Advanced Tools in Macroeconomics Continuous time models (and methods)

Pontus Rendahl

August 25, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Plan for today

- 1. Speeding things up while making them more robust
 - 1.1 Use the "implicit method" to somewhat bring back the contraction property
 - 1.2 Make use of sparsity
- 2. Set up a continuous time heterogenous agents model and show how to solve it

- 3. Kolmogorov Forward equation
- 4. Equilibrium

Why is the contraction property lost?

Consider the deterministic Ramsey growth model again

$$v(k) = \max_{c} \{ u(c) + (1-\rho)v(f(k) + (1-\delta)k - c) \}.$$

In discrete time we iterate as

$$v_{n+1}(k) = \max_{c} \{ u(c) + (1-\rho)v_n(f(k) + (1-\delta)k - c) \},\$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• This is a contraction mapping and we know that $v_n \rightarrow v$.

Why is the contraction property lost?

Let's, heuristically, convert this into continuous time

$$v_{n+1}(k) = \max_{c} \{\Delta u(c) + (1 - \Delta \rho)v_n(k + \Delta (f(k) - \delta k - c))\}$$

$$0 = \max_{c} \{u(c) + \frac{v_n(k + \Delta(f(k) - \delta k - c)) - v_{n+1}(k)}{\Delta} - \rho v_n(k + \Delta(f(k) - \delta k - c))\}.$$

Taking limits and rearranging

$$\rho v_n(k) = \max_c \{ u(c) + \lim_{\Delta \to 0} \frac{v_n(k + \Delta(f(k) - \delta k - c)) - v_{n+1}(k)}{\Delta} \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Why is the contraction property lost?

Problem

$$\lim_{\Delta \to 0} \frac{v_n(k + \Delta(f(k) - \delta k - c)) - v_{n+1}(k)}{\Delta} \neq v'_n(k)(f(k) - \delta - c)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The right hand side of the HJB equation contains v_{n+1} and that's a major issue

Back to discrete time

$$v_{n+1}(k) = \max_{c} \{ u(c) + (1-\rho)v_n(f(k) + (1-\delta)k - c) \},\$$

- Call the optimal choice c_n (it's really a function of k but I'm saving some space)
- Howard's Improvement Algorithm says that we can then iterate on

$$v_{n+1}^{h+1}(k) = u(c_n) + (1-\rho)v_{n+1}^h(f(k) + (1-\delta)k - c_n)\},$$

with $v_{n+1}^0 = v_n$.

► Until v^{h+1}_{n+1} ≈ v^h_{n+1}. This can speed things up considerably, and preserves the contraction property

Suppose that it holds exactly v^{h+1}_{n+1} = v^h_{n+1}, and let's just call this function v_{n+1}. Then it must satisfy

$$v_{n+1}(k) = \max_{c} \{ u(c_n) + (1-\rho)v_{n+1}(f(k) + (1-\delta)k - c_n) \},\$$

In ∆ units of time

$$v_{n+1}(k) = \Delta u(c_n) + (1 - \Delta \rho)v_{n+1}(k + \Delta (f(k) - \delta k - c_n)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rearrange

$$0 = u(c_n) + \frac{v_{n+1}(k + \Delta(f(k) - \delta k - c_n)) - v_{n+1}(k)}{\Delta} - \rho v_{n+1}(k + \Delta(f(k) - \delta k - c_n))\}.$$

and take limits

$$\rho v_{n+1}(k) = u(c_n) + v'_{n+1}(k)(f(k) - \delta k - c_n),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\rho v_{n+1}(k) = u(c_n) + v'_{n+1}(k)(f(k) - \delta k - c_n),$$

▶ Now the awkward discrepancy between v_{n+1} and v_n is gone!

- But the problem looks a bit hard to solve!
- Turns out it is not!
- This is where the "implicit method" comes in.

- 1. Start with a grid for capital $\mathbf{k} = [k_1, k_2, \dots, k_N]$.
- 2. For each grid point for capital you have a guess for $v_0(k_i)$, $\forall k_i \in \mathbf{k}$
- 3. So you have a vector of N values of v_0 . Call this \mathbf{v}_0
- 4. You should also have a difference operator (an $N \times N$ matrix) **D** such that

$$\mathbf{D}\mathbf{v} pprox \mathbf{v}'(k), \quad orall k_i \in \mathbf{K}$$

5. Optimal consumption choice given by FOC

$$u'(\mathbf{c}_0) = \mathbf{D}\mathbf{v}_0$$

reasonable to call this $c(\mathbf{v}_0)$ – an $N \times 1$ vector

6. This implies another $N \times 1$ vector of savings

$$\mathbf{s}_0 = (f(\mathbf{k}) - \delta \mathbf{k} - c(\mathbf{v}_0))$$

(This vector can be used to improve on \mathbf{D} – more on that in a second).

7. Create the $N \times N$ matrix $\mathbf{S}_0 = diag(\mathbf{s_0})$

That is

$$\mathbf{S} = egin{pmatrix} s_1 & 0 & \dots & 0 \ 0 & s_2 & \dots & 0 \ dots & \ddots & \ddots & dots \ 0 & \dots & 0 & s_N \end{pmatrix},$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

8. Then our HJB equation can now be written as

$$ho \mathbf{v}_1 = u(c(\mathbf{v}_0)) + \mathbf{S}_0 \mathbf{D} \mathbf{v}_1$$

9. Manipulate

$$(\rho \mathbf{I} - \mathbf{S}_0 \mathbf{D}) \mathbf{v}_1 = u(c(\mathbf{v}_0))$$

10. Lastly

$$\mathbf{v}_1 = (\rho \mathbf{I} - \mathbf{S}_0 \mathbf{D})^{-1} u(c(\mathbf{v}_0))$$

11. Generally

$$\mathbf{v}_{n+1} = (\rho \mathbf{I} - \mathbf{S}_n \mathbf{D})^{-1} u(c(\mathbf{v}_n))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Or even more generally

$$\mathbf{v}_{n+1} = ((\rho + 1/\Gamma)\mathbf{I} - \mathbf{S}_n\mathbf{D})^{-1}[u(c(\mathbf{v}_n)) + \mathbf{v}_n/\Gamma]$$

for Γ very large (my experience: $\Gamma=\infty$ is fastest, but set lower if convergence issues arise)

In matlab always use backslash operator to calculate x = A⁻¹b. I.e. x = A\b

We are talking very substantial speed/robustness gains here. Perhaps by a factor of 1,000.

The implicit method: Improvement trick I

- Yesterday we created the matrix D as central differences
- ► We can do better. In particular, s_n tells us where the economy is drifting for each k_i ∈ k
- So trick one is to use forward differences for all

 $\{k_i \in \mathbf{k} : s_i > 0\}$

and backward differences for all

$$\{k_i \in \mathbf{k} : s_i < 0\}$$

This leads to

$$\mathbf{v}_{n+1} = ((\rho + 1/\Gamma)\mathbf{I} - \mathbf{S}_n\mathbf{D}_n)^{-1}[u(c(\mathbf{v}_n)) + \mathbf{v}_n/\Gamma]$$

The implicit method: Improvement trick II

Inspect the matrix

$$((\rho+1/\Gamma)\mathbf{I}-\mathbf{S}_n\mathbf{D}_n),$$

and notice that all matrices are super sparse!

- So declaring them as sparse will free up a lot of memory and give you enormous speed gains too (this is particularly true for problems with N > 200 or so. Below that it doesn't really matter).
- Never declare any of these matrices as anything else than sparse! Use commands as speye and spdiags
- Don't be too concerned about loops. That doesn't seem to be what can clog these systems.

The Aiyagari Model in Continuous Time

The rest of today's lecture will be to apply our knowledge thus far to the Aiyagari model in continuous time.

- This will also be today's exercise
- 1. Households' problem
- 2. Firms problem
- 3. Equilibrium

- Households can be employed or unemployed
- When employed they receive income $w_t(1 \tau_t)$
- ► When unemployed they receive unemployment benefits equal to µw_t
- An employed individual becomes unemployed with probability λ_e.
- ► An unemployed individual becomes employed with probability \u03c6_u
- ► In an Aiyagari model prices are constant: $r_t = r$ and $w_t = w \ \forall t$

Dynamics of aggregate unemployment

$$e_{t+1} = (1 - \lambda_e)e_t + \lambda_u u_t$$
$$u_{t+1} = \lambda_e e_t + (1 - \lambda_u)u_t$$

Δ units of time

$$e_{t+\Delta} = (1 - \Delta \lambda_e) e_t + \Delta \lambda_u u_t$$

 $u_{t+\Delta} = \Delta \lambda_e e_t + (1 - \Delta \lambda_u) u_t$

Rearrange and take limits

$$\dot{e}_t = -\lambda_e e_t + \lambda_u u_t$$
$$\dot{u}_t = \lambda_e e_t - \lambda_u u_t$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

System

$$\dot{\mathbf{s}}_t = \mathbf{T}\mathbf{s}_t$$

with

$$\mathbf{T} = \begin{pmatrix} -\lambda_e & \lambda_u \\ \lambda_e & -\lambda_u \end{pmatrix}$$

Stationary equilibrium

$$\mathbf{0} = \mathbf{Ts}$$

・ロト・日本・モート モー うへぐ

Thus s is an eigenvector associated with a zero eigenvalue, with the eigenvector normalised to sum to one.

- Can be solved as a regular eigenvalue problem
- But since the eigenvector is only defined up to a scalar we can use the following trick

1. Create vector

$$\mathbf{b} = egin{pmatrix} 1 \ 0 \end{pmatrix}$$
 and matrix $\mathbf{\hat{T}} = egin{pmatrix} 1 & 0 \ \lambda_e & -\lambda_u \end{pmatrix}$

- 2. Find $\hat{\mathbf{s}}$ as $\hat{\mathbf{s}} = \hat{\mathbf{T}}^{-1} \mathbf{b}$.
- 3. Normalise **ŝ** to sum to one to find **s**.
- The first element of s is then the stationary employment rate, and the second the stationary unemployment rate.

Government runs a balanced budget, so not deficits

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• The tax rate then solves $u\mu w = e\tau w$

• Or just
$$\tau = \frac{u}{e}\mu$$

Bellman equation for an employed agent

$$\begin{aligned} \mathsf{v}(\mathsf{a}_t, e) &= \max_{c_t} \{ u(c_t) + (1 - \rho) \times \\ &[(1 - \lambda_e) \mathsf{v}(w_t(1 - \tau_t) + (1 + r_t) \mathsf{a}_t - c_t, e) \\ &+ \lambda_e \mathsf{v}(w_t(1 - \tau_t) + (1 + r_t) \mathsf{a}_t - c_t, u)] \} \end{aligned}$$

subject to $a_t \ge \phi \ \forall t$.

Δ units of time

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Rearrange and divide by Δ

$$0 = \max_{c_t} \{u(c_t) + \frac{v(\Delta(w_t(1-\tau_t)+r_ta_t-c_t)+a_t,e)-v(a_t,e)}{\Delta} + \frac{v(\Delta(w_t(1-\tau_t)+r_ta_t-c_t)+a_t,e)}{\Delta} + \lambda_e v(\Delta(w_t(1-\tau_t)+r_ta_t-c_t)+a_t,u)]\}$$

Take limits and rearrange

$$\rho v(a, e) = \max_{c} \{ u(c) + v_a(a, e)(w(1 - \tau) + ra - c) - \lambda_e(v(a, e) - v(a, u)) \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

So households' problem is given by the two HJB equations

$$\rho v(a, e) = \max_{c} \{ u(c) + v_a(a, e)(w(1 - \tau) + ra - c) - \lambda_e(v(a, e) - v(a, u)) \}$$

$$\rho v(a, u) = \max_{c} \{ u(c) + v_a(a, u)(w\mu + ra - c) - \lambda_u(v(a, u) - v(a, e)) \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let's be smart in solving them!

- 1. Start with a linearly spaced grid for assets $\mathbf{a} = [a_1, a_2, \dots, a_N]$. Let da = a(n+1) a(n).
- 2. For each grid for assets guess a for $v_0(a_i, j)$, $\forall a_i \in \mathbf{a}$, and $j \in \{e, u\}$. This gives us $\mathbf{v}_{0,e}$ and $\mathbf{v}_{0,u}$

3. Call the stacked $2N \times 1$ vector $(\mathbf{v}_{0,e}, \mathbf{v}_{0,u})'$ for \mathbf{v}_0 .

4. Create two $N \times N$ difference operators as

$$\mathbf{D}_{\mathbf{f}} = \begin{pmatrix} -1/da & 1/da & 0 & \dots & 0 \\ 0 & -1/da & 1/da & 0 & & \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \dots & & -1/da & 1/da \\ 0 & \dots & 0 & -1 \end{pmatrix}$$

$$\mathbf{D}_{\mathbf{b}} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -1/da & 1/da & 0 & & \\ \vdots & -1/da & 1/da & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \dots & -1/da & 1/da \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

5. Create one $2N \times 2N$ matrix as

$$\mathbf{B} = \begin{pmatrix} -\lambda_{e} & 0 & \dots & 0 & \lambda_{e} & 0 & \dots & 0 \\ 0 & -\lambda_{e} & 0 & \dots & 0 & \lambda_{e} & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \dots & \ddots & \vdots \\ 0 & 0 & 0 & -\lambda_{e} & 0 & \dots & \dots & \lambda_{e} \\ \lambda_{u} & 0 & \dots & 0 & -\lambda_{u} & 0 & \dots & 0 \\ 0 & \lambda_{u} & 0 & \dots & 0 & -\lambda_{u} & \dots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots & \dots & \ddots & \vdots \\ 0 & 0 & 0 & \lambda_{u} & 0 & 0 & \dots & -\lambda_{u} \end{pmatrix}$$

will be used later

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

6. Calculate the derivative of the value functions using both forward and backward differences

$$\begin{split} \mathbf{v}_f'(a,e) &= \mathbf{D}_{\mathbf{f}} \mathbf{v}_{0,e}, \quad \mathbf{v}_b'(a,e) = \mathbf{D}_{\mathbf{b}} \mathbf{v}_{0,e}, \\ \mathbf{v}_f'(a,u) &= \mathbf{D}_{\mathbf{f}} \mathbf{v}_{0,u}, \quad \mathbf{v}_b'(a,u) = \mathbf{D}_{\mathbf{b}} \mathbf{v}_{0,u}, \end{split}$$

- 7. Set the **first** elements of $\mathbf{v}'_b(a, e) = u'(w(1 \tau) + r\phi)$ and $\mathbf{v}'_b(a, u) = u'(w\mu + r\phi)$, and the **last** elements of $\mathbf{v}'_f(a, e) = u'(w(1 - \tau) + ra_N)$ and $\mathbf{v}'_f(a, u) = u'(w\mu + ra_N)$
- 8. Find optimal consumption through

$$\begin{split} u'(\mathbf{c}_{e,f}) &= \mathbf{D}_{\mathbf{f}} \mathbf{v}_{0,e}, \quad u'(\mathbf{c}_{e,b}) = \mathbf{D}_{\mathbf{b}} \mathbf{v}_{0,e}, \\ u'(\mathbf{c}_{u,f}) &= \mathbf{D}_{\mathbf{f}} \mathbf{v}_{0,u}, \quad u'(\mathbf{c}_{u,b}) = \mathbf{D}_{\mathbf{b}} \mathbf{v}_{0,u}, \end{split}$$

9. Find optimal savings as

$$egin{aligned} \mathbf{s}_{e,f} &= \mathbf{w}(1- au) + r\mathbf{a} - \mathbf{c}_{e,f}, & \mathbf{s}_{e,b} &= \mathbf{w}(1- au) + r\mathbf{a} - \mathbf{c}_{e,b}, \ \mathbf{s}_{u,f} &= \mathbf{w}\mu + r\mathbf{a} - \mathbf{c}_{u,f}, & \mathbf{s}_{u,b} &= \mathbf{w}\mu + r\mathbf{a} - \mathbf{c}_{u,b} \end{aligned}$$

10. Create indicator vectors

$$\mathbf{I}_{e,f} = (I_{1,e,f}, I_{2,e,f}, \dots, I_{N,e,f})', \quad \mathbf{I}_{e,b} = (I_{1,e,b}, I_{2,e,f}, \dots, I_{N,e,b})', \\ \mathbf{I}_{u,f} = (I_{1,u,f}, I_{2,u,f}, \dots, I_{N,u,f})', \quad \mathbf{I}_{u,b} = (I_{1,u,f}, I_{2,u,f}, \dots, I_{N,u,f})',$$

where $I_{i,j,f} = 1$ if $s_{i,j,f} > 0$ and $I_{i,j,b} = 1$ if $s_{i,j,b} < 0$, for i = 1, ..., N and $j \in \{e, u\}$.

11. Find consumption as

$$\mathbf{c}_{e} = \mathbf{I}_{e,f} \cdot \mathbf{c}_{e,f} + \mathbf{I}_{e,b} \cdot \mathbf{c}_{e,b}$$
$$\mathbf{c}_{u} = \mathbf{I}_{u,f} \cdot \mathbf{c}_{u,f} + \mathbf{I}_{u,b} \cdot \mathbf{c}_{u,b}$$

12. Find savings as

$$\mathbf{s}_{e} = \mathbf{I}_{e,f} \cdot \mathbf{s}_{e,f} + \mathbf{I}_{e,b} \cdot \mathbf{s}_{e,b}$$
$$\mathbf{s}_{u} = \mathbf{I}_{u,f} \cdot \mathbf{s}_{u,f} + \mathbf{I}_{u,b} \cdot \mathbf{s}_{u,b}$$

13. And matrices $\mathbf{S}_{e}\mathbf{D}_{e}$ and $\mathbf{S}_{u}\mathbf{D}_{u}$ as

$$\begin{split} \mathbf{S}_{e}\mathbf{D}_{e} &= diag(\mathbf{I}_{e,f} \cdot \mathbf{s}_{e,f})\mathbf{D}_{f} + diag(\mathbf{I}_{e,b} \cdot \mathbf{s}_{e,b})\mathbf{D}_{b} \\ \mathbf{S}_{u}\mathbf{D}_{u} &= diag(\mathbf{I}_{u,f} \cdot \mathbf{s}_{u,f})\mathbf{D}_{f} + diag(\mathbf{I}_{u,b} \cdot \mathbf{s}_{u,b})\mathbf{D}_{b} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

14. Lastly find the $2N \times 2N$ matrix $\mathbf{S}_0 \mathbf{D}_0$ as

$$\mathbf{S}_0 \mathbf{D}_0 = egin{pmatrix} \mathbf{S}_e \mathbf{D}_e & \mathbf{0} \ \mathbf{0} & \mathbf{S}_u \mathbf{D}_u \end{pmatrix}$$

15. And the matrix \mathbf{P}_0 as

$$\mathbf{P}_0 = \mathbf{S}_0 \mathbf{D}_0 + \mathbf{B}$$

Using the implicit method the households' problem is given by the two HJB equations

$$\rho v_{n+1}(a, e) = u(c_n) + v_{a,n+1}(a, e)(w(1 - \tau) + ra - c_n) \\ - \lambda_e(v_{n+1}(a, e) - v_{n+1}(a, u))$$

$$\rho v_{n+1}(a, u) = u(c_n) + v_{a,n+1}(a, u)(w\mu + ra - c)
- \lambda_u(v_{n+1}(a, u) - v_{n+1}(a, e))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

These can now be written as

$$\rho \mathbf{v}_{n+1} = u(\mathbf{c}_n) + \mathbf{P}_n \mathbf{v}_{n+1}$$

with $\mathbf{c}_n = (\mathbf{c}_{n,e}, \mathbf{c}_{n,u})$.

So we iterate on

$$\mathbf{v}_{n+1} = [(
ho + 1/\Gamma)\mathbf{I} - \mathbf{P}_n]^{-1}[u(\mathbf{c}_n) + \mathbf{v}_n/\Gamma]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

until convergence

Firms

Firms fact the standard static optimisations problem

$$\Pi_t = \max\{K_t^{\alpha} N_t^{1-\alpha} - w_t N_t - (r_t + \delta) K_t\}$$

With first order conditions

$$r_t = \alpha \left(\frac{K_t}{N_t}\right)^{\alpha-1} - \delta, \quad w_t = (1-\alpha) \left(\frac{K_t}{N_t}\right)^{\alpha}$$

In a stationary equilibrium this implies

$$r = \alpha \left(\frac{\kappa}{(1-u)}\right)^{\alpha-1} - \delta, \quad w = (1-\alpha) \left(\frac{r+\delta}{\alpha}\right)^{\frac{\alpha}{\alpha-1}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Stationary distribution

- What is the evolution of the endogenous stationary distribution of wealth and employment status?
- Denote the CDF as $G_{t+1}(a, e)$. This must satisfy

$$G_{t+1}(a,e) = (1-\lambda_e)G_t(a_{-1}^e,e) + \lambda_u G_t(a_{-1}^u,u),$$

where a_{-1}^{j} denotes "where you came from" from optimally setting $a_{t+1} = a$ in employment status $j \in \{e, u\}$.

In ∆ units of time approximate this as a^e₋₁ = a − ∆s_e and a − ∆s_u. Thus

$$G_{t+\Delta}(a,e) = (1 - \Delta \lambda_e)G_t(a - \Delta s_e, e) + \Delta \lambda_u G_t(a - \Delta s_u, u),$$

Stationary distribution

$$G_{t+\Delta}(a,e) = (1-\Delta\lambda_e)G_t(a-\Delta s_e,e) + \Delta\lambda_u G_t(a-\Delta s_u,u),$$

Subtract $G_t(a, e)$ from both sides and divide by Δ

$$\frac{G_{t+\Delta}(a,e) - G_t(a,e)}{\Delta} = \frac{G_t(a - \Delta s_e, e) - G_t(a,e)}{\Delta} - \lambda_e G_t(a - \Delta s_e, e) + \lambda_u G_t(a - \Delta s_u, u),$$

Take limits

$$\dot{G}_t(a,e) = -g_t(a,e)s_e(a) - \lambda_e G_t(a,e) + \lambda_u G_t(a,u),$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Stationary distribution/Kolmogorov Forward Equation

$$G_t(a, e) = -g_t(a, e)s_e(a) - \lambda_e G_t(a, e) + \lambda_u G_t(a, u),$$

Differentiate with respect to a

$$\dot{g}_t(a, e) = -\frac{\partial [g_t(a, e)s_e(a)]}{\partial a} - \lambda_e g_t(a, e) + \lambda_u g_t(a, u),$$

Thus the law of motion for the endogenous distribution is

$$\dot{g}_t(a, e) = -\frac{\partial [g_t(a, e)s_e(a)]}{\partial a} - \lambda_e g_t(a, e) + \lambda_u g_t(a, u),$$

$$\dot{g}_t(a, u) = -\frac{\partial [g_t(a, u)s_u(a)]}{\partial a} - \lambda_u g_t(a, u) + \lambda_e g_t(a, e)$$

Stationary distribution/Kolmogorov Forward Equation

Remember the matrix

$$\mathsf{P}_n = \mathsf{S}_n \mathsf{D}_n + \mathsf{B}.$$

When converged

$$\mathbf{P}=\mathbf{S}\mathbf{D}+\mathbf{B}$$

Turns out that

$$\dot{\mathbf{g}}_t = \mathbf{P}' \mathbf{g}_t$$

• Where \mathbf{g}_t is the stacked vector $(\mathbf{g}_t(a, e), \mathbf{g}_t(a, u))'$

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

Solving the Aiyagari model

1. Guess for an interest rate r_n . Find w_n as

$$w_n = (1 - \alpha) \left(\frac{r_n + \delta}{\alpha}\right)^{\frac{\alpha}{\alpha - 1}}$$

2. Find \mathbf{v} such that

$$\mathbf{v} = [(
ho + 1/\Gamma)\mathbf{I} - \mathbf{P}]^{-1}[u(c(\mathbf{v})) + \mathbf{v}/\Gamma]$$

3. Find g by solving

$$\mathbf{0} = \mathbf{P}'\mathbf{g}$$

and normalise to sum to one (remember how we found ${f s}$ above)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solving the Aiyagari model

4. Find K_n as

$$\mathcal{K}_n = \mathbf{g}' \begin{pmatrix} \mathbf{a} \\ \mathbf{a} \end{pmatrix}$$

5. Find \hat{r} as

$$\hat{r} = \alpha \left(\frac{K_n}{(1-u)}\right)^{\alpha-1} - \delta$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

6. If $\hat{r} > r$ set $r_{n+1} > r_n$, else set $r_{n+1} < r_n$. 7. Repeat until $\hat{r} \approx r_n$.