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Motivation

• Quantitative DSGE models core of macroeconomic policy analysis

• Rely on representative agent assumptions

• Recent work argues micro heterogeneity important for policy
analysis

1. aggregate dynamics depend on distribution
2. care about distributional implications

• But then distribution is a state variable

• Quantitative DSGE analysis infeasible with current methods

• Today: tell you about project that tries to make progress on this
(joint with SeHyoun Ahn, Greg Kaplan, Tom Winberry)
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What We Do

• Develop general + efficient method to compute het agent models

1. Compute steady state using global approximations

• exploit advantages of continuous time (Achdou et al. 2015)

2. Compute aggregate dynamics using local approximations

• linear in entire distribution (Campbell 1998, Reiter 2009)
• reduce dimensionality using SVDs (Reiter 2009)

• Apply to textbook RBC + income heterogeneity (Krusell-Smith 98)
• slides, notes, and Matlab codes available at

http://www.princeton.edu/~moll/PHACTproject.htm

• Have also implemented other applications
• Khan & Thomas (2008), HANK models
• ultimately: medium-scale DSGE (cost of extra agg states ≈ 0)
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Plan For Today

1. Model

2. Solution method

3. Results
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Households

max
{ct}t≥0

E0
∫ ∞
0

e−ρtu(ct)dt s.t.

ȧt = wtzt + rtat − ct

zt ∈ {zℓ, zh} Poisson with intensities λℓ, λh

at ≥ a

• ct : consumption
• u: utility function, u′ > 0, u′′ < 0.
• ρ: discount rate
• rt : interest rate
• a > −∞: borrowing limit e.g. if a = 0, can only save
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Firms

• Aggregate production function

Yt = e
ZtKαt N

1−α
t

• Perfect competitition in factor markets

wt = (1− α)
Yt
Nt
, rt = α

Yt
Kt
− δ

• Market clearing

Kt =

∫
agt(a, z)dadz,

Nt =

∫
zgt(a, z)dadz ≡ 1
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Equilibrium
• Aggregate state: (gt , Zt)⇒ absorb into time subscript t

• recursive notation w.r.t. individual states only
• Et is expectation w.r.t. aggregate states only fully recursive

ρvt(a, z) =max
c
u(c) + ∂avt(a, z)(wtz + rta − c)

+ λz(vt(a, z
′)− vt(a, z)) +

1

dt
Et [dvt(a, z)],

(HJB)

∂tgt(a, z) =− ∂a[st(a, z)gt(a, z)]− λzgt(a, z) + λz ′gt(a, z ′), (KF)

dZt = −νZtdt + σdWt ,

wt = (1− α)eZtKαt ,

rt = αe
ZtKα−1t − δ,

Kt =

∫
agt(a, z)dadz
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Solution Method
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Extension of Standard Linearization Method

1. Compute non-linear approximation to non-stochastic steady state

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation

Background on linearization methods:
• Deterministic models

• Chapter 6.3 of Stokey-Lucas-Prescott
• http://www.princeton.edu/~moll/ECO503Web/Lecture4_ECO503.pdf

• Stochastic models
• Sims (2001) “Solving Linear Expectations Models”
• these notes http://www.robertopancrazi.com/LN3_solving_lrem.pdf

9

http://www.princeton.edu/~moll/ECO503Web/Lecture4_ECO503.pdf
http://www.robertopancrazi.com/LN3_solving_lrem.pdf


Linearization of Continuous-Time RBC model

• Optimality conditions in RBC model

Et [dΛt ] = Λt
(
ρ+ δ − αeZtKα−1t

)
dt

dKt =

(
eZtKαt − δKt − Λ

− 1
γ

t

)
dt

dZt = −νZtdt + σdWt

• We have:

control variable = Λt
endog state variables = Kt

exog state variables = Zt
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Linearization of Continuous-Time RBC model

• Can write system asEt [dΛt ]dKt
dZt

 = f (Λt , Kt , Zt)dt +
00
σ

 dWt
with f : R3 → R3

• Since Et [dWt ] = 0, above system implies:

Et

dΛtdKt
dZt

 = f (Λt , Kt , Zt)dt
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Linearization of Continuous-Time RBC model

1. Compute non-stochastic steady state (Λ, K,Z = 0) by hand

2. Compute first-order Taylor expansion of f (Λt , Kt , Zt)
3. Diagonalize matrix B, hope same number of stable eigenvalues as

state variables (2 in this model)

• if so, set control variables orthogonal to unstable
eigenvectors, get policy function

Λ̂t = DKK̂t +DZẐt
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Linearization of Heterogeneous Agent Model

1. Compute non-linear approximation to non-stochastic steady state

• finite difference method from Achdou et al. (2015)
• steady state reduces to sparse matrix equations
• borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation
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Step 1: Compute Non-Stochastic Steady State

ρv(a, z) =max
c
u(c) + ∂av(a, z)(wz + ra − c)

+ λz(v(a, z
′)− v(a, z))

(HJB SS)

0 =− ∂a[s(a, z)g(a, z)]− λzg(a, z) + λz ′g(a, z ′) (KF SS)

w = (1− α)Kαt , r = αKα−1 − δ,

K =

∫
ag(a, z)dadz

(PRICE SS)
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Step 1: Compute Non-Stochastic Steady State
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Step 1: Compute Non-Stochastic Steady State
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Step 1: Compute Non-Stochastic Steady State

ρv =u (v) + A (v;p) v (HJB SS)

0 =A (v;p)T g (KF SS)

p =F (g) (PRICE SS)
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Linearization of Heterogeneous Agent Model

1. Compute non-linear approximation to non-stochastic steady state

• finite difference method from Achdou et al. (2015)
• steady state reduces to sparse matrix equations
• borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state

• automatic differentiation: exact numerical derivatives
• wrote efficient Matlab implementation for sparse systems
• important: different slopes at different point in state space

3. Solve linear stochastic differential equation
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Step 2: Linearize Discretized System

• Discretized system with aggregate shocks

ρvt = u (vt) + A (vt ;pt) vt +
1

dt
Etdvt

dgt
dt
= A (vt ;pt)

T gt

pt = F (gt;Zt)

dZt = −νZtdt + σdWt

•
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ρvt = u (vt) + A (vt ;pt) vt +
1

dt
Etdvt

dgt
dt
= A (vt ;pt)

T gt

pt = F (gt;Zt)

dZt = −νZtdt + σdWt

• Key: same general form as RBC model earlier

Et

dvtdgt
dZt

 = f (vt ,gt , Zt)dt,
vtgt
Zt

 =
 control

endog state
exog state


Dimensionality: if 2 income types, 500 wealth grid points, then
both vt and gt are 1000× 1⇒ [vt ,gt , Zt ]′ is 2001× 1
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T gt

pt = F (gt;Zt)

dZt = −νZtdt + σdWt

• Key: same general form as RBC model earlier

Et


dvt
dgt
0

dZt

 = f̃ (vt ,gt ,pt , Zt)dt,

vt
gt
pt
Zt

 =


control
endog state

prices
exog state
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Step 2: Linearize Discretized System

• Discretized system with aggregate shocks

ρvt = u (vt) + A (vt ;pt) vt +
1

dt
Etdvt

dgt
dt
= A (vt ;pt)

T gt

pt = F (gt;Zt)

dZt = −νZtdt + σdWt

• Linearize using automatic differentiation (code: @myAD)

Et


d v̂t
d ĝt
0

dZt

 =

Bvv 0 Bvp 0

Bgv Bgg Bgp 0

0 Bpg I BpZ
0 0 0 −ν


︸ ︷︷ ︸

B


v̂t
ĝt
p̂t
Zt

 dt

16
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Linearization of Heterogeneous Agent Model

1. Compute non-linear approximation to non-stochastic steady state
• finite difference method from Achdou et al. (2015)
• steady state reduces to sparse matrix equations
• borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state
• automatic differentiation: exact numerical derivatives
• wrote efficient Matlab implementation for sparse systems
• important: different slopes at different point in state space

3. Solve linear stochastic differential equation

• moderately-sized systems⇒ standard methods work fine
• large systems⇒ first reduce dimensionality using SVDs
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Step 3: Solve Linear System

• Usual strategy: diagonalize + hope same number of stable
eigenvalues as state variables (I × J + 1 in this model)

• if so, set control variables orthogonal to unstable
eigenvectors, get policy function

v̂t = Dgĝt +DZẐt

• Works for moderately-sized systems (100-500 wealth grid points)

• Diagonalization prohibitively expensive for large systems
(500 - 10,000 wealth grid points)

• ⇒ reduce dimensionality using SVDs (Reiter 2009)
• background: review article by Antoulas (2005) “An overview of

approximation methods for large-scale dynamical systems”
• also see book by Antoulas (2005) “Approximation of Large

Scale Dynamical Systems”
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Results
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Performance with 200 wealth grid points

(a) Without dim reduction (b) With dim reduction
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Performance with 600 wealth grid points

(a) Without dim reduction (b) With dim reduction
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Aggregate Dynamics

IRF to 1-quarter TFP shock, entire distribution (n = 400 components)
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Aggregate Dynamics and Dimensionality Reduction

IRF to 1-quarter TFP shock, reduced distribution (n = 95 components)
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Micro Heterogeneity and Macro Nonlinearities

• Key motivation for studying het agent models: micro heterogeneity
may generate nonlinear dynamics in aggregate variables

• economy’s response to shock may depend on initial
distribution of agents

• economy’s response to shock may depend on size of shock

• Our methodology preserves such aggregate nonlinearities

• true even though it relies on linear approximations
• key: different slopes at different points of state space
• in contrast to rep agent model: only one slope

24
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Micro Heterogeneity and Macro Nonlinearities

IRF to one quarter TFP shock, starting from steady state
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Micro Heterogeneity and Macro Nonlinearities

IRF to one quarter TFP shock, starting from recession

(a) Consumption
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Conclusion

• Developed general + efficient methodology to solve heterogeneous
agent macro models

• Extension of standard linearization methods
• solve for steady state using continuous time
• compute Taylor expansion using auto diff w/ sparsity
• reduce state space using SVDs
• http://www.princeton.edu/~moll/PHACTproject.htm

• Next step: medium-scale DSGE model featuring
• het households w/ leptokurtic shocks + asset choice
• het firms w/ productivity shocks + fixed costs
• sticky prices

27
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Instead: Fully Recursive Notation Back

w(g, Z) = (1− α)eZK(g)α, r(g, Z) = αeZK(g)α−1 − δ (P)

K(g) =

∫
ag(a, z)dadz (K)

ρV (a, z, g, Z) = max
c
u(c) + ∂aV (a, z, g, Z)[w(g, Z)z + r(g, Z)a − c ]

+ λz [V (a, z
′, g, Z)− V (a, z, g, Z)]

+∂ZV (a, z, g, Z)(−νZ) +
1

2
∂ZZV (a, z, g, Z)σ

2

+

∫
δV (a, z, g, Z)

δg(a, z)
T [g, Z](a, z)dadz

(∞d HJB)
T [g, Z](a, z) = −∂a[s(a, z, g, Z)g(a, z)]− λzg(a, z) + λz ′g(a, z ′)

(KF operator)
s(a, z, g, Z) = w(g, Z)z + r(g, Z)a − c∗(a, z, g, Z)

• big problem: distribution g is a state variable (infinite dimensional)
• δV/δg(a, z): functional derivative of V wrt g at point (a, z) 28


