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Outline

1. Gabaix (2009) “Power Laws in Economics and Finance”

2. Literature on inequality and random growth

3. Gabaix-Lasry-Lions-Moll (2016) “The Dynamics of Inequality”

• tools: differential operators as transition matrices
• will be extremely useful for analysis, computation of

fully-fledged heterogeneous agent models later on
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Power Laws

• Definition 1: S follows a power law (PL) if there exist k, ζ > 0 s.t.

Pr(S > x) = kx−ζ, all x

• S follows a PL⇔ S has a Pareto distribution

• Definition 2: S follows an asymptotic power law if there exist
k, ζ > 0 s.t.

Pr(S > x) ∼ kx−ζ as x →∞

• Note: for any f , g f (x) ∼ g(x) means limx→∞ f (x)/g(x) = 1

• Surprisingly many variables follow power laws, at least in tail
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City Size

• Order cities in US by size (NY as first, LA as second, etc)

• Graph ln Rank (lnRankNY = ln 1, lnRankLA = ln 2) vs. ln Size

• Basically plot log quantiles ln Pr(S > x) against ln x
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City Size

• Surprise 1: straight line, i.e. city size follows a PL

Pr(S > x) = kx−ζ

• Surprise 2: slope of line ≈ −1, regression:

lnRank = 10.53− 1.005 lnSize

i.e. city size follows a PL with exponent ζ ≈ 1

Pr(S > x) = kx−1.

• A power law with exponent ζ = 1 is called “Zipf’s law”

• Two natural questions:
1. Why does city size follow a power law?
2. Why on earth is ζ ≈ 1 rather than any other number?
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Where Do Power Laws Come from?

• Gabaix’s answer: random growth

• Economy with continuum of cities

• Sit : size of city i at time t

Sit+1 = γ
i
t+1S

i
t , γ it+1 ∼ f (γ) (RG)

• Sit follows random growth process⇔ logSit follows random walk

• Gabaix shows: (RG) + stabilizing force (e.g. minimum size)⇒
power law. Use “Champernowne’s equation”

• Easier: continuous time approach
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Random Growth Process in Continuous Time

• Consider random growth process over time intervals of length ∆t

Sit+∆t = γ
i
t+∆tS

i
t

• Assume in addition that γ it+∆t takes the particular form

γ it+∆t = 1 + g∆t + νε
i
t

√
∆t, εit ∼ N (0, 1)

• Substituting in

Sit+∆t − Sit = (g∆t + νεit
√
∆t)Sit

• Or as ∆t → 0
dSit = gS

i
tdt + νS

i
tdW

i
t

i.e. a geometric Brownian motion!
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Stationary Distribution

• Assumption: city size follows random growth process
dSit = gS

i
tdt + νS

i
tdW

i
t

• Does this have a stationary distribution? No! In fact
logSit ∼ N ((g − ν2/2)t, ν2t)

⇒ distribution explodes.

• Gabaix insight: random growth process + stabilizing force does
have a stationary distribution and that’s a PL

• Note: Gabaix uses “friction” rather than “stabilizing force”
• use the latter because “friction” already means something else

• Simplest possible stabilizing force: g < 0 and minimum size Smin
• if process goes below Smin it is brought back to Smin

(“reflecting barrier”)
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Stationary Distribution

• Use Kolmogorov Forward Equation

• Recall: stationary distribution satisfies

0 = −
d

dx
[µ(x)f (x)] +

1

2

d2

dx2
[σ2(x)f (x)]

• Here geometric Brownian motion: µ(x) = gx, σ2(x) = ν2x2

0 = −
d

dx
[gxf (x)] +

1

2

d2

dx2
[ν2x2f (x)]
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Stationary Distribution

• Claim: solution is a Pareto distribution, f (x) = Sζminx−ζ−1

• Proof: Guess f (x) = Cx−ζ−1 and verify

0 = −
d

dx
[gxCx−ζ−1] +

1

2

d2

dx2
[ν2x2Cx−ζ−1]

= Cx−ζ−1
[
gζ +

ν2

2
(ζ − 1)ζ

]
• This is a quadratic equation with two roots ζ = 0 and

ζ = 1−
2g

ν2

• For mean to exist, need ζ > 1⇒ impose g < 0

• Remains to pin down C. We need

1 =

∫ ∞
Smin

f (x)dx =

∫ ∞
Smin

Cx−ζ−1dx ⇒ C = Sζmin.□
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Tail inequality and Zipf’s Law

• “Tail inequality” (fatness of tail)

η :=
1

ζ
=

1

1− 2g/ν2

is increasing in g and ν2 (recall g < 0)

• Why would Zipf’s Law (ζ = 1) hold? We have that

S̄ =

∫ ∞
Smin

xf (x)dx =
ζ

ζ − 1Smin

⇒ ζ =
1

1− Smin/S̄
→ 1 as Smin/S̄ → 0.

• Zipf’s law obtains as stabilizing force becomes small
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Alternative Stabilizing Force: Death

• No minimum size

• Instead: die at Poisson rate δ, get reborn at S∗

• Can show: correct way of extending KFE (for x ̸= S∗) is

∂f (x, t)

∂t
= −δf (x, t)−

∂

∂x
[µ(x)f (x, t)] +

1

2

∂2

∂x2
[
σ2(x)f (x, t)

]
• Stationary f (x) satisfies (recall µ(x) = gx, σ2(x) = ν2x2)

0 = −δf (x)−
d

dx
[gxf (x, t)] +

1

2

d2

dx2
[
ν2x2f (x)

]
(KFE’)
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Alternative Stabilizing Force: Death

• To solve (KFE’), guess f (x) = Cx−ζ−1

0 = −δ + ζg +
ν2

2
ζ(ζ − 1)

• Two roots: ζ+ > 0 and ζ− < 0. General solution to (KFE’):

⇒ f (x) = C−x
−ζ−−1 + C+x

−ζ+−1 for x ̸= S∗

• Need solution to be integrable∫ ∞
0

f (x)dx = f (S∗) +

∫ S∗
0

f (x)dx +

∫ ∞
S∗

f (x)dx <∞

• Hence C− = 0 for x > S∗, otherwise f (x) explodes as x →∞

• And C+ = 0 for x < S∗, otherwise f (x) explodes as x → 0
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Alternative Stabilizing Force: Death

• Solution is a Double Pareto distribution:

f (x) =

{
C(x/S∗)

−ζ−−1 for x < S∗

C(x/S∗)
−ζ+−1 for x > S∗
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Generalizations and Other Stabilizing Forces

• See Appendix D of “The Dynamics of Inequality” for a pretty
exhaustive list

• death and rebirth with Sit ∼ ψ(S)
• additive term

dSit = ydt + gS
i
tdt + vS

i
tdW

i
t , g < 0, y > 0

• ....

• In general, distribution will not be exactly Pareto or exactly
double-Pareto

• But often, under quite weak assumptions, it will still follow
asymptotic power law, i.e.

Pr(S > x) ∼ kx−ζ as x →∞
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Literature: Inequality and Random Growth

• Income distribution
• Champernowne (1953), Simon (1955), Mandelbrot (1961), Nirei

(2009), Toda (2012), Kim (2013), Jones and Kim (2013), Aoki and
Nirei (2014),...

• Wealth distribution
• Wold and Whittle (1957), Stiglitz (1969), Cowell (1998), Nirei and

Souma (2007), Panousi (2012), Benhabib, Bisin, Zhu (2012, 2014),
Piketty and Zucman (2014), Piketty and Saez (2014), Piketty (2015),
Benhabib and Bisin (2016) is nice survey

• Dynamics of income and wealth distribution
• Aoki and Nirei (2014), Gabaix, Lasry, Lions and Moll (2016), Hubmer,

Krusell, Smith (2016)
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Literature: Inequality and Random Growth

From Piketty “About Capital in the Twenty-First Century” (AEA P&P, 2015)

• “Technically, one can indeed show that if shocks take a
multiplicative form, then the inequality of wealth converges toward
a distribution that has a Pareto shape for top wealth holders [...],
and that the inverted Pareto coefficient (an indicator of top end
inequality) is a steeply rising function of the gap r − g.”

• Idea: µ(x) = (r − g − constant)x

• In book this point unfortunately gets lost in discussion about how
r − g affects capital share

• factor income vs personal income distribution
• no general connection between capital share and inequality

(see end of Lecture 5)
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The Dynamics of Inequality
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Question
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• In U.S. past 40 years have seen rapid rise in top income inequality
• Why?
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Question

• Main fact about top inequality (since Pareto, 1896): upper tails of
income (and wealth) distribution follow power laws

• Equivalently, top inequality is fractal

1. ... top 0.01% are X times richer than top 0.1%,... are X times
richer than top 1%,... are X times richer than top 10%,...

2. ... top 0.01% share is fraction Y of 0.1% share,... is fraction Y
of 1% share, ... is fraction Y of 10% share,...
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Evolution of “Fractal Inequality”
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• S(0.1)
S(1) = fraction of top 1% share going to top 0.1%

• S(1)
S(10) = analogous
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This Paper

• Starting point: existing theories that explain top inequality at point
in time

• differ in terms of underlying economics
• but share basic mechanism for generating power laws:

random growth

• Our ultimate question: which specific economic theories can also
explain observed dynamics of top income inequality?

• e.g. falling income taxes? superstar effects?

• What we do:
• study transition dynamics of cross-sectional income

distribution in theories with random growth mechanism
• contrast with data, rule out some theories, rule in others

• Today: income inequality. Paper: also wealth inequality.
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Main Results

• Transition dynamics of standard random growth models
too slow relative to those observed in the data

• analytic formula for speed of convergence
• transitions particularly slow in upper tail of distribution
• jumps cannot generate fast transitions either

• Two parsimonious deviations that generate fast transitions
1. heterogeneity in mean growth rates
2. “superstar shocks” to skill prices

• Both only consistent with particular economic theories
• Rise in top income inequality due to

• simple tax stories, stories about Var(permanent earnings)
• rise of “superstar” entrepreneurs or managers
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A Random Growth Theory of Income Dynamics

• Continuum of workers, heterogeneous in human capital hit
• die/retire at rate δ, replaced by young worker with hi0
• Wage is wit = ωhit
• Human capital accumulation involves

• investment
• luck

• “Right” assumptions⇒ wages evolve as
d logwit = µdt + σdZit

• growth rate of wage wit is stochastic
• µ, σ depend on model parameters
• see Appendix C: log-utility + constant returns (same trick as
AK-RBC model in Lecture 4)
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Stationary Income Distribution
• Result: The stationary income distribution has a Pareto tail

Pr(w̃ > w) ∼ Cw−ζ

Income, w

D
en

si
ty

, f
(w

)

Log Income, x
Lo

g 
D

en
si

ty
, l

og
 p

(x
)

p(x)= ζ e-ζ x

← slope = -ζ

• Convenient to work with log income xt = logwt
Pr(w̃ > w) ∼ Cw−ζ ⇔ Pr(x̃ > x) ∼ Ce−ζx

• Tail inequality 1/ζ increasing in µ, σ, decreasing in δ
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Stationary Income Distribution
• Have xit = logwit follows

dxit = µdt + σdZit

• Need additional “stabilizing force” to ensure existence of stat. dist.
• income application: death/retirement at rate δ
• alternative: reflecting barrier

• Distribution p(x, t) satisfies (ψ(x) = distribution of entry wages)

pt = −µpx +
σ2

2
pxx − δp + δψ (∗)

• With reflecting barrier at x = 0, have boundary condition

0 = −µp(0, t) +
σ2

2
px(0, t)

Derivation:
∫∞
0 p(x, t)dx = 1 for all t, and hence from (∗)

0 =

∫ ∞
0

ptdx =

[
−µp +

σ2

2
px

]∞
0 26



Stationary Income Distribution

• Stationary Distribution p∞(x) satisfies

0 = −µpx +
σ2

2
pxx − δp + δψ

• Find solution via guess-and-verify: plug in p(x) = Ce−ζx

0 = µζ +
σ2

2
ζ2 − δ + δ

ψ(x)

Ce−ζx

• Assume limx→∞ ψ(x)/e−ζx = 0⇒ last term drops for large x & ζ
solves

0 = µζ +
σ2

2
ζ2 − δ

with positive root

ζ =
−µ+

√
µ2 + 2σ2δ

σ2

• Tail inequality η = 1/ζ increasing in µ, σ, decreasing in δ
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Other Theories of Top Inequality

• We confine ourselves to theories that generate power laws

• random growth
• models with superstars (assignment models) – more later

• Example of theories that do not generate power laws, i.e. do not
generate fractal feature of top income inequality:

• theories of rent-seeking (Benabou and Tirole, 2015; Piketty,
Saez and Stantcheva, 2014)

• someone should write that “rent-seeking⇒ power law” paper
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Transitions: The Thought Experiment

• Suppose economy is in Pareto steady state
• At t = 0, σ ↑. Know: in long-run→ higher top inequality

Log Income, x
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g 
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, l
og

 p
(x

)

p(x)= ζ e-ζ x

← slope = -ζ

Log Income, x
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g 

D
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, l
og
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(x

)

Old steady state

New steady state

• What can we say about the speed at which this happens?
• Which part of the distribution moves first?
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Instructive Special Case: σ = 0 (“Steindl Model”)

• In special case σ = 0, can solve full transition dynamics
• wt grows at rate µ, gets reset to w0 = 1 at rate δ
• stationary distribution f (w) = ζw−ζ, ζ = δ/µ
• stationary distribution of xt = logwt : p(x) = ζe−ζx , ζ = δ/µ
• at t = 0, µ ↑. Know from ζ = δ/µ: in long-run, top inequality ↑
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• What can we say about the speed at which this happens?
• Which parts of the distribution move first?
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Transition in Steindl Model

• Denote
• old steady state distribution: p0(x) = αe−αx

• new steady state distribution: p∞(x) = ζe−ζx

• Can show: for t, x > 0 density satisfies

∂p(x, t)

∂t
= −µ

∂p(x, t)

∂x
− δp(x, t), p(x, 0) = αe−αx (∗)

• Result: the solution to (∗) is

p(x, t) = ζe−ζx1{x≤µt} + αe
−αx+(α−ζ)t1{x>µt}

where 1{·} = indicator function
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Transition in Steindl Model
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• transition is slower in upper tail: it takes time τ(x) = x/µ for the
local PL exponent to converge to its steady state value ζ

• related to slow transition: crazy (age,income) distribution (Luttmer)
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General Case

Log Income, x
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General Case

• Recall Kolmogorov Forward equation for p(x, t)

pt = −µpx +
σ2

2
pxx − δp + δψ

• Question: at what speed does p(x, t) converge to p∞(x)?

• need a “distance measure”

• Use L1 norm:

||p(x, t)− p∞(x)|| :=
∫ ∞
−∞
|p(x, t)− p∞(x)|dx

• measures average distance between p and p∞

• Later: more general distance measures
34



General Case: Average Speed of Convergence

• Proposition: p(x, t) converges to stationary distrib. p∞(x)
• rate of convergence

λ := − lim
t→∞

1

t
log ||p(x, t)− p∞(x)|| (∗)

• without reflecting barrier
λ = δ

• with reflecting barrier

λ =
1

2

µ2

σ2
1{µ<0} + δ

• Intepretation of (∗): exponential convergence at rate λ
||p(x, t)− p∞(x)|| ∼ ke−λt as t →∞

• Half life is t1/2 = ln(2)/λ⇒ precise quantitative predictions
35



Before proving this, let’s take a step back...

• ... and take a somewhat different perspective on the Kolmogorov
Forward equation

• exploit heavily analogy to finite-state processes

• This will also be extremely useful for computations

• Let’s focus on case with reflecting barrier at x = 0 and δ = 0

• Kolmogorov Forward equation is

pt = −µpx +
σ2

2
pxx

with boundary condition

0 = −µp(0, t) +
σ2

2
px(0, t)
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Key: operator in KFE = transpose of transition matrix

• Just for a moment, suppose xit = finite-state Poisson process
• xit ∈ {x1, ..., xN} ⇒ distribution = vector p(t) ∈ RN

• Dynamics of distribution

ṗ(t) = ATp(t),

where A = N × N transition matrix
• Key idea: KFE is exact analogue with continuous state
• Can write in terms of differential operator A∗

pt = A∗p, A∗p = −µpx +
σ2

2
pxx

with boundary condition 0 = −µp(0) + σ22 px(0)
• A∗ analogue of transpose of transition matrix AT

37



This can be made more precise...
• Definition: the inner product of two functions v and p is
< v, p >=

∫∞
0 v(x)p(x)dx (analogue of v · p =

∑N
i=1 vipi )

• Definition: the adjoint of an operator A is the operator A∗ satisfying
< Av , p >=< v,A∗p >

Note: adjoint = analogue of matrix transpose Av · p = v · ATp
• Definition: An operator B is self-adjoint if B∗ = B
• Definition: the infinitesimal generator of a Brownian motion is the

operator A defined by
Av = µvx +

σ2

2
vxx

with boundary condition vx(0) = 0
• same operator shows up in HJB equations, e.g.

ρv = u + µvx +
σ2

2
vxx , u = period return

• will call it “HJB operator”, plays role of transition matrix
38



A∗ is adjoint of A (& vice versa)

• Result: A∗ in the Kolmogorov Forward equation is the adjoint of A
• Proof:

⟨v ,A∗p⟩ =
∫ ∞
0

v

(
−µpx +

σ2

2
pxx

)
dx

=

[
−vµp +

σ2

2
vpx

]∞
0

−
∫ ∞
0

(
−µvxp +

σ2

2
vxpx

)
dx

=

[
−vµp +

σ2

2
vpx −

σ2

2
vxp

]∞
0

+

∫ ∞
0

(
µvxp +

σ2

2
vxxp

)
dx

= v (0)

(
µp (0)−

σ2

2
px(0)

)
+
σ2

2
vx(0)p (0) + ⟨Av , p⟩

= ⟨Av , p⟩ .

• key step is to use integration by parts and boundary conditions
39



Carries over to any diffusion process

• ... with x-dependent µ and σ

• “HJB operator” (infinitesimal generator)

Av = µ(x)
∂v

∂x
+
σ2(x)

2

∂2v

∂x2

with appropriate boundary conditions

• “Kolmogorov Forward operator”

A∗p = −
∂

∂x
(µ(x)p) +

1

2

∂2

∂x2
(
σ2(x)p

)
with appropriate boundary conditions

• Result: A∗ is adjoint of A

• Proof: integration by parts just like previous slide
40



Computation of Kolmogorov Forward Equations
• That operator in KFE = transpose of transition matrix is very useful

for computations
• Use finite difference method pni = p(xi , tn)
• Key: already know how to discretize A
• recall from Lectures 3 and 4 that discretize HJB equation as

ρv = u + µvx +
σ2

2
vxx as ρv = u+ Av

nz = 118
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Computation of Kolmogorov Forward Equations
• By same logic: correct discretization of A∗ is AT

• Discretize
pt = −µpx +

σ2

2
pxx or pt = A∗p (KFE)

as (explicit scheme)
pn+1 − pn

∆t
= ATpn

or slightly better (implicit scheme)
pn+1 − pn

∆t
= ATpn+1 ⇒ pn+1 =

(
I− ∆tAT

)−1
pn

• can also obtain these finite-difference schemes directly from (KFE),
i.e. without using “operator in KFE = transpose of transition matrix”

• Section 2 in http://www.princeton.edu/~moll/HACTproject/HACT_Numerical_Appendix.pdf

• but if have already computed A for HJB equation, no need to do
discretization again – get (KFE) for free! 42

http://www.princeton.edu/~moll/HACTproject/HACT_Numerical_Appendix.pdf


Back to the proof of average-speed proposition
• To gain intuition, suppose again finite-state process p(t) ∈ RN with

ṗ(t) = ATp(t)

• assume A is diagonalizable
• denote eigenvalues by 0 = |λ1| < |λ2| < ... < |λN |
• corresponding eigenvectors by (v1, ..., vN)

• Theorem: p(t) converges to p∞ at rate |λ2| (“spectral gap”)
• Proof sketch: decomposition

p(0) =

N∑
i=1

civi ⇒ p(t) =

N∑
i=1

cie
λi tvi

• Example: symmetric two-state Poisson process with intensity ϕ

A =

[
−ϕ ϕ

ϕ −ϕ

]
, ⇒ λ1 = 0, |λ2| = 2ϕ

Intuitively, speed |λ2| ↗ in switching intensity ϕ
43



Proof of proposition (reflecting barrier, δ = 0)

• Generalize this idea to continuous-state process
• Analyze Kolmogorov Forward equation

pt = A∗p, A∗p = −µpx +
σ2

2
pxx

in same exact way as ṗ(t) = ATp(t)

• Proof has two steps:
1. realization that speed = second eigenvalue (spectral gap) of

operator A∗

2. analytic computation: spectral gap given by

|λ2| =
1

2

µ2

σ2

44



Analytic Computation of Spectral Gap

• Discrete eigenvalue problem

Av = λv

• Continuous eigenvalue problem

Aφ = λφ

or
µφ′(x) +

σ2

2
φ′′(x) = λφ(x)

with boundary condition φ′(0) = 0.

• In principle, could analyze that one directly, but...
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Analytic Computation of Spectral Gap
• Definition: an operator B is self-adjoint if B∗ = B
• Result: all eigenvalues of a self-adjoint operator are real
• want to analyze eigenvalues of A

• but problem: A is not self-adjoint
• eigenvalues could have imaginary parts

• Solution: construct self-adjoint transformation B of A as follows
1. Consider stationary distribution p∞ satisfying

0 = A∗p ⇒ p∞ = e
(2µ/σ2)x

2. Consider u = vp1/2∞ = ve(µ/σ
2)x . Can show u satisfies

ut = Bu, Bu :=
σ2

2
uxx −

1

2

µ2

σ2
u

with boundary condition ux(0) = µ
σ2
u(0).

• To see that B is self-adjoint: < Bu, p >=< u,Bp > using same
steps as before (integration by parts) 46



Eigenvalues of B

The first eigenvalue of B is λ1 = 0 and the second eigenvalue is
λ2 = −12

µ2

σ2
. All remaining eigenvalues satisfy |λ| > |λ2|

Figure: Spectrum of B in complex plane
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Proof of Lemma
• Consider eigenvalue problem

Bφ = λφ
σ2

2
φ′′(x)−

1

2

µ2

σ2
φ(x) = λφ(x)

(E)

with boundary condition φ′(0) = µ
σ2
φ(0)

• Can show: for λ ∈
(
−12

µ2

σ2
, 0
)

all solutions to (E) satisfying
boundary condition explode as |x | → ∞. See appendix of paper.

• Intuition why rate of convergence of B is 12
µ2

σ2

• recall Bu := σ2

2 uxx −
1
2
µ2

σ2
u

• consider case σ ≈ 0: 12
µ2

σ2
term large relative to σ22

ut = Bu ≈ −
1

2

µ2

σ2
u ⇒ u(x, t) ≈ u0(x)e−

1
2
µ2

σ2
t

i.e. operator B features exponential decay at rate 12
µ2

σ2
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Transition in Upper Tail

• Distribution p(x, t) satisfies a Kolomogorov Forward Equation

pt = −µpx +
σ2

2
pxx − δp + δψ (∗)

• Can solve this, but not particularly instructive

• Instead, use so-called Laplace transform of p

p̂ (ξ, t) :=

∫ ∞
−∞

e−ξxp (x, t) dx = E
[
e−ξx

]
• p̂ has natural interpretation: −ξth moment of income/wealth
wit = e

xit

• e.g. p̂(−2, t) = E[w2it ]
• only works in case without reflecting barrier/lower bound

49



Transition in Upper Tail

• Proposition: The Laplace transform of p, p̂ satisfies

p̂(ξ, t) = p̂∞(ξ) + (p̂0(ξ)− p̂∞(ξ)) e−λ(ξ)t

with moment-specific speed of convergence

λ(ξ) = µξ −
σ2

2
ξ2 + δ

• Hence, for ξ < 0, the higher the moment −ξ, the slower the
convergence (for high enough |ξ| < ζ)

• Key step: Laplace transform transforms PDE (∗) into ODE

∂p̂(ξ, t)

∂t
= −ξµp̂(ξ, t) + ξ2

σ2

2
p̂(ξ, t)− δp̂(ξ, t) + δψ̂(ξ)
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Can the model explain the fast rise in inequality?

• Recall process for log wages

d logwit = µdt + σdZit + death at rate δ

• σ2 = Var(permanent earnings)

• Literature: σ has increased over last forty years
• Kopczuk, Saez and Song (2010), DeBacker et al. (2013),

Heathcote, Perri and Violante (2010) using PSID

• but Guvenen, Ozkan and Song (2014): σ flat/decreasing in SSA data

• Can increase in σ explain increase in top income inequality?
• experiment: σ2 ↑ from 0.01 in 1973 to 0.025 in 2014

(Heathcote-Perri-Violante)
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Putting the Theory to Work

• Recall formula λ(ξ) = µξ − σ22 ξ2 + δ
• Compute half-life t1/2(ξ) = log 2/λ(ξ)

Moment under Consideration (equiv. Weight on Tail), -ξ
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Transition following Increase in σ2 from 0.01 to 0.025
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OK, so what drives top inequality then?

Two candidates:

1. “type dependence”: heterogeneity in mean growth rates

2. “scale dependence”: “superstar shocks” to skill prices
Both are violations of Gibrat’s law
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Type Dependence

• Casual evidence: very rapid income growth rates since 1980s
(Bill Gates, Mark Zuckerberg)

• Two regimes: H and L with µH > µL

dxit = µHdt + σHdZit

dxit = µLdt + σLdZit

• Assumptions
• drop from H to L at rate ψ
• retire at rate δ

• See Luttmer (2011) for similar model of firm dynamics

• Proposition: Speed of transition determined by

λH(ξ) := ξµH − ξ2
σ2H
2
+ ψ + δ ≫ λL(ξ)
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Scale Dependence

• Second candidate for fast transitions: xit = logwit satisfies
xit = χtyit

dyit = µdt + σdZit
(∗)

i.e. wit = (eyit )χt and χt = stochastic process ̸= 1
• Note: implies deviations from Gibrat’s law

dxit = µdt + xitdSt + σdZit , St := logχt ̸= 0
• Call χt (equiv. St ) “superstar shocks”

• Proposition: The process (∗) has an infinitely fast speed of
adjustment: λ =∞. Indeed

ζxt = ζ
y/χt or ηxt = χtη

y

where ζxt , ζy are the PL exponents of incomes xit and yit .
• Intuition: if power χt jumps up, top inequality jumps up
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A Microfoundation for “Superstar Shocks”

• χt term can be microfounded with changing skill prices in
assignment models (Sattinger, 1979; Rosen, 1981)

• Here adopt Gabaix and Landier (2008)
• continuum of firms of different size S ∼ Pareto(1/αt ).
• continuum of managers with different talent T , distribution

T (n) = Tmax − Bβ n
βt

where n:= rank/quantile of manager talent
• Match generates firm value: constant ×TSγt

• Can show: w(n) = eatn−χt (= eat+χtyit , yit = − log nit )
χt = αtγt − βt

• Increase in χt due to
• βt , γt : (perceived) importance of talent in production,

e.g. due to ICT (Garicano & Rossi-Hansberg, 2006)

• Other assignment models (e.g. with rent-seeking, inefficiencies)
would yield similar microfoundation
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Revisiting the Rise in Income Inequality

• Jones and Kim (2015): in IRS/SSA data, µH ↑ since 1970s
• Experiment: in 1973 µH ↑ by 8%
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Conclusion

• Transition dynamics of standard random growth models
too slow relative to those observed in the data

• Two parsimonious deviations that generate fast transitions
1. heterogeneity in mean growth rates
2. “superstar shocks” to skill prices

• Rise in top income inequality due to
• simple tax stories, stories about Var(permanent earnings)
• rise in superstar growth (and churn) in two-regime world
• “superstar shocks” to skill prices

• See paper for wealth inequality results
http://www.princeton.edu/~moll/dynamics_wealth.pdf
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Tools Summary

• Differential operators as transition matrices

• At fundamental level, everything same whether discrete/continuous
time/space

• nothing special about continuous t
• nothing special about continuous x
• all results from discrete time/space carry over to

infinite-dimensional (i.e. continuous) case
• but computational advantages (e.g. sparsity) – next lecture

• Analogies
• function p ⇔ vector p
• (linear) operator A ⇔ matrix A
• adjoint A∗ ⇔ transpose AT
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Open Questions

• “What fraction” of top inequality is efficient in the sense of people
getting paid marginal product? What fraction due to rent-seeking?

• What are the underlying economic forces that drove the increase in
top inequality?

• technical change?
• globalization?
• superstars?
• rent-seeking?
• particular sectors/occupations?

• Evidence for scale- and type-dependence?
• for wealth: Fagereng, Guiso, Malacrino and Pistaferri (2016),

“Heterogeneity and Persistence in Returns to Wealth”
• what about income?
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Fagereng-Guiso-Malacrino-Pistaferri
• Using Norwegian administrative data (Norway has wealth tax),

document massive heterogeneity in returns to wealth
• range of over 500 basis points between 10th and 90th pctile
• returns positively correlated with wealth

Figure 2. Distribution of returns on wealth

(a) Full sample
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• Interesting open question: can a process for returns to wealth like
the one documented by FGMP quantitatively generate fast
dynamics in top wealth inequality? 62


