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Outline

1. Textbook heterogeneous agent model (no aggregate shocks)

* the Aiyagari-Bewley-Huggett model
2. Some theoretical results

3. Computations

e underlying paper “Income and Wealth Distribution in
Macroeconomics: A Continuous-Time Approach”



What this lecture is about

* Many interesting gquestions require thinking about distributions
¢ Why are income and wealth so unequally distributed?
* |s there a trade-off between inequality and economic growth?

* What are the forces that lead to the concentration of
economic activity in a few very large firms?

* Modeling distributions is hard
* closed-form solutions are rare
e computations are challenging
* Main idea: solving heterogeneous agent model = solving PDEs

¢ main difference to existing continuos-time literature:
handle models for which closed-form solutions do not exist



Solving het. agent model = solving PDEs

* More precisely: a system of two PDEs
1. Hamilton-dacobi-Bellman equation for individual choices
2. Kolmogorov Forward equation for evolution of distribution

Many well-developed methods for analyzing and solving these
http://www.princeton.edu/~moll/HACTproject.htm

* Apparatus is very general: applies to any heterogeneous agent
model with continuum of atomistic agents
1. heterogeneous households (Aiyagari, Bewley, Huggett,...)

2. heterogeneous producers (Hopenhayn,...

can be extended to handle aggregate shocks (Krusell-Smith,...)

* “When Inequality Matters for Macro and Macro Matters for
Inequality” (with Ahn, Kaplan, Winberry & Wolf)


http://www.princeton.edu/~moll/HACTproject.htm

Computational Advantages relative to Discrete Time

1. Borrowing constraints only show up in boundary conditions
¢ FOCs always hold with “="

2. “Tomorrow is today”
» FOCs are “static”, compute by hand: ¢~ = v,(a, y)

3. Sparsity
* solving Bellman, distribution = inverting matrix
e but matrices very sparse (“tridiagonal”)
e reason: continuous time = one step left or one step right

4. Two birds with one stone
« tight link between solving (HJB) and (KF) for distribution
e matrix in discrete (KF) is transpose of matrix in discrete (HJB)
 reason: diff. operator in (KF) is adjoint of operator in (HJB)



Real Payoff: extends to more general setups

® non-convexities

¢ stopping time problems

multiple assets

* aggregate shocks



What you’ll be able to do at end of this lecture

¢ Joint distribution of income and wealth in Aiyagari model
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What you’ll be able to do at end of this lecture

* Experiment: effect of one-time redistribution of wealth

Density g(a,z,t)

Wealth, a



What you’ll be able to do at end of this lecture

Video of convergence back to steady state

https://wuw.dropbox.com/s/op5u2nlifmmer2o/distribution_tax.mp47d1=0


https://www.dropbox.com/s/op5u2nlifmmer2o/distribution_tax.mp4?dl=0

Workhorse Model of Income and Wealth
Distribution in Macroeconomics



Workhorse Model of Income and Wealth Distribution

Households are heterogeneous in their wealth a and income y, solve
max g /OO e Ptu(c)dt st
{ct}t>0 0
ar=Yr+rar—c
vt € {y1, y»} Poisson with intensities A1, \»
ar=>a
® c;: consumption
u: utility function, v’ > 0, u” < 0
e p: discount rate
* 1, :interest rate
* a> —y;/r: borrowing limit e.g. if 2 = 0, can only save

Later: carries over to y; = more general processes, e.g. diffusion

Equilibrium (Huggett): bonds in fixed supply, i.e. aggregate a; = fixed



Typical Consumption and Saving Policy Functions

Consumption, ¢;(a)
Saving, s;(a)

I
a Wealth, a Wealth, a



Typical Stationary Distribution

—i(a)
--—-g2(a)

Densities, gj(a)




Equations for Stationary Equilibrium

pvi(a) = max u(c) +vj(a)(y; + ra—c) + Nj(v-j(a) —v(a))  (HJIB)

0= _%[%‘(a)gj(a)] = XNgj(a) + x_jg-;(a), (KF)

sj(a) = yj + ra — ¢j(a) = saving policy function from (HJB),

/Oo<gl(a> f (@) da=1, g2 0

S(r) = /OO agi(a)da+ /oo ags(a)da = B, B>0 (EQ)

¢ The two PDEs (HJB) and (KF) together with (EQ) fully characterize
stationary equilibrium



Transition Dynamics

Needed whenever initial condition # stationary distribution

Equilibrium still coupled systems of HJB and KF equations...

... but now time-dependent: v;(a, t) and g;(a, t)

See next slides for equations

Difficulty: the two PDEs run in opposite directions in time

* HJB looks forward, runs backwards from terminal condition

* KF looks backward, runs forward from initial condition



Transition Dynamics

B:/ agi(a, t)da+/ ago(a, t)da
a a

pvi(a, t) =max u(c) + B,v;(a, )(y; + r(t)a - )
+ XNi(vj(a t) —vj(a, t)) + Orvi(a, t),

0igj(a t) = = alsj(a t)gj(a, )] = Njgj(a. t) + A—jg-(a. 1),

sia.t) =y +r(t)a—q(a.t), glat)= ()" (8ay(a 1)),

o0
/ (01(a.t) + ga(a, ))da=1, g1,2 >0
a

¢ Given initial condition g; o(a), the two PDEs (HJB) and (KF)
together with (EQ) fully characterize equilibrium.

¢ Notation: for any function f, 0xf means %



Borrowing Constraints?

* Q: where is borrowing constraint a > a in (HJB)?
* A: “in” boundary condition

Result: v; must satisfy
vi(@ > (y+ra), j=12 (BC)

Derivation:

* the FOC still holds at the borrowing constraint

u'(¢i(a)) = v/(a) (FOO)
* for borrowing constraint not to be violated, need
si(a)=yj+ra—c¢(a) =20 (+)

* (FOC) and (x) = (BC).

See slides on viscosity solutions for more rigorous discussion

http://www.princeton.edu/~moll/viscosity_slides.pdf


http://www.princeton.edu/~moll/viscosity_slides.pdf

Plan

¢ New theoretical results:

1. analytics: consumption, saving, MPCs of the poor
2. closed-form for wealth distribution with 2 income types
3. unique stationary equilibrium if IES > 1 (sufficient condition)
4. “soft” borrowing constraints
Note: for 1., 2. and 4. analyze partial equilibrium with r < p
e Computational algorithm:
¢ problems with non-convexities

e transition dynamics



Result 1: Consumption, Saving Behavior of the Poor

Consumption/saving behavior near borrowing constraint depends on:
1. tightness of constraint
2. propertiesof uasc — 0

Assumption 1:

As a — a, coefficient of absolute risk aversion R(c) := —u"(c)/u'(¢c)

remains finite
u’(y1 + ra)

u'(y1+ra)
¢ will show: A1 = borrowing constraint “matters” (in fact, it's an <)

How to read A17?
e “standard” utility functions, e.g. CRRA, satisfy — u O) = 00

e hence for standard utility functions A1 equivalentto a > —y, /r, i.e.
constraint matters if it is tighter than “natural borrowing constraint”

* but weaker: e.g. if u’(c) = %, constraint matters even if a = —%



Result 1: Consumption, Saving Behavior of the Poor

Rough version of Proposition: under A1 policy functions look like this

Consumption, ¢;(a)
Saving, s;(a)
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Result 1: Consumption, Saving Behavior of the Poor

Proposition: Assume r < p, y1 < y» and that A1 holds.
Then saving and consumption policy functions close to a = a satisfy

si(a) ~ —\/2v1\/a—a
a(a)~y1 +ra++/2vi\/a—a

V1
2(a— a)

1

/ J—

aga)~r+ >

where v; = constant that depends on r, p, A1, A> etc — see next slide

Note: “f(a) ~ g(a)” means lim,4f(a)/g(a) = 1, “f behaves like g close to a”



Result 1: Consumption, Saving Behavior of the Poor

Corollary: The wealth of worker who keeps y; converges to borrowing
constraint in finite time at speed governed by vy:

a(t)—QN%(T—t)Q, T := “hitting time” = An-a)  og<t<T

V1

Proof: integrate a(t) = —v/2v1+/a(t) — a
And have analytic solution for speed

(p—r)d'(a)+ M (a) - v())
_U”(gl)
~ (p— r)ES(ci)ct + Mi(c — c1)

V=



Intuition for Result 1: Two Special Cases

¢ What's the role of A1? And why the square root?
¢ Explain using two special cases with analytic solution

* Both cases: no income uncertainty



Intuition for Result 1: Two Special Cases

e Special case 1: A1 holds, hit constraint
(a) Consumption (b) Savings (c) Wealth
OF====== —_

Consumption, c(t)
Savings, a(t)
Wealth, a(t)

=l

<

Time, t Time, ¢ Time, ¢

* Special case 2: A1 violated, approach constraint asymptotically

(a) Consumption (b) Savings (c) Wealth

Consumption, ¢(t)
Savings, a(t
Wealth, a(t)

<

Time, ¢ Time, ¢ Time, ¢



Intuition for Result 1: Two Special Cases

Special case 1: hit constraint
* exponential utility v/(c) = e~9¢, tight constraint
1
C:§(r—p), a=y+ra—c, a>0

* satisfies Al: — 4 = 6 < co. Solution:
c(t)y=y+v(T —1t), a(t)= g(T _ t)2, . %

Special case 2: only approach constraint asymptotically

e CRRA utility u'(c) = ¢™7, loose constraint
¢ 1 y
c fy(r 0), a=y-+ra—c, a>a p
_uvtra) a5 2 — a. Solution:

e violates A1: TFra)
c(t)=y+(r+mna(t), a(t)—a=(ag—a)e ",

. p=r
n- Y



Intuition for Result 1: Two Special Cases

e Special case 1: A1 holds, hit constraint
(a) Consumption (b) Savings (c) Wealth
OF====== —_

Consumption, c(t)
Savings, a(t)
Wealth, a(t)

=l

<

Time, t Time, ¢ Time, ¢

* Special case 2: A1 violated, approach constraint asymptotically

(a) Consumption (b) Savings (c) Wealth

Consumption, ¢(t)
Savings, a(t
Wealth, a(t)

<

Time, ¢ Time, ¢ Time, ¢



Consumption, Saving Behavior of the Rich

e Skip this today. See paper.



Marginal Propensities to Consume and Save

* So far: have characterized cj(a) # MPC over discrete time interval

Definition: The MPC over a time period T is given by
MPC;(a) = Cj.(a), where

.
Cir(a)=E [/ ci(ar)dtlag = a,yo =Y
0

Lemma: If 7 sufficiently small so that no income switches, then
MPC; -(a) ~ min{7cj(a), 1+ 7r}

Note: MPC; - (a) bounded above even though c¢j(a) - ccasal a

If new income draws before T, no more analytic solution

But straightforward computation using Feynman-Kac formula



Using the Formula for v to Better Understand MPCs

* Consider dependence of low-income type’s MPC1 +(a) on y;

1
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e Why hump-shaped?!? Answer: MPC; ,(a) proportional to
1 %1 1
/ - /1 ~ N B
c(a)~r+ 2\ 2G—a) “ (p f),ygl + (e —a)
and note that ¢c; = y; +ra

e Can see: increase in y; has two offsetting effects



Result 2: Stationary Wealth Distribution

¢ Recall equation for stationary distribution

0=-— %[Sj(a)gj(a)l = Ajgj(a) + A-jg-(a) (KF)

¢ Lemma: the solution to (KF) is

Kj a )\1 >\2
9(a) = [ o0 (—/a (st * <>d>>

with k1, k> pinned down by g;’s integrating to one

* Features of wealth distribution:
« Dirac point mass of type y; individuals at constraint G;(a) > 0
« thin right tail: g(a) ~ &(amax — a)**/¢>71, i.e. not Pareto
e see paper for more

¢ | ater in paper: extension with Pareto tail (Benhabib-Bisin-Zhu)



Result 2: Stationary Wealth Distribution

Densities, gj(a)

i~

Wealth, a

If
f
I
I
|
a

Note: in numerical solution, Dirac mass = finite spike in density



General Equilibrium: Existence and Uniqueness
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Stationary Equilibrium

oo

Asset Supply S(r):/ agi(a; r)da+/ ag>(a; r)da

¢ Proposition: a stationary equilibrium exists



Result 3: Uniqueness of Stationary Equilibrium

Proposition: Assume that the |ES is weakly greater than one

/
u'(c) >1 forallc >0,

IES(c) := RO

and that there is no borrowing a > 0. Then:
1. Individual consumption ¢;(a; r) is strictly decreasing in r
2. Individual saving s;(a; r) is strictly increasing in r
3. r 1= CDF Gj(a; r) shifts right in FOSD sense
4. Aggregate saving S(r) is strictly increasing = uniqueness

Note: holds for any labor income process, not just two-state Poisson



Uniqueness: Proof Sketch

* Parts 2 to 4 direct consequences of part 1 (c;(a; r) decreasing in r)

e = focus on part 1: builds on nice result by Olivi (2017) who
decomposes Oc¢;/0r into income and substitution effects

e Lemma (Olivi, 2017): ¢ response to change in r is

aCJ(a) _ 1 T 7ft£5ds ’
ar = mEO‘/O e u (Ct)dt+

1 T
u//(Co)EO,/o e 95/ (c)arDacedt

substitution effect<0 income effect>0

where £ .= p—r+ 0,¢; and T := inf{t > 0la; = 0} = time at which hit 0

* We show: IES(c) := —% > 1 = substitution effect dominates

= 0cj(a)/0r < 0, i.e. consumption decreasing in r



Result 4: “Soft” Borrowing Constraints

* Empirical wealth distributions:
1. individuals with positive wealth
2. individuals with negative wealth

3. spike at close to zero net worth

Does not square well with Aiyagari-Bewley-Huggett model

Simple solution: “soft” borrowing constraint = wedge between
borrowing and saving r

Paper: first theoretical characterization of “soft” constraint
e square root formulas

¢ Dirac mass at zero net worth



Computations for
Heterogeneous Agent Model



Computational Advantages relative to Discrete Time

1. Borrowing constraints only show up in boundary conditions
¢ FOCs always hold with “="

2. “Tomorrow is today”
* FOCs are “static”, compute by hand: ¢~ = v/(a)

3. Sparsity
* solving Bellman, distribution = inverting matrix
e but matrices very sparse (“tridiagonal”)
e reason: continuous time = one step left or one step right

4. Two birds with one stone
* tight link between solving (HJB) and (KF) for distribution
e matrix in discrete (KF) is transpose of matrix in discrete (HJB)
¢ reason: diff. operator in (KF) is adjoint of operator in (HJB)



Computations for Heterogeneous Agent Model

e Hard part: HJB equation

e Easy part: KF equation. Once you solved HJB equation, get KF
equation “for free”

e System to be solved
pvi(a) = max u(c) +vi(a)(y1 + ra—c) + M(va(a) — vi(a))
pva(a) = max u(c) + va(a)(y2 + ra—c) + Xa(vi(a) — v2(a))
0=~ 51(2)91(a)] - 2161(3) + X202(2)

0= _%[52(3)92(3)] —X2g2(a) + Mgi(a)
1= /OO gi(a)da + /oo g2(a)da

B:/ooagl(a)daJr/Oo aga(a)da := S(r)



Bird’s Eye View of Algorithm for Stationary Equilibria

* Use finite difference method:
http://www.princeton.edu/~moll/HACTproject.htm

¢ Discretize state space a;, i = 1, ..., | with step size Aa
/ Vitl,) — Vij Vij = Vi1,
vi(ai) Aa Aa
vi(a1) g1(a1)
Denote v = : , g= : , dimension =2/ x 1
va(ar) g92(ar)

¢ End product of FD method: system of sparse matrix equations
ov =u(v) + A(v; r)v
0=A(v;r)'g
B =5(g:r)

which is easy to solve on computer


http://www.princeton.edu/~moll/HACTproject.htm

Visualization of A (output of spy (4) in Matlab)
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spy(A)

Transition Dynamics: Intuition in Growth Model

* Next two slides: intuition for algorithm in rep agent growth model
¢ In three slides: solve Huggett model in exactly analogous fashion
e Equilibrium in growth model is solution to:

Lt -p)

ct) v
K(t) = w(t) + r()K(t) = C(1)
w(t) = (1= a)K(t)%, r(t) = ak(t)**

K(0) = Ko, lim C(T) = Cuo
T—o0

* For numerical solution, solve on [0, T for large T with C(T) = C

* Define w(r) = (1 — a)(a/r)ﬁ = only one price, r(t)



Transition Dynamics: Intuition in Growth Model

Equilibrium is therefore solution to
ol =em-0. cn=C
K(t) = w(r(t)) + r(t)K(t) — C(t), K(0)=
r(t) = aK(t)* !
Define excess capital demand D¢({r(s)}s>0) as follows:
1. given {r(s)}s>0, solve (1) backward in time
2. given {C(s)}s>0, solve (2) forward in time

3. given {K(s)}s>0, compute D¢({r(s)}s>0) = aK(t)*~t — r(t)

Then find {r(s)}s>o0 such that
Di({r(s)}s>0) =0 allt

Different options for solving this: (i) ad hoc, (i) Newton-based methods



Transition Dynamics in Huggett Model

Natural generalization of algorithm for stationary equilibrium
¢ denote v/; = v;(a;, t") and stack into v"

* denote g, = gi(aj, t") and stack into g”

e System of sparse matrix equations for transition dynamics:

n_ n+1 AV )y v —wn
v =u(v") + ANV T 4 A7
1
gn"l‘At— gn _ A(vn,rn)Tgn+ly
B =35(g"r"),

Terminal condition for v: vV = v, (steady state)

Initial condition for g: g = go.



An MIT Shock in the Aiyagari Model

e Production: Y; = Fi(K, L) = AtK*L1™® dA; = v(A — Ap)dt

http://www.princeton.edu/~moll/HACTproject/aiyagari_poisson_MITshock.m

Aggregate Productivit Aggregate Capital Stock
0005 goreg Y 03 ggregate cap 0039
of - - 0200 00388
00995 0.208 00386
0099 0.207 00384
00985 0296 00382
0098 0295 0038
00975 0204 00378
0097 0203 00376
0 0 40 0 8 100 o 0 40 6 80 100 0 0 a0 6 s 100
Year Year Year
Interest Rate Wealth Gini income Gini
0049 089 0262
00485
0894 o2e1
0048
0892
00475 024
0087 089
0239
00465 0888
0046 0238
[T
00455
0884 0237
0045
00445 0882 023
o 20 40 60 80 100 o 0 40 e 8 100 0 20 40 e 80 100



http://www.princeton.edu/~moll/HACTproject/aiyagari_poisson_MITshock.m

Generalizations and
Other Applications



A Model with a Continuum of Income Types

¢ Assume idiosyncratic income follows diffusion process

dy: = u(yr)dt + o(ye)dW;

Reflecting barriers at y and y

Value function, distribution are now functions of 2 variables:

v(a,y) and g(a,y)

= HJB and KF equations are now PDEs in (a, y)-space



It doesn’t matter whether you solve ODEs or PDEs

= everything generalizes

http://www.princeton.edu/~moll/HACTproject/huggett_diffusion_partialeq.m


http://www.princeton.edu/~moll/HACTproject/huggett_diffusion_partialeq.m

Saving Policy Function and Stationary Distribution

Y
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Density g(a,y)

o
°
&

0

Wealth, a
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* Analytic characterization of MPCs: c(a, y) ~ v/2v(y)y/a — a with

2 2
1) = (p = ESEEE) + () - TP ) )+ Ze)

where P(c) := —u"(c)/u"(c) = absolute prudence, and c(y) = c(a,y)



Other Applications — see Paper

* Non-convexities: indivisible housing, mortgages, poverty traps

Fat-tailed wealth distribution

Multiple assets with adjustment costs (Kaplan-Moll-Violante)

Stopping time problems



Aggregate Shocks: “When Inequality Matters
for Macro and Macro Matters for Inequality”



See these slides
http://www.princeton.edu/~moll/WIMM_slides.pdf


http://www.princeton.edu/~moll/WIMM_slides.pdf

Good Research Topics and Open Questions



Open Questions

Title of course/lecture “Income and Wealth Distribution in Macro”
¢ Aiyagari-Bewley-Huggett model = rich theory of wealth distribution
» caveat: ability to match data? See problem set

* either way, important building block for richer models

... but no deep theory of income distribution
e laborincome = w x z, z = ex0genous process
e capital income = r x a, i.e. proportional to wealth

Can we do better?
* idea: marry with assignment model = income = w(z), w” # 0
¢ References:
® Sattinger (1979), “Differential Rents and the Distribution of Earnings”
* these Acemoglu lecture notes http://economics.mit.edu/files/10480
® Gabaix and Landier (2008), “Why has CEO Pay Increased so Much?”
* Acemoglu and Autor (2011), “Skills, Tasks and Technologies”


http://economics.mit.edu/files/10480

Open Question: Less Restrictive Assignment Models?

e Sattinger setup, notation in http://economics.mit.edu/files/10480
e Workers with skill s, CDF H(s)

¢ Firms with productivity x, CDF G(x)

¢ One-to-one matching, output f(x, s)

* Result: if fys(x,s) > 0all (x, s) (f is supermodular), then “positive
assortative matching” (PAM), assignment equation is

x=¢(s) with ¢ >0
* Wage function w(s) found from w’'(s) = fs(¢(s),s) = w”(s) > 0
¢ Open question:

¢ supermodularity = strong, sufficient condition for obtaining
assignment equation x = ¢(s)

¢ possible to obtain assignment equation under weaker
assumptions than supermodularity, still able to say something?


http://economics.mit.edu/files/10480

Appendix



Derivation of Poisson KF Equation

e Work with CDF (in wealth dimension)
Gj(a t) :==Pr(a < a i = yi)
* Income switches from y; to y_; with probability A);
* Over period of length A, wealth evolves as &4 = ar + Asj(4;)
e Similarly, answer to question “where did 3,1 o come from?” is
ar = aryn — Asj(arin)
* Momentarily ignoring income switches and assuming s;(a) < 0

Pr(depa < a) = Pr(d: < a)+Pr(a< & <a-—Asj(a)) =Pr(a < a—Asj(a))

already below a cross threshold a
* Fraction of people with wealth below a evolves as
Pr(deia < a,Vera = yj) = (1 = AXj) Pr(a: < a— Asj(a), e = y))
+AN; Pr(a: <a—As_j(a), Jr = y—j)

* Intuition: if have wealth < a — As;(a) at t, have wealth < aat t + A



Derivation of Poisson KF Equation

* Subtracting G/(a, t) from both sides and dividing by A
Gj(a,t+A)—Gj(a, t)  Gjla—Asi(a), t) —Gj(a t)
A o A
— \Gy(a— Asi(a), 1) + AL;G_j(a — As_(a). )

¢ Taking the limitas A — 0
0:Gj(a, t) = —sj(a)0,Gj(a, t) — N\jGj(a, t) + A_;G_j(a, t)
where we have used that
- Gj(a—x,t) — Gj(a, t)SJ_

6= bs5(2). ) = Gia.t)
lim =1
A—0 A x—0 X
— —5(2)2:G,(a. 1)

* Intuition: if s;(a) < 0, Pr(a;: < a, ¥+ = y;) increases at rate g;(a, t)

(a)

* Differentiate w.r.t. a and use gj(a, t) = 0,Gj(a, t) =
Oegj(a, t) = —0alsj(a, t)gj(a, t)] — Ajgj(a t) + A—jg-j(a, t)



Accuracy of Finite Difference Method?

Two experiments:
1. special case: comparison with closed-form solution

2. general case: comparison with numerical solution computed using
very fine grid



Accuracy of Finite Difference Method, Experiment 1

Consumption

® S€ee€ http://www.princeton.edu/~moll/HACTproject/HJB_accuracyl.m
* Recall: get closed-form solution if
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http://www.princeton.edu/~moll/HACTproject/HJB_accuracy1.m

Accuracy of Finite Difference Method, Experiment 1

Consumption

® S€ee€ http://www.princeton.edu/~moll/HACTproject/HJB_accuracyl.m

* Recall: get closed-form solution if

* exponential utility v'(c) = ¢~

6c

e noincomeriskand r=0sothata=y — c(and a > 0)

=

s(a) = —V2va,

c(a) =y +V2va, Vo=

D

e Accuracy with / = 30 grid points (c(a) = numerical solution)
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Accuracy of Finite Difference Method, Experiment 2

® S€ee€ http://www.princeton.edu/~moll/HACTproject/HJB_accuracy2.m
¢ Consider HJB equation with continuum of income types

pv(a,y) = max u(c)+0,v(a,y)(y+ra—c)+u(y)d,v(a, )+ 729, v(a, y)

e Compute twice:
1. with very fine grid: / = 3000 wealth grid points
2. with coarse grid: | = 300 wealth grid points
then examine speed-accuracy tradeoff (accuracy = error in agg C)

Speed (in secs) | Aggregate C
| = 3000 0.916 1.1541
I =300 0.076 1.1606
row 2/row 1 0.0876 1.005629

* j.e. going from / = 3000 to / = 300 yields > 10x speed gain and
0.5% reduction in accuracy (but note: even | = 3000 very fast)

e Other comparisons? Feel free to play around with HIB_accuracy2.m
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