
Advanced Tools in Macroeconomics
Continuous time models (and methods)

Pontus Rendahl

August 21, 2017



Introduction

I In this lecture we will take a look at models in
continuous, as opposed to discrete, time.

I There are some advantages and disadvantages
I Advantages: Can give closed form solutions even when

they do not exist for the discrete time counterpart. Can
be very fast to solve. Trendier than sourdough bread,
fixed gear bicycles, and skinny jeans combined (so if you
do continuous time you need neither).

I Disadvantages: Intuition is a bit tricky. Contraction
mapping theorems / convergence results go out the
window (but can be somewhat brought back). The latter
can create issues for numerical computing. Difficult to
deal with certain end-conditions (like finite lives etc.)



Plan for today

I Continuous time methods and models are not as well
documented as the discrete time cases.

I Proceed through a series of examples

1. The Solow growth model (!)
2. The (stochastic) Ramsey growth model
3. A monetary economy
4. Search and matching

I How to solve (turns out to be pretty easy, and we can
apply methods we know from earlier parts of the course)



Plan for tomorrow

I Speeding things up and making it more robust
I Little tips and tricks

I Heterogenous agent models in continuous time
I Focus on the Aiyagari model

I Useful list of papers to read

1. “Finite?Difference Methods for Continuous?Time
Dynamic Programming” by Candler 2001

2. http://www.princeton.edu/ moll/HACT.pdf

3. http://www.princeton.edu/ moll/WIMM.pdf



The Solow growth model

I The Solow growth model is characterized by the following
equations

Yt = Kα
t (AtNt)

1−α

Kt+1 = It + (1− δ)Kt

St = sYt

It = St

At+1 = (1 + g)At

Nt+1 = (1 + η)Nt

I To solve this model we rewrite it in intensive form

xt =
Xt

AtNt
, for X = {Y ,K , S , I}



The Solow growth model

I Using this and substituting in gives

Kt+1

AtNt
= skαt + (1− δ)kt

I We can rewrite as

Kt+1

At+1Nt+1

At+1Nt+1

AtNt
= skαt + (1− δ)kt

kt+1
At+1Nt+1

AtNt
= skαt + (1− δ)kt

kt+1(1 + g)(1 + η) = skαt + (1− δ)kt



The Solow growth model

I Ta-daa!

kt+1 =
skαt

(1 + g)(1 + η)
+

(1− δ)kt
(1 + g)(1 + η)

I Balanced growth: kt+1 = kt = k

k =

(
g + η + gη + δ

s

) 1
α−1

I This is not textbook stuff. Why? Discrete time. More
elegant solution in continuous time.



The Solow growth model

I Continuous time is not a state in itself, but is the effect
of a limit. A derivative is a limit, an integral is a limit, the
sum to infinity is a limit, and so on.

I Continuous time is the name we use for the behavior of
an economy as intervals between time periods approaches
zero.



The Solow growth model

I The right approach is therefore to derive this behavior as
a limit (much like you probably derived derivatives from
its limit definition in high school).

I Eventually you may get so well versed in the limit
behavior that you can set it up directly (like you can say
that the derivative of ln x is equal to 1/x, without
calculating limε→0(ln(x + ε)− ln(x))/ε)

I I’m not there yet. I have to do this the complicated way.
People like Ben Moll at Princeton is. Take a look at his
lecture notes on continuous time stuff. They are great.



The Solow growth model

I Back to the model.

I Suppose that before the length of each time period was
one month. Now we want to rewrite the model on a
biweekly frequency.

I It seems reasonable to assume that in two weeks we
produce half as much as we do in one month:
Yt = 0.5Kα

t (AtNt)
1−α.

I It also seems reasonable that capital depreciates slower,
i.e. 0.5δ.



The Solow growth model

I Notice that we still have Nt worker and Kt units of
capital: Stocks are not affected by the length of time
intervals (although the accumulation of them will).

I The propensity to save is the same, but with half of the
income saving is halved too (and therefore investment)

I What happens to the exogenous processes for At and Nt?



The Solow growth model

I Before

At+1 = (1 + g)At , Nt+1 = (1 + η)Nt

I Now

At+0.5 = (1 + 0.5g)At , Nt+0.5 = (1 + 0.5η)Nt

or

At+0.5 = e0.5gAt , Nt+0.5 = e0.5ηNt ?



The Solow growth model

I It turns out that this choice does not matter much for our
purpose

I Suppose that the time period is not one month but
∆× one month. And suppose that

At+∆ = (1 + ∆g)At

I Rearrange

At+∆ − At

∆
= gAt .

I And take limit ∆→ 0

Ȧt = gAt



The Solow growth model

I Suppose that the time period is not one month but
∆× one month. And suppose that

At+∆ = e∆gAt

I Rearrange

At+∆ − At

∆
=

(e∆g − 1)

∆
At .

I Notice

lim
∆→0

(e∆g − 1)

∆
= lim

∆→0

(ge∆g )

1
= g



The Solow growth model

I So

lim
∆→0

(e∆g − 1)

∆
At = gAt

and thus

Ȧt = gAt

I Therefore, it doesn’t matter if At+∆ = (1 + ∆g)At or
At+∆ = e∆gAt . The limits are the same.



The Solow growth model

I Solow growth model in ∆ units of time

Yt = ∆Kα
t (AtNt)

1−α

Kt+∆ = It + (1−∆δ)Kt

St = sYt

It = St

At+∆ = (1 + ∆g)At

Nt+∆ = (1 + ∆η)Nt



The Solow growth model

I Substitute and rearrange as before

Kt+∆

At+∆Nt+∆

At+∆Nt+∆

AtNt
= s∆kαt + (1−∆δ)kt

kt+∆
At+∆Nt+∆

AtNt
= s∆kαt + (1−∆δ)kt

kt+∆(1 + ∆g)(1 + ∆η) = s∆kαt + (1−∆δ)kt



The Solow growth model

I Simplify and rearrange

kt+∆(1+∆g)(1 + ∆η) = s∆kαt + (1−∆δ)kt

⇒ kt+∆ − kt = s∆kαt −∆δkt −∆(g + η + ∆gη)kt+∆

⇒ kt+∆ − kt
∆

= skαt − δkt − (g + η + ∆gη)kt+∆

I Take limits ∆→ 0

k̇t = skαt − (g + η + δ)kt

I With steady state

k =

(
g + η + δ

s

) 1
α−1



The Solow growth model: Solution

I How do you solve this model?

I The equation

k̇t = skαt − (g + η + δ)kt

is an ODE.

I Declare it as a function with respect to time, t, and
capital, k , in Matlab as

solow = @(t, k) skα − (g + η + δ)k;

I The simulate it for, say 100 units of time, with initial
condition k0 as

[time, capital] = ode45(solow, [0 100], k0);



The Solow growth model: Solution

0 50 100

O
u
tp

u
t

-1

0

1

2

0 50 100

C
a
p
it
a
l

-2

-1

0

1

2

Time (years)

0 50 100

In
v
es

tm
en

t

-3

-2

-1

0

1

Time (years)

0 50 100

C
on

su
m

p
ti
o
n

-1

0

1

Solow growth model: Saving like China



The Solow growth model: Solution
A few pointers

I Once you got the solution of a deterministic continuous
time model, the solution will always be of the form
ẋt = f (xt), whether or not xt is a vector.

I The matlab function ode45 (or other versions) can then
simulate a transition (such as an impulse response).

I You could also simulate on your own through the
approximation

ẋt ≈
xt+∆ − xt

∆

and thus find your solution as xt+∆ = xt + ∆f (xt).
I For this to be accurate, ∆ must be small if there are a lot

of nonlinearities.
I The ODE function in matlab uses so-called Runge Kutta

methods to vary the step-size ∆ in an optimal way.



The Ramsey growth model

I Now consider the Ramsey growth model (without growth)

v(kt) = max
ct ,kt+1

{u(ct) + (1− ρ)v(kt+1)}

s.t. ct + kt+1 = kαt + (1− δ)kt

I In ∆ units of time

v(kt) = max
ct ,kt+∆

{∆u(ct) + (1−∆ρ)v(kt+∆)}

s.t. ∆ct + kt+∆ = ∆kαt + (1−∆δ)kt



The Ramsey growth model

I Notice that all flows change when the length of the time
period on which they are defined changes. Stocks, k , are
the same.

I I discount the future with 1−∆ρ instead of (1− ρ) (or
with e−∆ρ instead of eρ, but these are, in the limit,
equivalent).

I One funny thing: Consumption, c , is still “monthly”
consumption, but it now only cost ∆ as much, and I only
get a ∆ fraction of the utility!

I These assumptions are for technical reasons, and it will
(hopefully) soon be clear why they are made.



The Ramsey growth model

I Bellman equation

v(kt) = max
ct ,kt+∆

{∆u(ct) + (1−∆ρ)v(kt+∆)}

s.t. ∆ct + kt+∆ = ∆kαt + (1−∆δ)kt

I Subtract v(kt) from both sides and insert the budget
constraint into v(kt+∆)

0 = max
ct
{∆u(ct) + v(kt + ∆(kαt − δkt − ct))− v(kt)

−∆ρv(kt + ∆(kαt − δkt − ct))}



The Ramsey growth model

I From before

0 = max
ct
{∆u(ct) + v(kt + ∆(kαt − δkt − ct))− v(kt)

−∆ρv(kt + ∆(kαt − δkt − ct))}

I Divide by ∆

0 = max
ct
{u(ct) +

v(kt + ∆(kαt − δkt − ct))− v(kt)

∆

− ρv(kt + ∆(kαt − δkt − ct))}



The Ramsey growth model

I From before

0 = max
ct
{u(ct) +

v(kt + ∆(kαt − δkt − ct))− v(kt)

∆

− ρv(kt + ∆(kαt − δkt − ct))}

I Take limit ∆→ 0 and rearrange

ρv(kt) = max
ct
{u(ct) + v ′(kt)(kαt − δkt − ct)}

I This is know as the Hamilton-Jacobi-Bellman (HJB)
equation.



The Ramsey growth model: Solving

I Dropping time notation we have

ρv(k) = max
c
{u(c) + v ′(k)(kα − δk − c)}

I This is simple to solve and (can be) blazing fast!

I Why fast? Maximization is trivial: First order condition

u′(c) = v ′(k)

I So if we know v ′(k) we know optimal c without searching
for it!



The Ramsey growth model: Solving

I Dropping time notation we have

ρv(k) = max
c
{u(c) + v ′(k)(kα − δk − c)}

I This is simple to solve and (can be) blazing fast!

I Why fast? Maximization is trivial: First order condition

u′(c) = v ′(k)

I So if we know v ′(k) we know optimal c without searching
for it!



The Ramsey growth model: Solving

I How do we find v ′(k)?

I Suppose we have hypothetical values of v(k) on a
uniformly spaced grid of k , K = {k0, k1, . . . , kN} with
stepsize ∆k .

I We can then approximate v ′(k) at gridpoint ki (i 6= 1,N)
as

v ′(ki) = 0.5(v(ki+1)− v(ki))/∆k

+ 0.5(v(ki)− v(ki−1))/∆k

or

v ′(ki) =
v(ki+1)− v(ki−1)

2∆k



The Ramsey growth model: Solving

I and for k1 and kN

v ′(k1) = (v(k2)− v(k1))/∆k

and

v ′(kN) = (v(kN)− v(kN−1))/∆k

I There are many ways of doing this. If you have a vector
of v(k) values – call it V – then dV=gradient(V)/dk.



The Ramsey growth model: Solving

I I prefer an alternative method.

I Construct the matrix D as

D =


−1/dk 1/dk 0 0 . . . 0
−0.5/dk 0 0.5/dk 0 . . . 0

0 −0.5/dk 0 0.5/dk . . . 0
...

...
...

...
. . . 0

0 0 0 0 −1/dk 1/dk


I Then

v ′(k) ≈ D × v(k)



The Ramsey growth model: Solving

Algorithm

1. Construct a grid for k .

2. For each point on the grid, guess for a value of V0.

3. Calculate the derivative as dV0=D*V0.

4. Find V1 from

ρV1 = u(c0) + dV0(kα − δk − c0),

with u′(c0) = dV0

5. Back to step 3 with V1 replacing V0. Repeat until
convergence.

Beware: The contraction mapping theorem does not work, so
convergence is an issue. Solution: update slowly. That is,
V1 = γV1 + (1− γ)V0, for a low value of γ.



The Ramsey growth model: Solving

Algorithm

1. Construct a grid for k .

2. For each point on the grid, guess for a value of V0.

3. Calculate the derivative as dV0=D*V0.

4. Find V1 from

ρV1 = u(c0) + dV0(kα − δk − c0),

with u′(c0) = dV0

5. Back to step 3 with V1 replacing V0. Repeat until
convergence.

Beware: The contraction mapping theorem does not work, so
convergence is an issue. Solution: update slowly. That is,
V1 = γV1 + (1− γ)V0, for a low value of γ.



The Ramsey growth model: Solving

Alternative algorithm

1. Construct a grid for k .

2. For each point on the grid, guess for a value of V0.

3. Calculate the derivative as dV0=D*V0.

4. Find V1 from

V1 = Γ(u(c0) + dV0(kα − δk − c0)− ρV0) + V0,

with u′(c0) = dV0

5. Back to step 3 with V1 replacing V0. Repeat until
convergence.

We will take a look at an alternative way of doing things
tomorrow.



The Ramsey growth model: Solving

Alternative vs. standard algorithm

I But to me they sort of look the same

I I.e.

V1 = γ
1

ρ
(u(c0) + dV0(kα − δk − c0)) + (1− γ)V0

=
γ

ρ
(u(c0) + dV0(kα − δk − c0)− ρV0) + V0

I So as long as γ
ρ

= Γ they should be identical.



The Ramsey growth model: Euler equation

I Let’s go back to the HJB equation.

ρv(k) = u(c) + v ′(k)(kα − δk − c)

with u′(c) = v ′(k)

I Thus

ρv ′(k) = v ′′(k)(kα − δk − c) + v ′(k)(αkα−1 − δ)

I And

v ′′(k) = u′′(c)c ′(k)



The Ramsey growth model: Euler equation

I Using

ρv ′(k) = v ′′(k)(kα − δk − c) + v ′(k)(αkα−1 − δ)

Together with v ′(k) = u′(c) and v ′′(k) = u′′(c)c ′(k)
gives

ρu′(c) = u′′(c)c ′(k)(kα − δk − c) + u′(c)(αkα−1 − δ)

or

−u′′(c)c ′(k)(kα − δk − c) = u′(c)(αkα−1 − δ − ρ)

I Suppose CRRA utility, such that u′′(c)c
u′(c)

= −γ



The Ramsey growth model: Euler equation

I Then the last equation

−u′′(c)c ′(k)(kα − δk − c) = u′(c)(αkα−1 − δ − ρ)

is equal to

γ
c ′(k)

c
(kα − δk − c) = (αkα−1 − δ − ρ)

I This is the Euler equation in continuous time.



The Ramsey growth model: Euler equation
Before we attempt to solve the Euler equation, recall that we
had

kt+∆ + ∆ct = ∆kαt + (1−∆δ)kt

rearrange

kt+∆ − kt = ∆(kαt − δkt − ct)

Divide with ∆ and take limit ∆→ 0 to get

k̇t = kαt − δkt − ct

Or dropping time notation

k̇ = kα − δk − c



The Ramsey growth model: Euler equation
I Our Euler equation is

c ′(k)

c
(kα − δk − c) =

1

γ
(αkα−1 − δ − ρ)

or now

γ
c ′(k)

c
k̇ = (αkα−1 − δ − ρ)

I What is c ′(k)k̇? Recall chain rule

ċ =
∂ct
∂t

=
∂ct
∂k

∂k

∂t
= c ′(k)k̇

I Thus

ċ

c
=

1

γ
(αkα−1 − δ − ρ)



The Ramsey growth model: Exploring

I Two equations

ċ =
c

γ
(αkα−1 − δ − ρ)

k̇ = kα − δk − c

I Nullclines

0 = αkα−1 − δ − ρ
0 = kα − δk − c



The Ramsey growth model: Exploring

Capital,k
25 30 35 40 45

C
on

su
m

pt
io

n,
 c

1.8

2

2.2

2.4

2.6

2.8

3

3.2
" k=0
" c=0



The Ramsey growth model: Exploring

Capital,k
25 30 35 40 45

C
on

su
m

pt
io

n,
 c

1.8

2

2.2

2.4

2.6

2.8

3

3.2
" k=0
" c=0



The Ramsey growth model: Exploring

Capital,k
25 30 35 40 45

C
on

su
m

pt
io

n,
 c

1.8

2

2.2

2.4

2.6

2.8

3

3.2
" k=0
" c=0
Explosive paths



The Ramsey growth model: Exploring

Capital,k
25 30 35 40 45

C
on

su
m

pt
io

n,
 c

1.8

2

2.2

2.4

2.6

2.8

3

3.2
" k=0
" c=0
Explosive paths
Saddle path



The Ramsey growth model: Exploring

I How did I do that?

I I created a grid for k and c , and found ċ and k̇ through

ċ =
c

γ
(αkα−1 − δ − ρ)

k̇ = kα − δk − c

I Then I used Matlab’s command quiver(k,c,k̇,ċ)
I This creates the swarm of arrows

I I then used Matlab’s command streamline(k,c,k̇,ċ)
at various starting values to get the explosive paths.

I Lastly I solved for the saddle path and plotted it.



The Ramsey growth model: Euler equation solution

I Back to the “recursive” Euler

c ′(k)

c
(kα − δk − c) =

1

γ
(αkα−1 − δ − ρ)

I Solve for c

c =
c ′(k)(kα − δk)

1
γ

(αkα−1 − δ − ρ) + c ′(k)



The Ramsey growth model: Euler equation solution

Algorithm

1. Construct a grid for k .

2. For each point on the grid, guess for a value of c0.

3. Calculate the derivative as dc0=D*c0.

4. Find c1 from

c1 =
dc0(kα − δk)

1
γ

(αkα−1 − δ − ρ) + dc0

5. Back to step 3 with c1 replacing c0. Repeat until
convergence.

Beware: No guaranteed convergence. Update slowly. Fewer
gridpoints appears to provide some stability.



The Ramsey growth model: Euler equation solution

Algorithm

1. Construct a grid for k .

2. For each point on the grid, guess for a value of c0.

3. Calculate the derivative as dc0=D*c0.

4. Find c1 from

c1 =
dc0(kα − δk)

1
γ

(αkα−1 − δ − ρ) + dc0

5. Back to step 3 with c1 replacing c0. Repeat until
convergence.

Beware: No guaranteed convergence. Update slowly. Fewer
gridpoints appears to provide some stability.



The Ramsey growth model: Solution

kt

4 5 6 7 8 9

_ k
t

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Value function iteration

Euler equation iteration

Figure: Comparison of solution methods.



The Ramsey growth model: Solution

Time (quarters)

0 10 20 30 40 50 60 70 80 90 100

C
ap

it
al

6.25

6.3

6.35

6.4

6.45

6.5

6.55

6.6

6.65
Comparison

Euler equation iteration

Value function iteration

Figure: Comparison of solution methods.



More on continuous time Euler equations

I We derived the Euler equation in a slightly roundabout
way

1. Discrete time Bellman equation
2. To continuous time HJB equation
3. To continuous time Euler equation using the envelope

condition.

I This can be done more directly from the discrete time
Euler equation.



More on continuous time Euler equations

I The discrete time Euler equation is given by

u′(ct) = (1− ρ)(1 + αkα−1
t+1 − δ)u′(ct+1)

I In ∆ units of time

u′(ct) = (1−∆ρ)(1 + ∆(αkα−1
t+∆ − δ))u′(ct+∆)

I Use the approximation xt+∆ ≈ xt + ẋt∆ to get

u′(ct) = (1−∆ρ)(1 + ∆(αkα−1
t+∆ − δ))u′(ct + ċt∆)



More on continuous time Euler equations

u′(ct) = (1−∆ρ)(1 + ∆(αkα−1
t+∆ − δ))u′(ct + ċt∆)

I Move the u′(ct + ċt∆) term to the left-hand side and
expand

u′(ct)− u′(ct + ċt∆)

= ∆[αkα−1
t+∆ − δ − ρ− ρ∆(αkα−1

t+∆ − δ)]u′(ct + ċt∆)

I Divide by ∆ and take limits ∆→ 0

−u′′(ct)ċt = [αkα−1
t − δ − ρ]u′(ct)



More on continuous time Euler equations

−u′′(ct)ċt = [αkα−1
t − δ − ρ]u′(ct)

I Lastly, use the CRRA property to get

ċt
ct

=
1

γ
[αkα−1

t − δ − ρ]



More on continuous time Euler equations

I Now consider a stochastic model with a “good”, g , and a
“bad”, b, state

u′(cgt ) = (1−ρ)[(1−p)(1+zgt+1α(kg
t+1)α−1−δ)u′(cgt+1)

+ p(1 + zbt+1α(kb
t+1)α−1 − δ)u′(cbt+1)]

and

u′(cbt ) = (1−ρ)[(1−q)(1 +zgt+1α(kg
t+1)α−1−δ)u′(cgt+1)

+ q(1 + zbt+1α(kb
t+1)α−1 − δ)u′(cbt+1)]

I We will focus on the good state (the treatment of the
bad state is symmetric)



More on continuous time Euler equations
I Good state Euler equation in ∆ units of time

u′(cgt ) = (1−∆ρ)[(1−∆p)(1+∆(zgt+∆α(kg
t+∆)α−1−δ))

× u′(cgt+∆) + ∆p(1 + ∆(zbt+∆α(kb
t+∆)α−1− δ))u′(cbt+∆)]

I Use u′(cgt+∆) ≈ u′(cgt + ċgt ∆) again, move to the
left-hand side, divide by ∆ and take limits

− u′′(cgt )ċgt = (zgt α(kg
t )α−1 − δ − ρ))u′(cgt )

+ p(u′(cbt )− u′(cgt ))

I Or

ċgt
cgt

=
1

γ
(zgt α(kg

t )α−1 − δ − ρ)) + p
(u′(cbt )− u′(cgt ))

u′(cgt )



More on continuous time Euler equations

I For the bad state

ċbt
cbt

=
1

γ
(zbt α(kb

t )α−1 − δ − ρ)) + q
(u′(cbt )− u′(cgt ))

u′(cbt )

I These can be solved using the previous methods. The
only difference is that we now iterate on two equations
instead of one. But the procedure is the same.



More on continuous time Euler equations

I As a last step, I just want to give you a hint on how these
ideas can be applied in different settings.

I For instance, the Euler equation for a standard
deterministic monetary model is given by

u′(ct) = (1− ρ)(1 + it+1)
pt
pt+1

u′(ct+1)

I In ∆ units of time

u′(ct) = (1−∆ρ)(1 + ∆it+1)
pt

pt+∆
u′(ct+∆)



More on continuous time Euler equations

I Use the approximations u′(ct+∆) ≈ u′(ct + ċt∆), and
pt ≈ pt+∆ − ṗt∆ and rewrite

u′(ct) = (1−∆ρ)(1 + ∆it+∆)
pt+∆ − ṗt∆

pt+∆
u′(ct + ċt∆)

I Expand

u′(ct) = (1−∆ρ + ∆it+∆ −∆2it+∆ρ)(1− ṗt∆

pt+∆
)u′(ct + ċt∆)

I Thus

u′(ct)− u′(ct + ċt∆) = (−∆ρ + ∆it+∆ −∆2it+∆ρ)

× (1− ṗt∆

pt+∆
)u′(ct + ċt∆)− ṗt∆

pt+∆
u′(ct + ċt∆)



More on continuous time Euler equations
I Previous equation

u′(ct)− u′(ct + ċt∆) = (−∆ρ + ∆it+∆ −∆2it+∆ρ)

× (1− ṗt∆

pt+∆
)u′(ct + ċt∆)− ṗt∆

pt+∆
u′(ct + ċt∆)

I Divide by ∆

u′(ct)− u′(ct + ċt∆)

∆
= (−ρ + it+∆ −∆it+∆ρ)

× (1− ṗt∆

pt+∆
)u′(ct + ċt∆)− ṗt

pt+∆
u′(ct + ċt∆)

I And take limit ∆→ 0

ċt
ct

=
1

γ
(it −

ṗt
pt
− ρ)



The Mortensen-Pissarides model

I Continuous time is frequently used in the theoretical labor
literature.

I In the remainder of this lecture I will go through the
workhorse model developed by Christopher Pissarides and
Dale Mortensen.

I In today’s exercise you will be asked to solve this model.



The Mortensen-Pissarides model

I Continuous time is frequently used in the theoretical labor
literature.

I In the remainder of this lecture I will go through the
workhorse model developed by Christopher Pissarides and
Dale Mortensen.

I In today’s exercise you will be asked to solve this model.



The Mortensen-Pissarides model: Workers

I In the simplest case workers are risk-neutral and value a
job according to

Vt = wt + (1− ρ)[(1− δ)Vt+1 + δUt+1]

I The value of being unemployed is given by

Ut = b + (1− ρ)[(1− ft+1)Ut+1 + ft+1Vt+1]

I The variables wt and ft+1 will be endogenously
determined, but we will, for the moment, treat them as
exogenous.



The Mortensen-Pissarides model: Workers

I Let’s rewrite these equations in ∆ units of time

Vt = ∆wt + (1−∆ρ)[(1−∆δ)Vt+∆ + ∆δUt+∆]

Ut = ∆b + (1−∆ρ)[(1−∆ft+∆)Ut+1 + ∆ft+∆Vt+1]

I Or

Vt − Vt+∆ = ∆wt −∆[δ + ρ−∆δρ]Vt+∆

+ (1−∆ρ)∆δUt+∆

Ut − Ut+∆ = ∆b −∆[ft+∆ + ρ−∆ft+∆ρ]Ut+∆

+ (1−∆ρ)∆ft+∆Vt+∆



The Mortensen-Pissarides model: Workers

I Dividing through by ∆ gives

Vt − Vt+∆

∆
= wt − [δ + ρ−∆δρ]Vt+∆

+ (1−∆ρ)δUt+∆

Ut − Ut+∆

∆
= b − [ft+∆ + ρ−∆ft+∆ρ]Ut+∆

+ (1−∆ρ)ft+∆Vt+∆

I And taking limits ∆→ 0 yields

−V̇t = wt − (δ + ρ)Vt + δUt

−U̇t = b − (ft + ρ)Ut + ftVt



The Mortensen-Pissarides model: Workers

I These equations are commonly written as

ρVt = wt + V̇t + δ(Ut − Vt)

ρUt = b + U̇t + ft(Vt − Ut)

I Define the surplus of having a job as St = Vt −Ut , that is

(ρ + δ + ft)St = wt − b + Ṡt



The Mortensen-Pissarides model: Firms

I The value to a firm of having an employed worker is

Jt = zt − wt + (1− ρ)[(1− δ)Jt+1 + δWt+1]

I We will assume free entry, such that Wt = 0 for all t.

I Following the same procedure as before we find that in
continuous time

(ρ + δ)Jt = zt − wt + J̇t



The Mortensen-Pissarides model: Wages

I Collecting equations

ρSt = wt − b + Ṡt + (δ + ft)St

ρJt = zt − wt + J̇t − δJt

I Wages are set according to Nash bargaining, which are
renegotiated period-by-period

wt = argmax{Jηt S1−η
t }

I First order condition

ηSt = (1− η)Jt



The Mortensen-Pissarides model: Wages

I Expanding

η(wt − b + Ṡt + (δ + ft)St) = (1− η)(zt − wt + J̇t − δJt)

and using the fact that

St =
1− η
η

Jt , and Ṡt =
1− η
η

J̇t

gives

wt = ηb + (1− η)zt + ft(1− η)Jt

I Inserting into the firm’s value function gives

ρJt = η(zt − b) + J̇t − (ft(1− η) + δ)Jt



The Mortensen-Pissarides model: Matching

I Suppose that there are vt vacancies posted and ut
unemployed individuals. Then the measure of matches in
a given period is given as

Mt = ∆ψvωt u
1−ω
t

I The probability that an unemployed individual finds a job,
∆ft , is then given as

∆ft =
Mt

ut
= ∆ψθωt , with θ =

vt
ut



The Mortensen-Pissarides model: Matching

I The probability that a vacant position is filled, ∆ht , is
then given as

∆ht =
Mt

vt
= ∆ψθω−1

t

I Suppose the cost of posting a vacancy is given by ∆κ.
Free entry then ensures that

κ = htJt

I To see this more clearly, a firm that is considering posting
a vacancy faces the optimization problem

max
vt,i
{−κ∆vt,i + vt,i∆htJt}



The Mortensen-Pissarides model: Matching

I Lastly, employment, nt = 1− ut , satisfies the law of
motion

nt+∆ = (1− nt)∆ft + (1−∆δ)nt

which can be rearranged to

nt+∆ − nt
∆

= (1− nt)ft − δnt

taking limits

ṅt = (1− nt)ft − δnt



The Mortensen-Pissarides model:

The standard Mortensen-Pissarides model is therefore
characterized by the three equations

ρJt = η(zt − b) + J̇t − (ft(1− η) + δ)Jt

κ = htJt

ṅt = (1− nt)ft − δnt

in the three unknowns Jt , θt , ṅt .


	Introduction

