB − g)
bI =

BI

(w̄ + T )/(rB − g)
bH =

BH

(w̄ + T )/(rB − g)
.

Along a BGE, the effective wealth of investors grows at a rate g, so that ẊI = gXI and

ẊH = gXH . The effective wealth of investors grows at a rate g if and only if rW > ρ + σg
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and the BGE values of kn and bI satisfy(
rW − ρ
σ

− g
)

(kn + bI + χ) =p(kn + bI). (A22)

In addition, because a fraction κ = m(rW − rB) of investors wealth is held in equity,

m(rW − rB) (kn + bI + χ) = kn. (A23)

Likewise, the effective wealth of households grows at a rate g if and only if rB > ρ+ σg and(
rB − ρ
σ

− g
)

(bH + 1− χ) =pbH , (A24)

or rB ≤ ρ+ σg and bH = 0.

We now characterize the production side of the economy. We focus on a balanced-growth

equilibrium in which Assumption 1 holds, so that output is given by 2. Because of markups,

total wage payments are now given by

w̄ =
1− α
ϕ

Y,

which implies that firms pay a share (1−α)/ϕ of their revenue to labor; while the remaining

share of revenue 1− (1−α)/ϕ constitutes gross capital income which is taxed at a rate 1− τ
(recall that we assumed a gross tax on capital income) and must cover for the depreciation

of capital. Thus, we can compute the after-tax gross income from capital as

(rK + δ)K = (1− τ)

(
1− 1− α

ϕ

)
Y.

Tax revenue from capital taxation, and thus the lump-sum transfers, are equal to

T = τ

(
1− 1− α

ϕ

)
Y.

We can combine the equations for after-tax gross capital income and labor income and

transfers to obtain an expression of the demand for financing by firms:

kn =
α̃

1− α̃
rB − g

h(rW − rB) + rB + δ
. (A25)

A balanced-growth equilibrium is characterized by constant values for rW , rB, kn, bI , bH
that solve equations (A22), (A23), (A24) and (A25) and where rB is endogenous and ensures

market clearing in the bonds market

bI + bH = 0.
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In this case, we will assume that ρ + (σ − 1)g > 0, which is a sufficient condition to ensure

that the equilibrium exists and features finite wealth.

We start with the case in which investors are risk neutral (γ = 0 in the Duffie–Lions

aggregator) and their borrowing constraint does not bind. We will provide necessary and

sufficient conditions for this to be the case below.

Because we assumed that the borrowing constraint does not bind, it must be the case

that rW = rK = rB = r∗.

Adding equations (A22) and (A24), we obtain(
r∗ − ρ
σ
− g
)

(kn + 1) = pkn. (A26)

Solving for kn and substituting into equation (A25) shows that an equilibrium is fully deter-

mined by a level of returns that satisfies:

1− (ρ+ (σ − 1)g)/(r∗ − g)

σ(p+ g) + ρ− r∗
=

α̃

1− α̃
1

r∗ + δ
. (A27)

The left hand side of this equation is increasing in r∗; while the right-hand side is decreasing

in r∗. Moreover, at r∗ = ρ + σg, the left-hand side is lower than the right-hand side; and

at r∗ = ρ+ σ(p+ g), the the left-hand side converges to infinity and exceeds the right-hand

side. This implies a unique solution exists and satisfies r∗ ∈ (ρ+ σg, ρ+ σ(p+ g)).

We now derive conditions for θ that ensure the borrowing constraint does not bind.

Denote by k∗n the value of kn in the balanced growth equilibrium above, which is given by

k∗n =
α̃

1− α̃
r∗ − g
r∗ + δ

,

and is independent of θ by construction. Equations (A22) and (A24) imply that investors

must borrow and amount

b∗ = (1− χ)k∗n

from households. and so we must have

κ∗ =
k∗n

k∗n − b∗ + χ
=

1

χ

k∗n
k∗n + 1

.

It follows that the borrowing constraint will be slack if and only if

1

1− θ
≥ 1

χ

k∗n
k∗n + 1

⇔ θ ≥ 1− χk
∗
n + 1

k∗n
:= θ̄.

Note that θ̄ ≤ 1, as claimed in the proposition.

We now turn to the case in which investors are risk averse and/or θ < θ̄ and we have a
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closed economy. In what follows, we will assume that rW > ρ+ σg, which must hold in any

equilibrium. To see this, notice that for rW ≤ ρ + σg, investors do not accumulate wealth

and the supply of capital is zero, which cannot be the case in a BGE.

Combining equations (A22) and (A24), we obtain a supply of (normalized) capital

kn =
pσm(rW − rB)

σ(p+ g) + ρ− rW
χ. (A28)

Combining this with the demand for firm financing in equation (A25) yields the market

clearing condition in the capital market:

DK(rW , rB) =
α̃

1− α̃
rB − g

h(rW − rB) + rB + δ
− pσm(rW − rB)

σ(p+ g) + ρ− rW
χ = 0 (A29)

where DK(rW , rB) is the excess demand for capital, and the curve DK(rW , rB) = 0 defines the

locus of points for which the capital market clears. Likewise, the market clearing condition

in the bond market is given by

DB(rW , rB) =
pσ(m(rW − rB)− 1)

σ(p+ g) + ρ− rW
χ+ χ− rB − ρ− σg

σ(p+ g) + ρ− rB
(1− χ) = 0, (A30)

where DB(rW , rB) is the excess demand for bonds, and the curve DB(rW , rB) = 0 defines

the locus of points for which the bond market clears.

The following Lemmas characterize the behavior of these loci.

Lemma A3 The curve DK(rW , rB) = 0 gives a continuous and upward sloping locus in the

(rW , rB) space defined for rW ∈ (g, ρ+ σ(p+ g)) and rB ∈ (g, rW ). Moreover:

1. as rW ↓ g, the locus converges to the point (g, g)

2. as rW ↑ ρ+ σ(p+ g), the locus converges to the point (ρ+ σ(p+ g), ρ+ σ(p+ g)).

Lemma A4 The curve DB(rW , rB) = 0 gives a continuous and initially decreasing locus in

the (rW , rB) space defined for rW ∈ (ρ+ σg, ρ+ σ(p+ g)) and rB < rW . Moreover:

1. as rW ↓ ρ+ σg, the locus converges to the point (ρ+ σg, ρ+ σg);

2. as rW ↑ ρ+ σ(p+ g), the locus converges to the point (ρ+ σ(p+ g), r̃B), where

r̃B := ρ+ σ(p+ g)− 1

2
(σ + 1)γν2.

3. let γ̄ := 2p σ
1+σ

(1− χ).

• if γν2 > γ̄, then rW − rB increases from zero to a maximum of 1
2
(σ+ 1)γν2 along

the locus DB(rW , rB) = 0;
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• if γν2 < γ̄, then rW −rB increases from zero up to a maximum and then decreases

and reaches 1
2
(σ + 1)γν2 along the locus DB(rW , rB) = 0.

The proof of these lemmas is technical and relegated to Appendix F.

Figure A1: Typical configurations of the locus for DK(rW , rB) = 0 and DB(rW , rB) = 0.

The two lemmas combined imply that the loci DK(rW , rB) = 0 and DB(rW , rB) = 0

are as depicted in Figure A1. The lemmas imply that at rW = ρ + σg, the locus for

DB(rW , rB) = 0 is above that for DK(rW , rB) = 0 (recall that, by assumption, ρ+ σg > g).

On the other hand, at rW = ρ + σ(p + g), the locus for DK(rW , rB) = 0 is above that for

DB(rW , rB) = 0. The intermediate value theorem then implies that these loci intercept at

a point r∗W , r
∗
B and an equilibrium exists. Moreover, as the figure shows, r∗W > r∗B > g and

r∗W ∈ (ρ+ σg, ρ+ σ(p+ g)).

Finally, the characterization of the tail properties of the income and wealth distribution

follows as a corollary of Proposition A1.

Proposition A1 Let x denote effective wealth and define normalized wealth by

x̃ = x
/wz
rB
.

Let fH(x̃) and fI(x̃) denote the PDFs of the distributions of normalized wealth for households

and investors. The distribution of normalized wealth for households is given by

fH(x̃) = ζH x̃
−ζH−1 for x̃ ≥ 1, (A31)

where
1

ζH
:=

rB − ρ− σg
pσ

,
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and the distribution of normalized wealth for investors is given

fI(x̃) =


1

1/ζP − 1/ζN
x̃−ζP−1 for x̃ ≥ 1

1

1/ζP − 1/ζN
x̃−ζN−1 for x̃ ∈ [0, 1),

(A32)

where

1

ζP
:=

rW − ρ− σg − σκ2ν2

2
+

√(
rW − ρ− σg − σκ2ν2

2

)2
+ 2σ2κ2ν2p

2pσ
> 0

and

1

ζN
:=

rW − ρ− σg − σκ2ν2

2
−
√(

rW − ρ− σg − σκ2ν2

2

)2
+ 2σ2κ2ν2p

2pσ
< 0.

Moreover, the distribution for investors’ income flows has a Pareto tail with index 1/ζP .

Proof. The evolution of (normalized) effective wealth for households is given by

˙̃xt = (µH − g)x̃t,

where

µH :=
rB − ρ
σ

and x̃t resets to 1 with probability p.

The Kolmogorov-forward equation characterizing fH in steady state is then given by

0 = −∂x ((µH − g)xfH(x))− pfH(x) + p℘(x− 1), (A33)

where ℘(.) is the Dirac’s delta function (a mass of 1 at 0). To solve this differential equation,

we guess and verify that

fH(x) = CHx
−ζH−1, for x ≥ 1.

Plugging this guess in the KFE equation (A33), we obtain

0 = ζH(µH − g)CHx
−ζH−1 − pCHx−ζH−1, for x ≥ 1.

This implies

1

ζH
=
µH − g
p

=
rB − ρ− σg

pσ
,

as claimed in the proposition. Moreover, because the density fH(x) must integrate to 1, we
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obtain

1 =

ˆ ∞
1

CHx
−ζH−1dx⇒ CH = ζH .

The evolution of (normalized) effective wealth for investors is given by

dx̃t = (µI − g)x̃tdt+ κνx̃tdWt,

where

µI :=
rW − ρ
σ

and x̃t resets to 1 with probability p.

The Kolmogorov-forward equation characterizing fI in steady state is then given by

0 = −∂x ((µI − g)xfI(x)) +
1

2
∂xx
(
ν2κ2x2fI(x)

)
− pfI(x) + p℘(x− 1), (A34)

where ℘(.) is the Dirac’s delta function (a mass of 1 at 0). To solve this differential equation,

we guess and verify a piece-wise solution of the form

fI(x) = CPx
−ζP−1, for x ≥ 1,

and

fI(x) = CNx
−ζN−1, for x ∈ (0, 1),

which allows for the possibility that the distribution might be different to the left and to

the right of the reinjection point (note also that the process for effective wealth implies that

x > 0).

Plugging this guess in the KFE equation (A33), we obtain

0 = ζP (µI − g)CPx
−ζP−1 + (ζP − 1)ζP

1

2
ν2κ2CPx

−ζP−1 − pCPx−ζP−1, for x ≥ 1.

This implies a quadratic equation for ζP given by

0 = ζP (µI − g) + (ζP − 1)ζP
1

2
ν2κ2 − p.

Because the integral of fI(x) must converge on (1,∞), ζP must be equal to the unique

positive root of the above quadratic equation, which is given by

ζP =

(
κ2ν2

2
− µI + g

)
+

√(
κ2ν2

2
− µI + g

)2
+ 2κ2ν2p

κ2ν2
.
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Multiplying the numerator and denominator by

(
κ2ν2

2
− µI + g

)
−

√(
κ2ν2

2
− µI + g

)2

+ 2κ2ν2p

and rearranging, this formula yields

1

ζP
=
µI − g − κ2ν2

2
+

√(
µI − g − κ2ν2

2

)2
+ 2κ2ν2p

2p
,

which is the same as the formula provided in the lemma.

Likewise, plugging our guess for x ∈ (0, 1), we obtain the same quadratic equation for ζN
given by

0 = ζN(µI − g) + (ζN − 1)ζN
1

2
ν2κ2 − p.

Because the integral of fI(x) must converge on (0, 1), ζN must be equal to the unique negative

root of the above quadratic equation, which is given by

1

ζN
=
µI − g − κ2ν2

2
−
√(

µI − g − κ2ν2

2

)2
+ 2κ2ν2p

2p
,

which is the same as the formula provided in the lemma.

Finally, we turn to the constants CP and CN . First, because fI(x) must be continuous

at x = 1, we obtain CP = CN . Second, because the density fI(x) must integrate to 1, we

obtain

1 =

ˆ 1

0

CNx
−ζN−1dx+

ˆ ∞
1

CPx
−ζP−1dx⇒ CP = CN =

1

1/ζP − 1/ζN
.

Turning to the income distribution, Lemma S4 shows that, over a short period of time t,

the income received by an investor with effective wealth xz can be approximated as

yz,t = xz,0(rIt+ κν
√
tu),

where u ∼ N(0, 1). For large y, we have that

Pr(yz,t ≥ y) ∝
ˆ ∞
− rI

√
t

κν

(rIt+ κν
√
tu)ζP y−ζPφ(u)du ∝ y−ζP ,

where φ(u) is the pdf of a standard normal, and the second equality follows from the fact

that
´∞

0
(rIt + κν

√
tu)ζPφ(u)du is a finite constant for any value of ζP ≥ 0 (which in turn

follows from the fact that the normal distribution has finite moments). Thus, the income
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distribution also has a Pareto tail with tail index 1/ζP .

Proof of Proposition 5. The equilibrium equations for rK , rB, κ, kn, bI and bH are(
rB + κ · (rK − rB) + 1

2
(σ − 1)γν2κ2 − ρ

σ
− g
)
· (kn + bI + χ) =p · (kn + bI)(

rB − ρ
σ

− g
)
· (bH + 1− χ) =p · bH

κ · (kn + bI + χ) =kn
1

γν2
(rK − rB) =κ

bI + bH =0

α

1− α
· rB − g
rK + δ

=kn.

For α = 0, we get rK = rB = ρ+ σg, κ = kn = bH = bI = 0.

Linearizing the system of equations around this equilibrium, we get

drB
σ
· χ =p · (dkn + dbI)

drB
σ
· (1− χ) =p · dbH

dκ · χ =dkn drK − drB =γν2dκ

dbI + dbH =0 dkn =
ρ+ (σ − 1)g

ρ+ σg + δ
α.

Which yields the solution

drK =

[
pσ +

γν2

χ

]
ρ+ (σ − 1)g

ρ+ σg + δ
α

drB =pσ · ρ+ (σ − 1)g

ρ+ σg + δ
α

dκ =
1

χ
· ρ+ (σ − 1)g

ρ+ σg + δ
α.

It follows that for small values of α we can approximate all equilibrium objects as

rK =ρ+ σg +

[
pσ +

γν2

χ

]
ρ+ (σ − 1)g

ρ+ σg + δ
α

rB =ρ+ σg + pσ · ρ+ (σ − 1)g

ρ+ σg + δ
α

κ =
1

χ
· ρ+ (σ − 1)g

ρ+ σg + δ
α

kn =
ρ+ (σ − 1)g

ρ+ σg + δ
α.

Let α∗net denote the capital share net of growth and depreciation in equation (16). By

A-21



definition, this is equal to kn/(kn+ 1), and so for small values of α we get the approximation

α∗net = kn which implies α∗net = ρ+(σ−1)g
ρ+σg+δ

α.

We conclude that

rK =ρ+ σg +

[
pσ +

γν2

χ

]
α∗net

rB =ρ+ σg + pσ · α∗net

κ =
1

χ
α∗net,

as claimed in the proposition.

Finally, the formula for the return gap in equation 13 implies

rW − ρ− σg = pσα∗net +
1

χ2
α∗net

2γν2.

Using this expression for the return gap, we can compute the tail index for inequality as

1

ζ
=
pσα∗net + 1

χ2α
∗
net

2γν2 − 1
χ2α

∗
net

2 σ
2 ν

2 +
√

(pσα∗net + 1
χ2α

∗
net

2γν2 − 1
χ2α

∗
net

2 σ
2 ν

2)2 + 2
χ2α

∗
net

2σ2ν2p

2pσ
.

For small values of α this can be linearized as

1

ζ
= α∗net + α∗net ·

ν2

pχ2

1 +
√

1 + 2 ν2

pχ2

Proposition 5 provides explicit formulas that are valid for small values of α̃. We now

provide an additional proposition characterizing the comparative statics of our extended

model away from α̃ = 0.

Proposition A2 Suppose that investors are risk averse and/or θ < θ̄. There exists a

threshold ᾱ ∈ (0, 1] such that, for α̃ < ᾱ, the balanced-growth equilibrium in the closed

economy is unique, and following an increase in α̃, we have that:

• The return to wealth r∗W , the return gap r∗W − ρ − σg, and the return spread r∗K − r∗B
all strictly increase, and the portfolio share of capital κ∗ weakly increases;

• Top tail inequality 1/ζ∗ in (15) strictly increases.

Proof of Proposition A2. Let r̄W denote the point at which rW − rB is maximized along

the locus DB(rW , rB) = 0. This definition implies that r̄W = ρ + σ(p + g) if γν2 < γ̄, and

r̄W < ρ+ σ(p+ g) if γν2 > γ̄.
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We first show that there exists a threshold ᾱ such that, for α̃ < ᾱ, there is a unique

equilibrium, and this equilibrium satisfies r∗W < r̄W .

Suppose there are multiple equilibria, and let rMW (α̃) denote the value of r∗W in the equi-

librium with the highest return to wealth. In this equilibrium, the locus for DK(rW , rB)

cuts the locus for DB(rW , rB) from below, and so an increase in α̃ shifting the locus for

DK(rW , rB) outwards results in a higher rMW (α̃). Moreover, as α̃ → 0, rMW (α̃) → ρ + σg,

which implies that for small values of all α̃, we have r∗W < r̄W in any equilibria. Finally, note

that as α̃→ 0, the locus for DK(rW , rB) converges to the 45 degree line and so we will have

a unique equilibrium. This follows from the fact that, as shown in Lemma A4, the locus for

DB(rW , rB) = 0 moves away from the 45 degree line for rW ∈ (ρ+σg, r̆W ), and retains a gap

of at least 1
2
(σ + 1)γν2 from there on. It follows that we can pick a ᾱ such that, for α̃ < ᾱ,

the equilibrium is unique and satisfies r∗W < r̄W .

Figure A2: Effects of changes in the demand for capital on r∗W and r∗B.

For α̃ < ᾱ, the equilibrium will look as in Figure A2, and increases in α̃ will result in a

higher r∗W . Moreover, because r∗W < r̄W , we have that the gap r∗K − r∗B rises following an

increase in automation (so long as α̃ remains below ᾱ).
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C Dissipation Shocks

This section provides a formal treatment of dissipation shocks, and shows that they only

affect households’ saving problem by making them discount the future at a higher rate.

We work in a general non-stationary environment. To do so, in this section, t will denote

calendar time.

Formally, we assume that with Poisson rate p, households become impatient and only

value their consumption in the following T periods. We work with the limit as T → 0, i.e.

households become infinitely impatient.

Let V T
z,t,a denote the value of lifetime consumption for a household who enters the im-

patience state at time t with assets a ≥ 0 (recall that households who enter this state with

negative assets see a cancellation of their debt). This value function is given by

V T
z,t,a = max

{cTz,t+τ,a,aTz,t+τ,a}

ˆ T

0

e−%τ
(cTz,t+τ,a)

1−σ

1− σ
dτ (S1)

s.t. ȧTz,t+τ,a = wz,t+τ + rt+τa
T
z,t+τ,a − cTz,t+τ,a, aTz,t+T,a ≥ 0, aTz,t,a = a.

The following lemma characterizes the behavior of this value function and the consumption

of households in the impatience state.

Lemma S1 (Characterization of the impatience state) For T → 0, the value func-

tion V T
z,t,a converges to zero

lim
T→0

V T
z,t,a → 0 ∀a.

In this limit case, the flow consumption of the impatient is pKt, where Kt are total asset

holdings in the economy.

Before proceeding with the Lemma’s proof, we briefly explain the intuition for the result

that V T
z,t,a → 0 as T → 0. Households enjoy an infinite consumption flow over an infinitesimal

time interval T → 0. But because utility is strictly concave, the value of such consumption

converges to zero as T → 0. In terms of the notation in the proof below, we have

V T
z,t,a ≈

ˆ T

0

u(a/T )dt = T
(a/T )1−σ

1− σ
= T σ

a1−σ

1− σ
→ 0 as T → 0.
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Proof. The Euler equation for problem (S1) implies that consumption satisfies

cTz,t+τ,a = cTz,t,a exp

(ˆ τ

0

1

σ
(rt+s − %)ds

)
. (S2)

Because aTz,t+T,a ≥ 0, any optimal consumption path must involve aTz,t+T,a = 0. Therefore,

the consumption path satisfies the budget constraint

ˆ T

0

exp

(
−
ˆ τ

0

rt+sds

)
cTz,t+τ,adτ = a+

ˆ T

0

exp

(
−
ˆ τ

0

rt+sds

)
wz,t+τdτ

Plugging equation (S2) into the budget constraint, we obtain the following expression for

cTz,t,a:

cTz,t,a =
a+
´ T

0
exp

(
−
´ τ

0
rt+sds

)
wz,t+τdτ´ T

0
exp

(
−
´ τ

0
(rt+s(1− 1/σ) + %/σ)ds

)
dτ
.

Thus, the optimal consumption path satisfies

cTz,t+τ,a =
a+
´ T

0
exp

(
−
´ τ

0
rt+sds

)
wz,t+τdτ´ T

0
exp

(
−
´ τ

0
(rt+s(1− 1/σ) + %/σ)ds

)
dτ

exp

(ˆ τ

0

1

σ
(rt+s − %)ds

)
. (S3)

Plugging equation (S3) into (S1), we obtain

V T
z,t,a =

1

1− σ

(
a+

ˆ T

0

exp

(
−
ˆ τ

0

rt+sds

)
wz,t+τdτ

)1−σ

(ˆ T

0

exp

(
−
ˆ τ

0

(rt+s(1− 1/σ) + %/σ)ds

)
dτ

)σ
.

As T → 0, we have that a +
´ T

0
exp

(
−
´ τ

0
rt+sds

)
wTz,t+τdτ converges to a and the term´ T

0
exp

(
−
´ τ

0
(rt+s(1− 1/σ) + %/σ)ds

)
dτ converges to zero. It follows that V T

z,t,a converges

to zero, as claimed in the lemma.

We now turn to computing the flow consumption of households in the impatience state.

For τ ∈ [0, T ], let hz,a,t−τ denote the mass of households of skill z who entered the impatience
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state with assets a at time t− τ . Their flow consumption in the impatience state equals

CT
t =

∑
z

ˆ
a

ˆ T

0

cTz,t+τ,ahz,a,t−τdτda

=
∑
z

ˆ
a

ˆ T

0

a+
´ T

0
exp

(
−
´ τ

0
rt+sds

)
wz,t+τdτ´ T

0
exp

(
−
´ τ

0
(rt+s(1− 1/σ) + %/σ)ds

)
dτ
×

exp

(ˆ τ

0

1

σ
(rt+s − %)ds

)
hz(a, t− τ)dτda

=
∑
z

ˆ
a

(
a+

ˆ T

0

exp

(
−
ˆ τ

0

rt+sds

)
wz,t+τdτ

)
×( ´ T

0
exp

(´ τ
0

1
σ
(rt+s − %)ds

)
hz,a,t−τdτ´ T

0
exp

(
−
´ τ

0
(rt+s(1− 1/σ) + %/σ)ds

)
dτ

)
da.

To compute the limit of CT
t as T → 0, note that

lim
T→0

a+

ˆ T

0

exp

(
−
ˆ τ

0

rt+sds

)
wz,t+τdτ = a,

and, by an application of L’Hôpital’s rule

lim
T→0

´ T
0

exp
(´ τ

0
1
σ
(rt+s − %)ds

)
hz,a,t−τdτ´ T

0
exp

(
−
´ τ

0
(rt+s(1− 1/σ) + %/σ)ds

)
dτ

= hz,a,t.

It follows that

lim
T→0

CT
t =

∑
z

ˆ
a

ahz,a,tda = pKt.

The last step follows from the fact that the probability of entering the impatience state is p,

independently of assets and skills.

Note that in the proof above, we assumed that all households entering the impatience

state have positive assets. Recall that upon entering this state, households with negative

assets see a cancellation of their debt, which results in a one time negative consumption equal

to minus their debt generating no disutility. This ensures that the above proof goes through

even when some households have negative assets. By construction, for these households we

have V T
z,t,a = 0

Lemma S1 and the remarks above imply that the consumption and saving decisions of

households solve the maximization problem in (1) in the main text.
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C.1 Other Foundations for Dissipation Shocks

This appendix provides micro-foundations for dissipation shocks. First, we consider a model

with stochastic death, no altruism, and an annuity market as in Blanchard (1985). Second,

we consider a model with infinitely lived dynasties and population growth in the form of

new households emerging outside of existing dynasties. Third, we consider a model with

finite lives and bequests where altruism evolves stochastically within a dynasty. Finally, we

present a model with multiple capital lines subject to obsolescence shocks. In all of these

models, an equation similar to (5) determines long-run returns and the distribution of wealth

also follows a Pareto distribution.

C.1.1 Stochastic deaths and annuities

Death is stochastic, with people dying with a Poisson probability p. As in Blanchard (1985),

there is an annuity market such that, when people die, they give their wealth to an insurance

company. In exchange, they receive a flow income of paz,t when alive.

As in the main text, we focus on a steady state of this economy and use t to denote the

age of a person. Consumption decisions solve the problem

max
{cz,t,az,t}t≥0

ˆ ∞
0

e−(%+p)t c
1−σ
z,t

1− σ
dt (S4)

s.t. ȧz,t = wz + (r + p)az,t − cz,t, and az,t ≥ −wz/(r + p)

Analogous to Lemma 1, the optimal saving and consumption policy functions are

ȧz,t =
r − %
σ

(
az,t +

wz
r + p

)
, cz,t =

(
r + p− r − %

σ

)(
az,t +

wz
r + p

)
with az,0 = 0.

Let X denote effective wealth of the economy in steady state. We have that X = H+K,

where H = w̄/(r + p) denotes human wealth, and K denotes the value of the capital stock.

Following the derivation in the main text, it follows that the aggregate behavior of X is

given by:

0 = Ẋ =
r − %
σ

X − pK. (S5)

Relative to our baseline model, the difference is that in this equation, the rate of accumulation

depends on r−%, rather than r−ρ. This difference is driven by the incentives to accumulate

assets introduced by the annuity market: wealth now pays return r+p so that the individual

wealth accumulation rate is (r + p − % − p)/σ = (r − %)/σ. As in our baseline model, we

still have the term −pK on the right-hand side of equation (S5). This term now captures

the wealth paid by dying individuals to the insurance company upon death. The insurance

company redistributes this wealth to all living households via a higher return to their wealth
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r + p. The term (r − %)/σ already accounts for the redistributed wealth, so the −pK term

ensures there is no double-counting.

Note that equation (S5) is equivalent to the equations for aggregates in Blanchard (1985)

who analyzes the special case of logarithmic utility, σ = 1. In particular, using our notation,

equations (5), (6) and (7) in the published version of his paper are: C = (%+p)(H+K), Ḣ =

(r + p)H − w̄ and K̇ = rK + w̄ − C. Using our definition of effective wealth X := H + K,

we have Ẋ = (r + p)H + rK − (% + p)(H + K) = (r − %)X − pK which is the special case

of (S5) with σ = 1.

Net capital income now includes annuity payments and so it is given by (r+p)K. There-

fore, rearranging (S5) and using the fact that X = K + w̄/(r + p), the steady state return

to wealth satisfies

r = %+ pσ
(r + p)K

(r + p)K + w̄
= %+ pσα∗net.

Alternatively, the analogue to (6) for long-run capital supply is (K/w̄)s = r−%
(pσ+%−r)(r+p) .

Following the same steps as in the baseline model, it follows that effective wealth follows

a Pareto distribution. Wages give the scale parameters, and the common tail parameter is

given by

1

ζ
=

1

p

r − %
σ

= α∗net,

where we have used that the rate of individual wealth accumulation depends on r − % as

discussed below equation (S5).

The model with annuities therefore yields exactly the same expressions for the steady

state return to wealth and the tail parameter of the wealth distribution as in our baseline

model except for one difference: the effective discount rate ρ = % + p is replaced by the

unadjusted discount rate %.

C.1.2 Population growth

We now assume that dynasties are infinitely lived and experience no dissipation shocks.

However, at a rate p, new dynasties emerge. These new dynasties start with zero assets.

As in the main text, we focus on a steady state of this economy and use t to denote the

age of a dynasty. Consumption decisions solve the problem

max
{cz,t,az,t}t≥0

ˆ ∞
0

e−%t
c1−σ
z,t

1− σ
dt (S6)

s.t. ȧz,t = wz + raz,t − cz,t, and az,t ≥ −wz/r.
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Analogous to Lemma 1, the optimal saving and consumption policy functions are

ȧz,t =
r − %
σ

(
az,t +

wz
r

)
, cz,t =

(
r − r − %

σ

)(
az,t +

wz
r

)
with az,0 = 0.

Let X denote effective wealth of the economy in steady state. We have that X = H+K,

where H = w̄/r denotes human wealth, and K denotes the value of the capital stock.

Because of population growth, we are interested in a steady state where aggregates grow at

a rate p.

Following the derivation in the main text, it follows that the aggregate behavior of X is

given by:

pX = Ẋ =
r − %
σ

X + pH.

Relative to our baseline case, there are two differences in this equation. First, total wealth

grows at a rate p since population increases over time. Second, the term +pH captures the

wealth brought by new dynasties, who start life with nothing but their labor income.

Rearranging this equation, and using the fact that X = H +K, we obtain:

0 =
r − %
σ

X − pK,

which implies that, in steady state

r = %+ pσα∗net.

Let us now turn to the wealth distribution. Let fz(x) denote the distribution of effective

wealth xz for households with wage wz. Following the same steps as in the baseline model,

we obtain the Kolgomorov Forward Equation:

0 = −
(
r − %
σ

xfz(x)

)′
− pfz(x)

on (wz/r,∞). The term −pfz(x) now captures the loss of probability mass as new individuals

are born and start their lives with effective wealth wz/r. Following the same steps as in the

baseline model, it follows that effective wealth follows a Pareto distribution.

C.1.3 Finite lives and stochastic altruism

We now consider a model with finite lives and stochastic altruism. Individuals live for a

period of length T . They are born as one of two types: altruistic, which happens with prob-

ability e−pT , or non-altruistic (selfish), which happens with probability 1−e−pT . Individuals

decide how much to consume and save during their lifetimes and how much wealth to pass on
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to their offspring when they die at age T : if they are altruistic they leave their children some

wealth; instead, if they are selfish, they consume all their wealth before they die. Therefore,

the dynasty continues with probability e−pT but is interrupted with probability 1− e−pT .

As in the main text, we focus on a steady state of this economy and use t to denote age.

Let vTA(a) denote the value function for an altruistic individual who starts life with assets a

and vTN(a) that for a non-altruistic individual. We have

vTA(a) = max
{cz,t,az,t}t∈[0,T ]

ˆ T

0

e−%t
c1−σ
z,t

1− σ
dt+ e−(%+p)TvTA(az,T ) + e−%T

(
1− e−pT

)
vTN(az,T ), (S7)

s.t. az,0 = a, ȧz,t = wz + raz,t − cz,t, and az,t ≥ −wz/r.

and

vTN(a) = max
{cz,t,az,t}t∈[0,T ]

ˆ T

0

e−%t
c1−σ
z,t

1− σ
dt, (S8)

s.t. az,0 = a, ȧz,t = wz + raz,t − cz,t, and az,t ≥ −wz/r.

We now show that, as T → 0, this model collapses to our baseline model with dissipation

shocks.

At any point in time, a fraction 1
T

(1 − e−pT ) of households starts life with no assets.

Taking the limit as T → 0, this fraction converges to p.

Lemma S1 then implies that limT→0 v
T
N(az,T )→ 0 and the consumption of people in the

non-altruistic state is pK.

Using this result, and expanding equation (S7) around T = 0, we obtain

0 = max
cz,0

c1−σ
z,0

1− σ
− (%+ p)vA(az,0) + v′A(az,0)ȧz,0,

where vA(az,0) = limT→0 v
T
A(az,T ). It follows that vA(az,0) satisfies the same Bellman equation

that characterizes optimal consumption and saving decisions in our baseline model. Thus,

both models generate the same value functions, consumption and saving decisions.

C.1.4 Uninsured capital income risk (capital obsolescence shocks)

Finally, we consider a model of uninsured capital income risk. There are multiple types of

capital indexed by i representing different investment projects and ki denotes the stock of

capital of type i households have already accumulated. Capital of type i is either useful in

production or obsolete which we denote by ζi ∈ {0, 1}, with ζi = 0 denoting obsolescence.

Total capital services in the economy are

K =

ˆ
i

ζikidi.
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Obsolescence occurs at Poisson rate p. For example, obsolescence might be due to the fact

that a whole technology class or an intermediate product line is suddenly displaced by a new

one via creative destruction.

Each household is assigned a unique investment project i. While capital of type i is useful

in production it pays a return r. When capital becomes obsolete (which happens at rate p),

the household draws a new investment project and start with zero capital in this project,

i.e. when an obsolescence shock hits, the affected capital has a return of minus one hundred

percent (or an instantaneous continuous-time return of −∞). This formulation implies that

a household z with an active project i(z) solves the problem

max
{cz,t,ki(z),t}t≥0

ˆ ∞
0

e−%t
c1−σ
z,t

1− σ
dt

subject to: k̇i(z),t = rki(z),t + wz − cz,t, and cz,t, ki(z),t ≥ 0,

where in addition, ki(z),t resets to zero with probability p—capturing the fact that the house-

hold needs to start a new investment project.

As in Lemma 1, household policy functions (assuming r > ρ) are given by

k̇i(z),t =
r − ρ
σ

(
ki(z),t +

wz
r

)
, cz,t =

(
r − r − ρ

σ

)(
kz,t +

wz
r

)
,

with ki(z),t reseting to zero with probability p.

As in the main text, it follows that the aggregate behavior of K satisfies

K̇ =
r − ρ
σ

(
K +

w̄

r

)
− pK ⇒ r = ρ+ pσα∗net.

This implies the same dynamics for wealth and wealth inequality that we obtained in the

model with dissipation shocks. The only difference relative to our baseline model is that, in

this case, capital that becomes obsolete cannot be consumed or re-invested. This implies a

different Euler equation and resource constraint given by

Ċ =
1

σ
(Y ′(K)− δ − ρ)C − µpK,

K̇ =Y (K)− (δ + p)K − C.

Finally, note that this formulation assumes limited risk sharing and diversification. If

households were to decide how much to invest in each active capital line, they would invest a

constant fraction in each and obtain a risk free return of r−p. Equivalently, if an investment

company were to pool all investments, it would offer all households a common and risk-free

return of r− p. In both cases we would recover Gorman aggregation; the steady state would

involve r = ρ and the wealth distribution would remain indeterminate.
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D Results Regarding the Composition of Income

D.1 Income composition at top of income distribution

This appendix provides a proposition exploring the implications of our formulas in the base-

line model for the composition of the income distribution.

Proposition S1 (Composition and sources of income at top of income distribution)

Let q̄ := Pr(income ≥ maxz wz). For q < q̄, we have:

• the probability that someone with a wage wz is in the top q is

Pr(skill = z|top q) =
`zw

1/α∗net
z∑

v `vw
1/α∗net
v

;

• the share of labor income relative to total income held by the top q is

E[labor income|top q]

E[income|top q]
= (1− α∗net)qα

∗
net

∑
z `zw

1+1/α∗net
z(∑

z `zw
1/α∗net
z

)1+α∗net
;

• the share of national income held by the top q is

S(q) = Λq1−α∗net ,

where Λ is a constant that depends on the wage distribution.

Proof of Proposition S1. We start by deriving the probability that households with

skill z are among the top q income earners. To save on notation, we do not include asterisks

when denoting steady state objects.

Let y(q) denote the income of the qth higher earner. That is:

Pr(income ≥ y(q)) = q.

By definition, for q < q̄ we have y(q) > maxz wz. We can thus compute y(q) explicitly as

q = Pr(income ≥ y(q)) =
∑
z

`z

(
y(q)

wz

)−1/αnet

,

which implies

y(q) = q−αnet

(∑
z

`zw
1/αnet
z

)αnet

. (S9)
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An application of Bayes’ rule implies

Pr(skill = z|top q) =
`z Pr(income ≥ y(q)|z)∑
v `v Pr(income ≥ y(q)|v)

=
`zy(q)−1/αnetw

1/αnet
z∑

v `vy(q)−1/αnetw
1/αnet
v

=
`zw

1/αnet
z∑

v `vw
1/αnet
v

.

We now turn to the share of labor income at the top of the income distribution. The

expected labor income for households at the top q is given by

E[labor income|top q] =
∑
z

wz Pr(skill = z|top q) =
∑
z

`zw
1+1/αnet
z∑

v `vw
1/αnet
v

=

∑
z `zw

1+1/αnet
z∑

z `zw
1/αnet
z

.

The expected income for households at the top q is given by

E[income|top q] =
∑
z

E[income|income ≥ y(q)] Pr(skill = z|top q) =
y(q)

1− αnet
.

Here, we used the fact that E[income|income ≥ y(q)] = y(q)
1−αnet , a well-known property of

Pareto distributions.

It follows that

E[labor income|top q]

E[income|top q]
=

1− αnet
y(q)

∑
z `zw

1+1/αnet
z∑

z `zw
1/αnet
z

= (1− αnet)qαnet
∑

z `zw
1+1/αnet
z(∑

z `zw
1/αnet
z

)1+αnet

Finally, we compute the share of national income earned by the top q. For q ≤ q̄, the

top q earn an income

T (q) = qE[income|top q] =
1

1− αnet
q1−αnet

(∑
z

`zw
1/αnet
z

)αnet

.

It follows that the top q earn a share of national income equal to:

S(q) =
S(q)

S(q̄)
S(q̄) =

T (q)

T (q̄)
S(q̄) =

q1−αnet

q̄1−αnet
S(q̄).

The result in the proposition follows by letting Λ = 1
q̄1−αnet

S(q̄).

D.2 Meade’s Formula about Compositional Effects

Meade (1964, p.34) states equation (12) which links changes in the top q percent income

share to changes in the net capital share αnet. We here provide a quick derivation. As in

Appendix D.1 denote by y(q) the income of the qth highest earner. This income is composed
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of capital income yk(q) and labor income y`(q)

y(q) = yk(q) + y`(q) (S10)

Next denote the corresponding aggregates by Y :=
´ 1

0
y(q)dq, Yk :=

´ 1

0
yk(q)dq and Y` :=´ 1

0
y`(q)dq and the net capital share by αnet = Yk/Y . Dividing (S10) by Y we have

y(q)

Y
= αnet

yk(q)

Yk
+ (1− αnet)

y`(q)

Y`

Therefore the top q percent income share S(q) = y(q)/Y satisfies (12) where S̃k(q) :=

yk(q)/Yk and S̃`(q) := y`(q)/Y` are the shares of aggregate capital income and labor income

earned by the top q percent of the distribution of total income.

E Transitional Dynamics in the Baseline Model

This section describes the full model in a non-stationary environment. Because firms rent

capital from households, the production structure remains unchanged. We therefore focus

on the household problem in a non-stationary environment. The section concludes with the

proof of Proposition S2, which characterizes the transitional dynamics of our model.

E.1 Savings Problem in a Non-stationary Environment

Unlike in the main text, in what follows it will be convenient to keep track of time and

cohorts, rather than time since last dissipation shock. Thus, we use t to denote calendar

time, and b to denote the time at which the wealth of a household was last reset. Also,

define human wealth at time t hz,t for households with skill z as

hz,t :=

ˆ ∞
t

e−
´ s
t rτdτwz,sds.

Lemma S1 implies that the consumption and saving decisions of households solve a variant

of (1) in the main text generalized to a non-stationary environment:

max
{cz,t,b,az,t,b}t≥b

ˆ ∞
b

e−(%+p)(t−b) c
1−σ
z,t,b

1− σ
dt (S11)

s.t. ȧz,t,b = wz,t + rtaz,t,b − cz,t,b, and az,b,b = 0, az,t,b ≥ −hz,t.

Here, cz,t,b and az,t,b denote consumption and assets at time t of a household from the cohort

who experienced their last dissipation shock at time b.

To characterize the solution to the problem in equation (S11), we generalize the definition
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of effective wealth to

xz,t,b := az,t,b + hz,t.

Lemma S2 (Households policy functions outside the steady state) Suppose that rt
converges to r∗ and r∗ > (r∗ − ρ)/σ. The unique interior solution to the household problem

in equation (S11) is given by policy functions that are linear in effective wealth

ẋz,t,b = (rt − µt)xz,t,b, (S12)

cz,t,b = µtxz,t,b,

for t ≥ b, with xz,b,b = hz,b.

Here µt denotes the marginal propensity to consume out of wealth, and satisfies the dif-

ferential equation:

µ̇t
µt

= µt − rt +
1

σ
(rt − ρ) (S13)

Proof. The maximization problem can be rewritten using effective wealth as

max
{cz,t,b,xz,t,b}t≥b

ˆ ∞
t

e−(%+p)(t−b) c
1−σ
z,t,b

1− σ
dt (S14)

s.t. ẋz,t,b = rtxz,t,b − cz,t,b, and xz,t,b ≥ 0

The Hamiltonian associated with this maximization problem is

H(cz, xz, λz) :=
c1−σ
z

1− σ
+ λ(rxz − cz), (S15)

where λz is the co-state for effective wealth.

We show that the unique solution to equation (S12) starting from xz,b,b = hz,b solves the

maximization problem in (A11).

Theorem 7.14 in Acemoglu (2009) implies that this candidate path reaches an optimum

if there exists a co-state variable λz,t,b such that:

1. the path satisfies the restrictions ẋz,t,b = rtxz,t,b − cz,t,b, and xz,t,b ≥ 0;

2. the following necessary conditions hold:

c−σz,t,b =λz,t,b,

ρλz,t,b − λ̇z,t,b =rλz,t,b;

3. the maximized Hamiltonian M(xz, λz) = maxcH(c, xz, λz) is concave in xz along the

candidate path;
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4. the transversality condition holds. That is, for the candidate path, we have

lim
t→∞

e−ρtxz,t,bλz,t,b =0.

and for all other feasible paths, x̂z,t,b, we have

lim
t→∞

e−ρtx̂z,t,bλz,t,b ≥0.

To prove condition 1, note that starting from xz,b,b = hz,b, we will have xz,t,b ≥ 0 for all

t ≥ b. Moreover, for any path satisfying equations (A13) the flow budget constraint holds:

rtxz,t,b − cz,t,b =rtxz,t,b − µtxz,t,b
=(rt − µt)xz,t,b
=ẋz.

To prove condition 2, define λz,t,b := µ−σt x−σz,t,b > 0. By construction, c−σz,t,b = λz,t,b.

Moreover:

ρλz,t,b − λ̇z,t,b =ρµ−σt x−σz,t,b + µ−σt σxz(s)
−σ−1ẋz − σµ−σ−1

t µ̇tx
−σ
z,t,b

=λz,t,b

(
ρ+ σ

ẋz,t,b
xz,t,b

+ σ
µ̇t
µt

)
.

Using the equations for ẋz,t,b (equation (A13)) and µ̇z,t,b (equation (S13)), we obtain:

ρλz,t,b − λ̇z,t,b = λz,t,b

(
ρ+ σ(rt − µt) + σ

(
µt − rt +

1

σ
(rt − ρ)

))
= rtλz,t,b

To prove condition 3, note that

max
c
H(c, xz, λz) =

λ
σ−1
σ

z

1− σ
+ λz(rxz − λ

− 1
σ

z ),

which is concave (linear) in xz.

To prove the first part of condition 4, note that along the candidate path, xz grows

asymptotically at a rate r∗−ρ
σ

, and λz,t,b at a rate ρ − r∗ (µt converges along the candidate

path). It follows that the first part of the transversality condition holds if

−ρ+
r∗ − ρ
σ

+ ρ− r∗ < 0,

which is equivalent to the condition r∗ > (r∗ − ρ)/σ.

The second part of the transversality condition follows from the fact that, along any

feasible path, we have x̂z,t,b ≥ 0.
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It follows that the candidate path provides optimal paths for consumption and asset

accumulation outside of the steady state.

E.2 The Transition of Aggregates and Distributions

The following proposition characterizes the transition dynamics for the macroeconomic ag-

gregates and the distribution of effective wealth. As for the steady state equilibrium, the

transition dynamics are block recursive: we can first characterize the behavior of macroeco-

nomic aggregates and then use them to trace the evolution of the wealth distribution.

Proposition S2 (Transitional dynamics) The behavior of the macroeconomic aggregates,

C and K is given by the unique stable solution to the system of differential equations

Ċ =
1

σ
(r − ρ)(C − pK)− µpK + pK̇

K̇ =Y − δK − C,
µ̇

µ
=µ− r +

1

σ
(r − ρ)

where µ denotes the rate at which households consume their effective wealth (to simplify

notation, we removed the time dependence of aggregates). Also, recall that Y is given by

Y (K) in equation (2) and r is given by Y ′(K)− δ
Along the transition path, households accumulate effective wealth at a rate rt− µt, which

implies that the distribution of effective wealth for households with skill z, fz(x, t) evolves

according to the Kolmogorov Forward Equation

∂fz(x, t)

∂t
= − ∂

∂x
[(rt − µt)xfz(x, t)]− pfz(x, t) + p℘(x− hz,t) (S16)

where ℘(.) is the Dirac delta function, and hz,t is a time-varying reinjection point.

Proof. We start by deriving the equation for Ċ. Aggregate consumption is given by

Ct =
∑
z

`z

ˆ t

−∞
cz,t,bpe

−p(t−b)`zdb+ pKt.

Here, pe−p(t−b) is the mass of households with skill z at time t who received their last

dissipation shock at time b. The term pKt is the flow consumption of households in the

impatience state, which was derived in Lemma S1.
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Differentiating this equation, we obtain

Ċt =
∑
z

`z

ˆ t

−∞
ċz,t,bpe

−p(t−b)db+ pK̇t

+ p
∑
z

`zcz(t, t)− p
∑
z

`z

ˆ t

−∞
cz,t,bpe

−p(t−b)db.

These terms can be simplified as follows. The first term captures consumption growth over

time. Using households’ Euler equation, we can rewrite this term as

∑
z

`z

ˆ t

−∞
ċz,t,bpe

−p(t−b)db =
∑
z

`z

ˆ t

−∞

rt − ρ
σ

cz,t,bpe
−p(t−b)db

=
rt − ρ
σ

(Ct − pKt).

The third and fourth term capture the permanent decline in consumption due to the

dissipation of wealth at time t. This is equal to pµtKt, which gives the product of the rate at

which households consume their wealth and pKt, which denotes the total wealth dispersed.

Plugging these simplified values in the expression for Ċ, we obtain

Ċt =
rt − ρ
σ

(Ct − pKt) + pK̇t − pµtKt.

The equation for K̇ is the usual resource constraint, and the equation for µ̇ was derived

above in Lemma S2.

Turning to the distribution of effective wealth, the Kolgomorov Forward Equation (S16)

follows from the fact that households accumulate effective wealth at a rate rt − µt (an

implication of Lemma 1) but experience a dissipation shock with probability p. After these

shocks, households’ effective wealth jumps to hz,t.

The proposition shows that the transition dynamics for aggregates are no more compli-

cated than those in the usual representative household model. The main difference is that we

need to keep track of the extra variable µt, which controls the common marginal propensity

to consume out of effective wealth. Also, the Euler equation has some extra terms to account

for the changes in consumption due to dissipation shocks.

Turning to the evolution of the wealth distribution, suppose the initial distribution of

effective wealth conditional on skills is given by

Pr(xz,t0 > x) =

(
x

w∗z,t0/r
∗
t0

)−ζ
, (S17)

as in Proposition 3. Here, xz,t0 is a random variable denoting the effective wealth of house-

holds with skill z.
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Following an increase in automation at time t = t0, households with skills z and effective

wealth xz,t0 see a revaluation of their human wealth of ∆z (this could be negative for house-

holds experiencing a real decline in wages over time). This implies that the distribution of

xz, denoted by fz(x, t), starts from

fz(x, t0) =

(
w∗z,t0
r∗t0

)ζ
ζ(x−∆z)

−ζ−1 for x ≥
w∗z,t0
r∗t0

+ ∆z.

and from there on evolves according to the Kolgomorov Forward Equation (S16).

E.3 Wealth Distribution in the Representative Household Bench-

mark

This subsection characterizes the dynamics of the wealth and income distribution in the

representative-household benchmark. We will use a superscript h to denote the correspond-

ing values of aggregates and to distinguish them from the aggregate paths for wages and

interest rates in our model with dissipation shocks.

In the representative-household benchmark, the wealth distribution is indeterminate in

the sense that any distribution is consistent with equilibrium in steady state. Despite the

indeterminacy, starting from a given initial distribution of wealth and wages, the transition

dynamics of the wealth distribution are uniquely defined.

To make things comparable, assume as in the main text that the initial distribution of

effective wealth is given by (S17), and coincides with that in our model with dissipation

shocks. Following an increase in automation at time t = t0, households with skills z and

effective wealth xz,t0 see a revaluation of their human wealth of ∆h
z (this will differ from

the revaluation in our model since wages behave differently in the representative-household

benchmark—see Proposition 2). People then accumulate assets starting from xz,t0 + ∆h
z at

a common rate rht − µht , which is temporarily above zero but converges to zero over time

(recall that in the representative-household benchmark, rht and µht converge to ρ, reflecting

the fact that the supply of capital is fully elastic). This temporary period of accumulation

scales everyone’s effective wealth by the same amount, M , but does not contribute to thicker

tails in effective wealth. The resulting distribution of effective wealth is thus given by

Pr(xz > x) =

(
x/M −∆h

z

w∗z,t0/r
∗
t0

)−ζ0
, for x ≥M(∆h

z + w∗z,t0/r
∗
t0

).

This is a shifted Pareto distribution, with the shifts explained by the changes in wages.

Unlike in our model, the new steady state distribution has the same tail parameter as the

initial distribution. As usual, the distribution of income then inherits all of the tail properties

of the effective wealth distribution.
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F Additional Derivations and Proofs for the Extended

Model

F.1 Supply and Demand in Extended Model

Note 1: We can describe the balanced-growth equilibrium in Proposition (4) using supply

and demand diagrams for capital normalized by labor income, k, and bonds, bI and bH .

We start with the special case where investors are risk neutral and θ ≥ θ̄ so that financial

frictions do not bind. This implies that all assets yield the same return r and this is also the

return obtained by investors, r∗W = r∗K = r∗B = r. Adding equations (A22) and (A24), and

using the fact that bI +bH = 0, we obtain an expression for the supply of capital (normalized

by labor income):

ks =
1− (ρ+ (σ − 1)g)/(r − g)

σ(p+ g) + ρ− r
. (S18)

On the other hand, equation (A25) gives the demand for capital:

kd =
α̃

1− α̃
1

r + δ
. (S19)

The common return that equalizes supply and demand is given by the solution to (A27),

which generalizes equation (4) in the main text. This return now lies in (ρ+σg, ρ+σ(p+g)).

We now turn to the case where investors are risk averse and/or financial frictions bind.

Combining equations (A22) and (A23), we obtain a curve that describes the capital supplied

by investors for a given level of the return to their wealth rW and the bond rate rB:

ks =
pσm(rW − rB)

σ(p+ g) + ρ− rW
1

rB − g
χ.

Using equation (A25), we can write the demand for capital as

kd =
α̃

1− α̃
1

h(rW − rB) + rB + δ

As shown in Figure S1, the supply curve gives an upward-sloping locus between ks and rW ;

while the demand for capital in (A25) gives a downward-sloping locus between kd and rW .

Turning to the bond market, equation (A23) implies that net borrowing by investors is

−bI =
pσ(m(rw − rB)− 1)

σ(p+ g) + ρ− rW
χ+ χ,

which implies that investors borrow more from households as rB declines (reflecting the fact

that investors would like to borrow at the lower rate rB to invest at the higher rate rW ). On
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Figure S1: Depiction of the equilibrium in the capital market.

the other hand, equation (A24) implies that net savings by households are

bH =
rB − ρ− σg

σ(p+ g) + ρ− rB
(1− χ).

which increase in rB, reflecting the fact that a higher safe rate leads to more savings by

households. Figure S2 depicts the equilibrium in the bond market. In this panel, a move-

ment to the right along the horizontal axis indicates higher households savings and more

borrowing by investors. As the diagram shows, the curve describing investors’ borrowing ro-

tates clockwise as they become more risk averse, and the interception of these curves yields

an equilibrium bond rate r∗B.

Figure S2: Depiction of the equilibrium in the bond market.

The proposition ensures the existence of r∗W , r
∗
B such that the capital market clears (kd =
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ks) and the bond market clears (bI + bH = 0).45 Moreover, as apparent from the figures (and

as was the case in our baseline model), we always have that r∗W ∈ (ρ+σg, ρ+σ(g+p)), which

shows that the equilibrium return to wealth exceeds its level in a representative household

economy. Moreover, we always have r∗W ≥ r∗B, with equality if and only if investors are risk

averse and θ ≥ θ̄, so that the max-leverage line is sufficiently to the right.

Note 2: Alternatively, we can assume that bond markets are open, so that rB is fixed

in international markets at a level r̄B, with

g < r̄B < ρ+ σ(p+ g).

In this case, a balanced-growth equilibrium is characterized by constant values for rW , k, bI , bH
that solve equations (A22), (A23), (A24) and (A25), and where bI + bH determines whether

the economy lends to or borrows from the rest of the world.

In this case, we have that the equilibrium is given by

DK(r∗W , r̄B) = 0.

Lemma A3 implies that, for any r̄B ∈ (g, ρ + σ(p + g)), there is a unique solution r∗W to

this equation. This shows that the equilibrium exists and is unique. Moreover, as the figure

shows, r∗W > r̄B and r∗W ∈ (ρ+ σg, ρ+ σ(p+ g)).

In the open economy, the demand and supply of capital remain unchanged, with the

only difference that now rB = r̄B is exogenous and determined in international markets. For

values of r̄B that are above the closed economy level of r∗B, households will lend money to

the rest of the world. Instead, for values of r̄B that are below the closed economy level of

r∗B, both households and investors will borrow from foreigners at the low international rate.

F.2 Proof of Lemmas A3 and A4

Proof of Lemma A3. For rW ∈ (g, ρ+σ(p+g)) and rB ∈ (g, rW ), the function DK(rW , rB)

is continuous and decreasing in rW and continuous and increasing in rB. To prove the last

claim, note that it is sufficient to show that

rB − g
h(rW − rB) + rB + δ

45Proposition 4 claims the existence of an equilibrium in the closed economy, but does not show it is
unique. Proving uniqueness here is challenging because the excess demand functions for capital and bonds
do not satisfy the gross substitutes property. This reflects the fact that changes in rB could lead investors
to supply more capital as they accumulate higher levels of wealth; and changes in rW could also increase the
demand for bonds when investors are risk averse.
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is increasing in rB. We can rewrite this fraction as

1

h(rW − rB)

rB − g
+ 1 +

g + δ

rB − g

,

which is clearly increasing in rB since the function h is non-negative and increasing and

rB − g > 0.

Moreover, for any rW ∈ (g, ρ + σ(p + g)), there is a unique rB ∈ (g, rW ) that satisfies

DK(rW , rB) = 0. To see this, note that

DK(rW , g) < 0 and DK(rW , rW ) > 0.

The intermediate value theorem then implies the existence of a unique point rB ∈ (g, rW )

that satisfies DK(rW , rB) = 0.

Taking these observations together, the implicit function theorem implies that the equa-

tion DK(rW , rB) = 0 defines a continuous and increasing locus for rW ∈ (g, ρ + σ(p + g))

and rB ∈ (g, rW ), as claimed in the lemma.

To prove property 1, note that for rB = g, we have

DK(rW , g) = − pσm(rW − g)

σ(p+ g) + ρ− rW
χ,

and DK(rW , g) = 0 then requires rW = g.

To prove property 2, take limits as rW ↑ ρ+ σ(p+ g). If rB 9 ρ+ σ(p+ g), we have

lim
rw↑ρ+σ(p+g)

DK(rK , rW ) = −∞.

Thus, we must have rB → ρ+ σ(p+ g) as claimed.

Proof of Lemma A4. For rB ≤ ρ+ σ(p+ g), the function DB(rW , rB) is continuous and

decreasing in rB. On the other hand, for rW ∈ [rB, ρ+ σ(p+ g)), the function DB(rW , rB) is

continuous and u-shaped: it first decreases in rW and could become increasing afterwards.

Moreover, for any rW ∈ (ρ + σg, ρ + σ(p + g)), there is a unique rB < rW that satisfies

DB(rW , rB) = 0. To see this, note that

lim
rB→−∞

DB(rW , rB) =
pσθ/(1− θ)

σ(p+ g) + ρ− rW
χ+ χ > 0,

and

lim
rB→∞

DB(rW , rW ) =
σg + ρ− rW

σ(p+ g) + ρ− rW
< 0.

The intermediate value theorem then implies the existence of a unique point rB < rW that
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satisfies DB(rW , rB) = 0.

Taking these observations together, the implicit function theorem implies that the equa-

tion DB(rW , rB) = 0 defines a continuous and initially decreasing locus for rW ∈ (ρ+σg, ρ+

σ(p+ g)) and rB < rW , as claimed in the lemma.

We now turn to properties 1 and 2. Property 1 follows from the fact that

DB(ρ+ σg, ρ+ σg) = 0.

For property 2, take limits as rW ↑ ρ+ σ(p+ g). If m(rw − rB) 9 1, we have that

DB(ρ+ σg, rB) = ±∞.

Thus, as rW ↑ ρ+ σ(p+ g), we must have that m(rw − rB)→ 1. In particular, this requires

that rB → r̃B. To see this, note that

m(rw − rB)→ 1⇔ rK − rB = γν2.

The definition of rW implies that

rW − r̃B =
1

2
(σ + 1)γν2.

Substituting rW = ρ+ σ(p+ g) and solving for r̃B, yields the formula for r̃B in the lemma.

We conclude with property 3. First, define

r̆B = ρ+ σg + pσχ.

we now show that along the locusDB(rW , rK), m(rw−rB) > 1 for rB > r̆B andm(rw−rB) < 1

for rB < r̆B, with equality if and only if rB = r̆B. To show this, note that

DB(rW , r̆B) =
pσ(m(rW − rB)− 1)

σ(p+ g) + ρ− rW
χ.

Because the function DB(rW , rB) is decreasing in rB, we have that for all points rB > r̆B
along the locus DB(rW , rB) = 0,

0 = DB(rW , rB) <
pσ(m(rW − rB)− 1)

σ(p+ g) + ρ− rW
χ,

which implies m(rW−rB) > 1. Likewise, for all points rB < r̆B along the locus DB(rW , rB) =

0,

0 = DB(rW , rB) >
pσ(m(rW − rB)− 1)

σ(p+ g) + ρ− rW
χ,
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which implies m(rW − rB) < 1. Clearly, equality holds if and only if rB = r̆B.

Moreover, suppose that the locus DB(rW , rB) = 0 contains r̆B. For rB > r̆B, we have

that m(rW − rB) > 1, which implies that DB(rW , rB) is increasing in rW and the locus

DB(rW , rB) = 0 is upward-sloping from r̆B onwards.

We now consider the two cases identified in the lemma. Suppose that γν2 > γ̄. This

necessarily implies that r̆B > r̃B. Because the locus ∆B(rW , rB) = 0 is u-shaped and both

extremes are below r̆B, the entire locus lies below r̆B and for all points along this locus we

have m(rW − rB) < 1.

To show that rW − rB increases along this locus as we raise rW , we proceed by contra-

diction. Suppose that this is not the case, then for two points (r′W , r
′
B) and (r′′W , r

′′
B) with

r′′W > r′W along this locus, we have m(r′W − r′B) = m(r′′W − r′′B) = m0 ∈ (0, 1), which also

requires r′W − r′B = r′′W − r′′B = d0. It follows that both of these points satisfy the equation

DB(rW , rB) = 0, which can be written as

pσ(m0 − 1)

σ(p+ g) + ρ− rW
χ+ χ− rW − d0 − ρ− σg

σ(p+ g) + ρ− rW + d0

(1− χ) = 0.

This equation is strictly decreasing in rW for rW ∈ (ρ+σg, ρ+σ(p+g)), and so it cannot hold

for two different values of rW . This contradiction establishes the claim that, for γν2 > γ̄,

rW − rB rises along the locus for DB(rW , rB).

Finally, suppose that γν2 < γ̄, which implies that r̃B > r̆B > ρ + σg. In this case r̃B
lies in the locus DB(rW , rB). The exact same argument presented above implies that, for

rW ∈ (ρ+σg, r̆W ), the gap rW−rB widens as we increase rW along the locus ∆B(rW , rB) = 0.

We now show that the gap rW − rB is single peaked for rW ∈ (r̆W , ρ + σ(p + g)). As

shown above, for rW ∈ (r̆W , ρ + σ(p + g)), we have that m(rW − rB) > 1 (and hence

rW − rB > 1
2
(σ+ 1)γν2) along the locus ∆B(rW , rB) = 0. Because m(rW − rB) > 1, we must

have that rB > ρ+ σg for rW ∈ (r̆W , ρ+ σ(p+ g)); otherwise, DB(rW , rB) > 0.

Recall that as rW ↑ ρ+σ(p+g), we have that rB → r̃B and rW −rB → 1
2
(σ+1)γν2 along

the locus ∆B(rW , rB) = 0. Thus, the gap rW − rB reaches at least one peak at some point

rW ∈ (r̆W , ρ+σ(p+ g)). Suppose by way of contradiction, that the gap rW − rB is not single

peaked in this interval, as claimed in the lemma. Then it must have at least two peaks. This

implies the existence of three points (r′W , r
′
B), (r′′W , r

′′
B) and (r′′′W , r

′′′
B) along this locus and with

m(r′W −r′B) = m(r′′W −r′′B) = m(r′′′W −r′′′B) = m0 > 1, and r′W −r′B = r′′W −r′′B = r′′′W −r′′′B = d0.

However, in each of this points, we must have DB(rW , rB) = 0, which requires

pσ(m0 − 1)

σ(p+ g) + ρ− rW
χ+ χ− rW − d0 − ρ− σg

σ(p+ g) + ρ− rW + d0

(1− χ) = 0.

This is a quadratic equation in rW and so it has at most two solutions, contradicting our

initial assertion, and showing that rK − rB is single peaked for rW ∈ (r̆W , ρ+ σ(p+ g)).
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F.3 Wealth and Income Distribution in the Extended Model

Proposition 4 and A1 characterized the distribution of effective wealth and the tail of the

income distribution. A complete analytic characterization of the income distribution is no

longer feasible in the extended model. This appendix shows how to partially characterize

and numerically compute the income distributions, e.g. so as to construct Figure 10.

The flow of income over a small time interval of length dt received by an investor with

wealth xz,t is given by

dyz,t = rIxz,tdt+ σyxz,tdWt, (S20)

where rI = κrK + (1 − κ)rB and σy = κν. Likewise, the flow of income received by a

household with normalized wealth xz,t is given by

ẏz,t = rBxz,t. (S21)

The objective is to approximate the income received over a small time period.

We say that a function Xt is of the order of f(t) as t → 0 if there exists a constant

M such that, for t → 0, |Xt| < Mf(t). Likewise, we say that a random variable Xt is of

the order of f(t) as t → 0 if E[X2
t ] is of the order of f(t)2 as t → 0. We use the notation

At = Bt +O(f(t)) as t→ 0 to indicate that At −Bt is of the order of f(t) as t→ 0.

The definition for Xt being of the order of f(t) as t → 0 implies that: i. the mean and

standard deviation of Xt are also of the order of f(t); and ii. for any ε > 0 there exists an

Mε such that Pr(Xt > Mεf(t)) < ε as t → 0. That is, Xt tends to be below Mεf(t) with

probability converging to 1.

To show this, define µt = E[Xt] and let σ2
t = E[(Xt − µt)2] denote the variance of Xt.

For (i), note that E[X2
t ] = µ2

t + σ2
t ≥ µ2

t . Because E[X2
t ] is of the order of f(t) as t → 0,

there exist a constant M such that Mf(t)2 > E[X2
t ] = µ2

t + σ2
t ≥ µ2

t , σ
2
t as t → 0. These

inequalities imply that µt and σt are also of the order of f(t) as t→ 0.

For (ii), we use an application of Chebyshev’s inequality:

Pr(Xt > µt +Nσt) <
1

N2
.

In particular, because µt and σt are of the order of f(t) as t→ 0, for any ε > 0, there exists

a constant Mε such that Mεf(t) > µt + ε−1/2σt as t → 0. Chebyshev’s inequality (applied

with N = ε−1/2) then implies

Pr(Xt > Mεf(t)) < Pr
(
Xt > µt + ε−1/2σt

)
< ε as t→ 0.

The derivation of our approximation result also uses the following technical lemma:

Lemma S3 Let Xt be an stochastic process adapted to the natural filtration of te Brownian

motion Wt. If Xt is of the order of tk as t→ 0, then:
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i.
´ t

0
Xsds is of the order of tk+1 as t→ 0;

ii.
´ t

0
XsdWs is of the order of tk+1/2 as t→ 0.

Intuitively, the lemma says that integrating with respect to time over [0, t] is “as if” we

multiplied the order of the variable by t; whereas integrating with respect to dWs over [0, t]

is “as if” we multiplied the order of the variable by
√
t—the order of Wt.

Proof. For (i), we have

E

[(ˆ t

0

Xsds

)2
]
≤ tE

[ˆ t

0

X2
sds

]
= t

ˆ t

0

E
[
X2
s

]
ds ≤Mt

ˆ t

0

s2kds =
M

2k + 1
t2k+2 as t→ 0

The first inequality follows from Cauchy-Schwarz. The second one from the fact that Xs is

of the order of tk. This sequence of inequalities shows that
´ t

0
Xsds is of the order of tk+1 as

t→ 0.

For (ii) we have that
´ t

0
XsdWs is a random variable with mean 0 (since Xs is adapted

and thus orthogonal to dWs) and variance E
[´ t

0
X2
sds
]

(a result of Ito’ Isometry). Moreover:

E
[ˆ t

0

X2
sds

]
=

ˆ t

0

E
[
X2
s

]
ds ≤M

ˆ t

0

s2kds =
M

2k + 1
t2k+1 as t→ 0.

It follows that the variance of the random variable
´ t

0
XsdWs is of the order of t2k+1 as t→ 0

and so the random variable
´ t

0
XsdWs is of the order of tk+1/2 as t→ 0.

The following lemma provides our main approximation result for the income received by

households over one unit of time.

Lemma S4 Let yz,t denote the total income received by an investor between time 0 and t.

We have that

yz,t ≈ xz,0 (rIt+ σyWt) . (S22)

More precisely,

yz,t = xz,0 (rIt+ σyWt) +O(max{σyt3/2, rIt2, σ2
yt}) as t→ 0.

Likewise, let yz,t denote the total income received by a household between time 0 and t.

We have that

yz,t ≈ xz,0rBt. (S23)

The interpretation of the Lemma is that we can obtain a good approximation to the income

generated by an asset between s = 0 and s = t simply from the asset return (e.g. rIt+σyWt
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in the case of investors) and the initial asset balance xz,0 while one can ignore changes in

the asset balance xz,s between s = 0 and s = t. The following example helps clarify: an

asset pays a return of r = 5% that accrues continuously over the year. With an initial

asset balance of $100 the total capital income generated throughout the year will not just

be 5% × $100 = $5 but instead it will be larger than $5. This is because the asset balance

which is the basis of the return itself increases throughout the year. However, the Lemma

shows that 5%×$100 = $5 provides a good approximation to overall capital income, i.e. the

effect we just described has only a small effect. In particular, the following upper bound on

the approximation error is easy to see: the asset balance could increase from $100 to $105.

But then capital income would still be only 5%× $105 = 5.25% i.e. only 0.25% = 5%× 5%

larger than the approximate capital income of 5%× $100 = $5.

Proof. We provide the proof for the case of investors. The approximation used for house-

holds then follows as a corollary. Throughout the proof we will ignore the subscripts z and

I to simplify notation.

Ito’s lemma applied to the log of investors’ wealth implies that

d lnxt =

(
µ−

σ2
y

2

)
dt+ σydWt.

Integrating this expression in [0, t] implies

lnxt − lnx0 =

(
µ−

σ2
y

2

)
t+ σyWt,

and so investor’s wealth satisfies

xt = x0 exp

((
µ−

σ2
y

2

)
t+ σyWt

)
(S24)

and income over a period [0, t] is given by

yt =

ˆ t

0

rx0 exp

((
µ−

σ2
y

2

)
s+ σyWs

)
ds+

ˆ t

0

σyx0 exp

((
µ−

σ2
y

2

)
s+ σyWs

)
dWs

(S25)

We can expand exp
((
µ− σ2

y

2

)
t+ σyWt

)
using a Taylor expansion as

exp

((
µ−

σ2
y

2

)
t+ σyWt

)
= 1 + σyWt +O(t) as t→ 0.

Note that Wt is of the order of
√
t since its variance is t. Note also that the residual term

O(t) is adapted to the natural filtration of Wt (it is a function of Wt in this case).
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Plugging this approximation in equation (S25), we obtain

yt =

ˆ t

0

rx0 (1 + σyWs +O(s)) ds+

ˆ t

0

σyx0 (1 + σyWs +O(s)) dWs

=x0 (rt+ σyWt) +ˆ t

0

rx0σyWsds+

ˆ t

0

rx0O(s)ds+

ˆ t

0

σ2
yx0WsdWs +

ˆ t

0

σyx0O(s)dWs as t→ 0.

Using Lemma S3, we can bound these integrals as

ˆ t

0

rx0σyWsds =O(σyt
3/2) as t→ 0

ˆ t

0

rx0O(s)ds =O(rt2) as t→ 0

ˆ t

0

σ2
yx0WsdWs =O(σ2

yt) as t→ 0

ˆ t

0

σyx0O(s)dWs =O(σyt
3/2) as t→ 0.

These bounds imply that yt = x0 (rt+ σyWt) +O(max{σyt3/2, rt2, σ2
yt}) as t→ 0.

We now use Proposition A1 and S4 to characterize an approximate income distribution.

This proposition provides all of the formulas used in the construction of Figure 10.

Proposition S3 The CDF of income received over one unit of time for households with

wage wz can be approximated as

Gz,H(y) :=

 1−
(

y
wz

)−ζH
for y ≥ wz

0 for y < wz
, (S26)

and its PDF is

gz,H(y) :=

 ζH
wz

(
y
wz

)−ζH−1

for y ≥ wz

0 for y < wz
, (S27)

The CDF of income received over one unit for investors with wage wz can be approximated

as

Gz,I(y) := 1−
ˆ ∞

0

fH(x)

(
1− Φ

(
1

σy

(
y/x

wz/rB
− rI

)))
dx, (S28)

and its PDF is

gz,I(y) :=

ˆ ∞
0

fH(x)φ

(
1

σy

(
y/x

wz/rB
− rI

))
1

σy

1/x

wz/rB
dx, (S29)
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Moreover, the unconditional CDF of income satisfies

G(y) = χ
∑
z

`zGz,I(y) + (1− χ)
∑
z

`zGz,H(y), (S30)

and its PDF is

g(y) = χ
∑
z

`zgz,I(y) + (1− χ)
∑
z

`zgz,H(y), (S31)

Finally, the labor income of people with an income y is given by

w(y) =
χ
∑

z wz`zgz,I(y) + (1− χ)
∑

z wz`zgz,H(y)

g(y)
. (S32)

Proof. Lemma S4 implies that we can approximate the income received by households over

one unit of time as yz,1 ≈ xz,0rB. Thus, we can compute the probability that a household

with wage wz has an income above y as

Pr(income ≥ y|household, wz) = Pr(xz,0rB ≥ y|household, wz)

= Pr(xz,0 ≥
y

rB
|household, wz)

= Pr(x̃z,0 ≥
y

wz
|household, wz)

=

(
y

wz

)−ζH
for y ≥ wz.

This implies that Gz,H(y) is given by the expression in equation (S26), and its associated

PDF is given by (S27).

Likewise, Lemma S4 implies that we can approximate the income received by investors

over one unit of time as

yz,1 ≈ xz,0 (rI + σyW1) .

Thus, we can compute the probability that an investor with wage wz has an income above

y as

Pr(income ≥ y|investor, wz) = Pr
(
xz,0 (rI + σyW1) ≥ y

∣∣investor, wz
)

= Pr

(
x̃z,0 (rI + σyW1) ≥ y

wz/rB

∣∣∣∣∣investor, wz

)

=

ˆ ∞
0

fH(x) Pr

(
W1 ≥

1

σy

(
y/x

wz/rB
− rI

) ∣∣∣∣∣x̃z,0 = x, investor, wz

)
dx

=

ˆ ∞
0

fH(x)

(
1− Φ

(
1

σy

(
y/x

wz/rB
− rI

)))
dx.
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This implies that Gz,I(y) is given by the expression in equation (S28), and its associated

PDF is given by (S29).

Finally, the formulas in (S30) and (S31) follow from adding up the conditional distribution

of income over skills and investors and households. The formula for the wage income for

people with total income y follows from an application of Bayes’ rule.

Construction of Figure 10. To construct Figure 10, we proceed as follows:

• First, we use equation (S30) to compute income quantiles yt(q) as

Gt(yt(q)) = q

both for the initial steady state (denoted by t = 0) and the final steady state (denoted

by t = T ).

• Second, we compute the labor income and capital income earned in each quantile,

y`,t(q) and yk,t(q), respectively, as

y`,t(q) =wt(yt(q)) yk,t(q) =yt(q)− wt(yt(q))

where wt(yt(q)) was defined in (S32).

• Third, we compute the change in income by quantile as

yT (q)− y0(q)

y0(q)
,

which can be decomposed into a part driven by labor income

y`,T (q)− y`,0(q)

y0(q)
,

and a part driven by capital income

yk,T (q)− yk,0(q)

y0(q)
.

Figure 10 plots the total change in income by quantile and the contribution of labor

and capital income.

• Finally, the figure also plots the change in income by quantile in the representative-

household benchmark. Appendix E explains how we computed the evolution of the

income distribution in this case.
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G Calibration Details

This appendix presents details of the calibration exercise.

G.1 Wage data

We compute hourly wages for 1990 using the 1990 Census and for 2014 using the 2012–2016

American Community Survey. We keep the sample of salaried workers between 25 and 54

years of age living in continental US. Following common practice in the literature, we replace

top coded wage income by 1.5 times the top code. We compute hourly wages by dividing

wage income by hours per week times weeks worked. We then converted hourly wages to

2007 dollars using the personal consumption expenditure index, from the BEA. Finally, we

winsorized hourly wages between 2 and 180 dollars.

We then computed average wages for workers in each of the 100 wage percentiles. When

computing these averages, we weight observations by the Census or ACS weight times total

hours of labor supplied, so that we obtain the average hourly wage for workers in each

percentile.

Due to changes in the amount of wage data top coded, the data for the top 1 percentile

exhibits visible discontinuities over time. We address this issue by fitting a log linear model

for log wages as a function of the rank, using the fitted regression to impute the mean wage

for the top 1 wage earners. We estimate this model for the percentiles above the 90th percent,

exploiting the fact that the top tail of wages has an approximate Pareto shape.

Finally, in Figure 9 (and only for this figure) we smooth the observed change in wages

by taking a moving average over consecutive bins over 10 percentiles.

G.2 Calibration of αz,t

As explained in the main text, we make three assumptions:

A1 the patterns of relative specialization ωRz vary little over time and can be approximated

by their value in the year 2000;

A2 in 1980, a common share α0 of routine and non-routine tasks were automated;

A3 over time, the share of routine tasks that is automated is common across skill groups

and given by αRt , with αR1980 = α0.

Equation (18) can be derived as follows. Let ω̄Rz,t denote the share of wage income earned

by workers with skill z in routine jobs at time t.

Let wRz,t denote the wage income earned by workers with skill z in routine jobs and let

yRz,t denote the value added generated in those jobs. Let wNz,t denote the wage income earned

by workers with skill z in non-routine jobs and let yNz,t denote the value added of those jobs.
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Assumptions A2 and A3 imply that we can write

1

1− αz,t
=

yRz,t + yNz,t
wRz,t + wNz,t

= ω̄Rz,t
1

1− αRt
+ (1− ω̄Rz,t)

1

1− α0

.

This equation can be rewritten as

1

1− αz,t
= ω̄Rz,t

(
1

1− αRt
− 1

1− α0

)
+

1

1− α0

. (S33)

Let ω̄R,t denote the share of wage income derived from routine jobs across all workers.

We also have

1

1− αt
=

∑
z y

R
z,t +

∑
z y

N
z,t∑

z w
R
z,t +

∑
z w

N
z,t

= ω̄Rt
1

1− αRt
+ (1− ω̄Rt )

1

1− α0

.

This equation can be rewritten as

1

1− αt
− 1

1− α0

= ω̄Rt

(
1

1− αRt
− 1

1− α0

)
. (S34)

Combining equations (S33) and (S34), we obtain

1

1− αz,t
=
ω̄Rz,t
ω̄Rt

(
1

1− αt
− 1

1− α0

)
+

1

1− α0

.

Equation (18) in the main text follows from the fact that ωRz =
ω̄Rz,t
ω̄Rt

, and we assumed that

relative specialization does not vary over time.

To operationalize the measurement of αz,t, we compute ωRz using Census data for 2000.46

We keep the sample of salaried workers between 25 and 54 years of age living in continental

US, and we clean wage data in the exact same way as above. Following the literature, we code

an occupation as routine if it is in the top tercile of jobs with the highest routine content

according to O ∗ NET . We define the routine content of an occupation as total routine

inputs minus the average of routine inputs, cognitive inputs, and manual inputs involved

in this job. The construction of these inputs is explained in Acemoglu and Autor (2011)

and available for download from their websites. We also experimented and obtained similar

findings using the classification of occupations as routine and non-routine used in Autor and

Dorn (2013). This classification is based on the Dictionary of Occupational Titles, which

46We measure ωRz using the 2000 Census—a point in the middle of the period we study. In our model, the
composition and specialization patterns of a skill group are assumed invariant. However, in the data, the
composition of workers in a given wage percentile might change over time, as the relative ranking of groups
of workers with different characteristics changes. In our baseline calibration, we used the 2000 values for
ωRz as describing the level of specialization of different groups in routine jobs. We also experimented with
measuring ωRz using the 1980 Census and obtained similar results. The reason is that ωRz is highly correlated
over time (the correlation between the 1980 and 2000 measures is of 0.9714).
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preceded O ∗NET .

G.3 Empirical estimates of the capital-supply elasticity

As mentioned in the main text, an elasticity of capital to rental rates of 50 is large relative

to the available empirical estimates. The following table summarizes our review of the

empirical literature estimating this elasticity. For each paper, we report the implied elasticity

d lnK/dr, which can be directly compared to our calibration target of 50. As is apparent

from our survey, all these estimates put the elasticity below 35, which is much more inelastic

than what our model predicts.

Table S1: Summary of available estimates of the capital-supply elasticity.
Implied

Study What Elasticity? Formula Estimate d lnK/dr Duration Methodology

Wealth Taxation:

Zoutman (2015) Stock of housing and fi-
nancial assets w.r.t tax
on their sum

d log(K)
d log(τ)

-0.045 9 5 Years Quasi experiment - 2001 Dutch
capital tax reform. Response of
households is tracked using panel
data.

Jakobsen et al. (2018) Taxable wealth w.r.t.
net-of-tax rate for the
very rich / moderately
rich

d log(K)
dτ

[-8,-25] [8,25] 8 years Quasi experiment - 1989 wealth
tax reform in Denmark. Diff-in-
diff using variation in tax ceilings
and the tax exemption level.

Brülhart et al. (2017) Semi-elasticity - taxable
wealth (excluding pen-
sions) w.r.t. wealth tax
rate

d log(K)
dτ

[-23,-35] [23,35] - Cross-regional and time variation
in the Swiss wealth-tax system.

Income Taxation:

Kleven and Schultz (2014) Positive taxable capital
income w.r.t. net-of-tax
rate

d log(rK)
d log(1−τ)

[0.1,0.3] [1.25,7.5] 3-7 years Danish tax reforms and full-
population administrative data
since 1980.

G.4 Alternative calibrations

Table S2 summarizes the parameters used in alternative calibrations (top panel), and shows

that our results, such as changes in returns and in top inequality, are robust to different

assumptions about parameter values (bottom panel). Column 1 shows results for a cali-

bration that matches an exposure to risky capital of κ = 1 in 1980. Column 2 shows our

baseline calibration, which matches a value of κ = 1.3 in 1980. Column 3 shows results for

a calibration that matches an exposure to risky capital of κ = 1.5 in 1980. Finally, Column

4 returns to our baseline value for κ but now assumes that investors have low levels of risk

aversion and are instead borrowing constrained. In particular, we assume that investors can

pledge up to a third of their wealth when borrowing (θ = 1/3), which implies κ binds at 1.5

All calibrations deliver a similar increase in the top-tail inequality index 1/ζ from 0.54 to

0.65–0.66.
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Table S2: Alternative calibrations of the extended model

(1) (2) (3) (4)
Constrained

Target κ = 1 Target κ = 1.3 Target κ = 1.5 investors

Risk aversion γ 2 2 2 0.1
Capital risk ν 0.09 0.077 0.067 0.06

Share investors χ 0.063 0.066 0.061 0.045

initial steady state → final steady state

κ 1→ 1.1 1.3→ 1.5 1.5→ 1.7 1.5
rB 4.1%→ 4.2% 4.9%→ 5.2% 5.2%→ 5.5% 4.2%→ 4.4%
rK 6.5%→ 7.0% 6.5%→ 7.0% 6.5%→ 7.0% 6.5%→ 7.4%
rW 7.7%→ 8.8% 8.0%→ 9.2% 8.2%→ 9.4% 7.7%→ 9.0%
1/ζ 0.54→ 0.65 0.54→ 0.65 0.54→ 0.66 0.54→ 0.66

H Measuring Returns to Wealth

This section provides the details behind our measurement of the returns to productive capital

held by corporations and and private (noncorparate) businesses in the US. We compute

these series using annual data from the Integrated Macroeconomic Accounts (IMA) and

the National Income and Product Accounts (NIPA) for 1960–2020. We compute returns to

capital as rK := Yk/K + Πk where Yk is capital income, K is the value of the capital stock

and ΠK is the expected revaluation component (or capital income gains).

Return to capital in non-financial corporate sector: We measure capital income as

net operating surplus (IMA Table S5, Line 10) minus taxes paid by corporations (IMA Table

S5, Line 21) and other transfers (IMA Table S5, Line 22). We measure the stock of capital

held by US corporations by the value of productive assets (IMA Table S5, Line 109). Note

that these values are end-of-period. We adjust for this by using the value of capital from

the previous period adjusted for PCE inflation. Finally, we compute the realized revaluation

component as the ratio of the change in productive capital prices during the year (IMA

Table S5, Line 88) and the lagged stock of productive assets. We compute the expected

revaluation component as the average of the realized term over the 1960–2020 period.

Return to capital in non-corporate sector: To measure capital income, we start from

proprietors’ income (NIPA Table 2.1, Line 9) and adjust this by multiplying it by the capital

share in the corporate sector in NIPA. This is computed as one minus the share of net of tax

corporate income (NIPA Table 1.13, Lines 3 minus Line 9) used for compensating employees

(NIPA Table 1.13, Line 4). This adjustment accounts for the fact that proprietors’ income

mixes labor and capital income, and uses the income split from the corporate sector to

apportion the income in the non-corporate private sector. We measure the stock of capital
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held by US private businesses by the value of their productive assets (IMA Table S3, Line

121). Finally, we compute the realized revaluation component as the ratio of the change in

productive capital prices during the year (IMA Table S3, Line 92) and the lagged stock of

productive assets. We compute the expected revaluation component as the average of the

realized term over the 1960–2020 period.

Adjusting for taxes: We present after-tax returns, which we obtained by applying the

average tax rate paid by households on their income to the returns described above (these

return already account for taxes paid by corporations, but not for taxes paid by equity

owners on their dividends and capital income gains). The average tax rate on income is

computed as personal taxes (NIPA Table 2.1, Line 26) divided by: wages and salaries (NIPA

Table 2.1, Line 26) plus business income (NIPA Table 2.1, Line 9) plus rental and dividend

income (NIPA Table 2.1, Lines 12 and 13).

H.1 Behavior of the income and revaluation component

Our baseline series of returns assume that expected revaluation is equal to the average

realized revaluation over 1960–2020. This choice is motivated by the fact that, relative to

the income component, the revaluation component is highly volatile, with large fluctuations

at high frequencies but no visible trend. Figure S3 illustrates this by plotting both the

income and revaluation components constructed as described above. The different behavior

of the income and revaluation components across these series is due to the fact that the

return to capital computed by Gomme, Ravikumar and Rupert (2011) excludes housing,

which has a more sizable and volatile revaluation component.

Figure S3: Decomposition of the returns to US business capital into an income component
(left panel) and a revaluation component (right panel)
Notes—see Appendix H for data sources and measurement details.
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H.2 Measuring κ

Suppose that there are two types of households in the economy, investors and (the remaining)

households. Let K denote the total capital stock, which is financed through equity E (EI
owned by investors and EH by households) and debt issuance D (DI held by investors and

DH by households). Suppose there is also a government that supplies B of safe bonds to the

market (BI held by investors and BH by households). Furthermore, households and investors

can lend directly to each other, and we denote the loans from households to investors by LI
and the loans from investors to households by LH .

Investors’ own a total amount of business capital given by:

KI = share of equity held by investors× firms’ assets =
EI

EI + EH
(EI + EH +DI +DH) .

It follows that investors’ ownership of business capital relative to their net worth is:

κ =

EI
EI+EH

(EI + EH +DI +DH)

EI +DI +BI + LH − LI
,

which corresponds to the formula given in the main text.

In the DINA, we use various definitions of investors, including households in the top

1% (10%, 0.1%) of the income distribution. We then measure the components for the two

groups I,H as follows (original variable names in italics): E: equity and business assets

(hwequ + hwbus); D: currency, deposits, bonds and loans minus municipal bonds, currency

and money market and bond funds (hwfix - muni - currency - mmbondfund); B: municipal

bonds, currency and money market and bond funds (muni + currency + mmbondfund); L:

non-mortgage debt (nonmort).

In the DFA, we define the investors as households in the top 1% of the net worth and

of the income distributions. We then measure the components for the two groups I,H as

follows: E: corporate equities and mutual fund shares plus equity in noncorporate business;

D: corporate and foreign bonds plus time deposits and short-term investments; B: US

government and municipal bonds, and money market funds shares; L: loans liabilities minus

home mortgages minus consumer credit.

Figure S4 shows the resulting series for κ for various definitions of the investors group

and across sources. The right hand panel shows the respective estimates for κ excluding the

holdings of government bonds in investors’ portfolios.

H.3 Return to US Equity

We compute returns to equity as rE := d + Πv where d is the dividend yield and Πv are

expected capital income gains due to changes in market valuation. We measure the return

to equity on US corporations (which accrues to US households investing at home but also to
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Figure S4: Estimates of κ—business capital controlled by investors divided by their net
worth. The right panel shows series for κ that excludes government bonds from our calcu-
lation.

non-US households investing in the US) and the return to equity obtained by US households

from investing in the stock market and mutual funds (which might include equity abroad as

well as bonds held by mutual funds).

Return to equity for US non-financial corporate sector: The dividend yield is com-

puted as dividends (IMA Table S5, line 17) over the lagged market value of equity (IMA

Table S5, line 156). Realized capital gains are given by changes in the market value of equity

due to prices (IMA Table S5, lines 102 and 103) over the lagged market value of equity.

Return to corporate equity for US households: The dividend yield is computed as

dividend income (NIPA Table 2.1, line 15) over the lagged market value of corporate equity

held by US households directly or via mutual funds (IMA Table S3, line 118 and 119).

Realized capital gains are given by changes in the market value of equity due to prices (IMA

Table S3, lines 90 and 91) over the lagged market value of corporate equity held by US

households.

Average return to equity for US households: We also computed the return to both

private and corporate equity obtained by US households. The income component is com-

puted as dividend income plus the adjusted proprietors’ income described above (NIPA Table

2.1, line 15 and an adjusted version of Line 9) over the lagged market value of equity held by

US households directly or via mutual funds (IMA Table S3, line 118, 119, and 121). Realized

capital gains are given by changes in the market value of equity due to prices (IMA Table

S3, lines 90, 91, and 92) over the lagged market value of equity held by US households.
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Results: Figure S5 plots different estimates for returns to equity. The panels differ in

the treatment of the expected capital gains term. The left panel plots the dividend yield

only. The middle panel adds to it the expected capital gain assuming that it is equal to the

average realization of the change in stock prices for the next 10 years. Effectively, this is

the realized return of holding equity for 10 years. The right panel plots a measure of actual

yearly realized returns, using actual revaluations observed in the data. Overall, the dividend

yield declines since the highs recorded in the 80s, but is stable over the longer period since

1960s. The Figure also documents the significant volatility of the actual revaluations.

Figure S5: Estimates of rE—return to equity.

I Decomposing Percentile-Specific Income Growth

I.1 Measuring capital and labor income using the DINAs

The Distributed National Accounts (DINAs) combine individual level tax and survey data

with national accounts in an effort to create a set of distributional accounts that fully account

for national income and wealth (PSZ, 2018). PSZ have released annual public use micro-files

of the DINAs, which build heavily on the IRS PUFs. A core advantage of the former over the

latter is that the income and wealth items reported in the DINAs aggregate up to national

accounts as opposed to taxable personal income only. This is especially important given

the increasing importance of non-pecuniary benefits such as employer based healthcare and

non-taxable income such as pensions. We choose 2012 as the final year of our analysis as

the underlying tax records end in 2012 as well.
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Our primary measure of individual income in the DINA is “pre-tax national income”

(peinc) , which is composed of factor income from labor and capital as well as the primary

surplus of the pension system and non-profit sector. Note that the surplus might be negative.

We focus on this measure instead of narrower income definitions as it aggregates to national

income.

The DINA measure capital and labor income by applying a range of adjustments to the

underlying “personal factor income”. Firstly, PSZ add the revenues from sales and exercise

taxes and income from social insurance to labor and capital according to their factor shares.

Secondly, social contributions are subtracted from labor income as is payable investment

income to pension funds from capital income. Finally, PSZ distribute mixed income from

pass-through entities and partnerships using a constant capital share of 30%. Note that this

does not apply to S-corporation profits, which PSZ entirely attribute to capital income. We

discuss this below.

The adjusted labor income is composed of measured labor compensation, which includes

wages as well as other employment based benefits such as employer based health insurance,

mixed income from pass-through entities and the above mentioned adjustments:

labor incomePSZ = labor comp. + 0.7×mixed income + adjustments

Capital income in turn is the sum of income from equity, fixed income assets, housing

assets, pass-through businesses and pensions minus debt payments:

capital incomePSZ =equity inc. + fixed income inc. + housing inc. + 0.3×mixed inc

+ pension inc.− debt payments + adjustments.

A couple of things are worth pointing out at this point. Firstly, housing income includes

imputed rental payments for owner occupants as in the NIPA tables. Secondly, equity in-

come is composed of the dividends as well as the entirety of S-corporation profits.

The treatment of S-corporation income has been subject so some controversy. In partic-

ular, SYZZ argue that the capital share of mixed income including S-corporation should be

25% instead of 30% for pass-through entities and 100% for S-corporations. To address this

potential concern, we investigate two potential adjustments. Firstly, we simply reallocate

70% of the reported fiscal S-corporation income:
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labor incomeSY ZZ.A = labor incomePSZ + 0.7× S-corp. fiscal inc.

capital incomeSY ZZ.A = capital incomePSZ − 0.7× S-corp. fiscal inc.

Alternatively, we follow the adjustment described in the Appendix to PSZ, which takes

into account portfolio composition along the wealth distribution as well as the imputation

method used for capital income in PSZ. In particular, PSZ define a(p) = S-corp. equity of

percentile p × aggregate S-corporation income to equity ratio and b(p) = C-corp. equity of

percentile p × aggregate C-corporation income to equity ratio. Importantly, C-corporation

income includes dividends as well as retained earnings. The adjusted S-corporation income

for percentile p is then calculated as a/(a+b) × equity income of percentile p. We apply

the same formula as above using this adjusted S-corporation income measure to calculate

labor incomeSY ZZ.B and capital incomeSY ZZ.B respectively.

I.2 Additional figures

Figure S6 provides a decomposition of income growth for the 1980–2007 period. On the other

hand, Figure S7 provides a decomposition for 1980–2012 where we measure S-corporation

income using the DINAs and the capitalization method described above.

J Trends of Other Variables in Model and Data

J.1 Investment and Capital Deepening

Our model predicts that automation should lead to an expansion in investment and the

capital-output ratio, though less so than in a representative household model (Figure 2).

Figure S8 plots various measures of the empirical counterparts of these variables. The left

panel plots two series from the BLS capturing how the value of capital services used by the

private sector has evolved relative to GDP, and a series from the BEA giving the value of

the US stock of private non-residential fixed assets relative to GDP. Since the 1970s the US

capital-to-GDP ratio has increased somewhat according to these measures, with the increase

being more pronounced for the BLS measure of capital services (see Gourio and Klier, 2015).

In line with our findings for the capital-output ratio, the right panel shows that since the

1970s, the ratio of private non-residential fixed investment to GDP (from the BEA) also

increased somewhat. Because the price of investment goods declined dramatically during

this period, we also find it useful to look at the behavior of the quantity of private non-

residential fixed investment relative to the quantity of GDP. The right panel shows that in

terms of quantities, investment grew faster than GDP through the postwar period and since
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Panel (a)—IRS data

Panel (b)—DINAs data

Figure S6: Capital income and the rise in top inequality 1980–2007 (IRS and DINAs data)

Figure S7: Capital income and the rise in top inequality 1980–2007 (DINAs data), alternative measurement
of S-corporations income.

the 1970s.47

47An alternative measure of investment that is sometimes used in other papers is the net investment rate
(net investment divided by existing capital). However, along a balanced-growth path, the net investment rate
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Figure S8: Percent change since 1950 in capital and investment to GDP ratios in the US.
Notes— Panel A: ratio of capital services to value added for private and nonfarm sectors (BLS Multifactor
Productivity series); and ratio of private nonresidential fixed assets (BEA fixed-assets Table 4.1 Line 1 plus
Table 4.4 Line 1) to GDP (NIPA Table 1.1.5 Line 1). Panel B: ratio of private nonresidential fixed investment
(NIPA Table 1.1.5 Line 9) to GDP (NIPA Table 1.1.5 Line 1); and ratio of quantity of private nonresidential
fixed investment (NIPA Table 1.1.3 Line 9) to real GDP (NIPA Table 1.1.3 Line 1).

In a similar vein, our model predicts a moderate increase in TFP of 2.2% between 1980

and 2014, which accounts for less than 10% of the overall increase in productivity during

this period. We view this as plausible given that automation is one of many technological

improvements determining productivity during this period. More importantly, these numbers

underscore the point that, in our model, improvements in automation can bring modest gains

in productivity, output, and investment that are well within the bounds of what we see in

the data, while at the same time having sizable distributional consequences.

J.2 The Capital Share and Inequality Across Countries and Longer

Time Periods

Does the prediction that rises in the net capital share are accompanied by large increases in

top income inequality receive support from the data? Bengtsson and Waldenström (2018)

explore this link in a long panel with data for 15 countries going back to 1891. Their data

shows that a 1 percentage point increase in the net capital share is associated with: a 6.68%

increase in the top 0.1 percent share of income; a 3.85% increase in the top 1 percent share

of income; and a 1.56% increase in the top 10 percent share of income.48

equals the growth rate of the economy. Long-run trends in the net investment rate are thus uninformative of
the extent of automation in the economy, which is one of the many types of technological progress determining
the growth rate of the economy in the long run.

48In the published paper, Bengtsson and Waldenström (2018) use a log-log specification, whereas our
theory calls for the log-linear specification in equation (11). We used their data and the same methodology
behind their estimates in Table 2 of their paper to estimate the log-linear specifications reported here.
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Figure S9: Net capital share and top 1% income share in the US.
Notes— Data for capital shares from Piketty, Saez and Zucman (2018) and NIPA. The series for net capital
shares are smoothed using a 5-year moving average. Data for the top 1% and top 0.1% income shares in the
US from the World Inequality Database, which excludes capital gains.

Figure S9 illustrates this link for the US during the postwar period using data on the

net capital share from Piketty, Saez and Zucman (2018) (available on the World Inequality

Database), as well as data from NIPA on the net capital share of the US corporate sector.

Besides the net capital share, we also report capital shares net of growth, which are the

relevant statistic determining the importance of capital in the version of our model with

growth (see equation (16)).49 All of these measures reveal rising capital shares since the

1970s by 6–8 percentage points. The right panel shows that the increase in the net capital

share was accompanied by a significant rise in the top 1% and top 0.1% income share starting

also during the 1970s (also from the World Inequality Database).

As already discussed, our mechanism is capable of generating this type of sizable changes

in top income inequality. This is in contrast to the standard compositional effect emphasized

in the literature and defined more precisely in Section 1.3. As discussed in that section, an

increase in the net capital share of 6 percentage points would generate an increase in the top

1% income share of only 0.42 (= 0.07×6) percentage points via compositional effects, which

is small compared to what we see in the data and what our model is capable of generating.50

The link between capital shares and inequality can be also seen in other historical periods

during which automation (or mechanization) was a dominant force, like the onset of the

49To construct capital shares net of growth we follow the approach in Section 2.3 and measure g using a
10-year moving average of the CBO’s estimation of the potential growth rate of the economy. In addition,
we measure the capital output ratios involved in the formula for the capital share net of growth from NIPA.

50Meade (1964, Table 2.2) performs similar calculations for the United Kingdom circa 1959 but obtains
much larger compositional effects because he assumes that, for the top 1%, S̃`(q) = 6% and S̃k(q) =
47%, which he defends as appropriate numbers. With these numbers, the compositional effect is given by
(S̃k(q)− S̃`(q))× dαnet = 0.41× 0.01 = 0.41 percentage points.
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Figure S10: Gross capital share, the return to capital, and the top 5% income share during
the British industrial revolution. Notes—Data from Allen (2009) and Lindert (2000).

industrial revolution in Britain. As documented in Allen (2009) and reproduced here in

Figure S10, from 1760 to 1840, the capital share (excluding land) rose from 20% to 40% in

Britain and the labor share declined from 60% to 50%. In line with our model, the return to

wealth (what Allen terms the profit rate) doubled from 10 percentage points to 20 percentage

points at the same time as average wages stagnated. Data from Lindert (2000) show a sharp

rise in income inequality starting exactly at this period, as can be seen from the evolution

of the top 5% income share in Britain, plotted in the right panel of the figure.
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