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Policy Analysis in the Growth Model

e Classic question: what are the consequences for allocations
and welfare of policy x?

e Today: x = capital income taxation

e but approach works more generally
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Capital Taxes in the U.S.

e U.S. top marginal tax rates (from Saez, Slemrod and Giertz,

2012, Table
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Capital Taxation in Theory

e Most influential: Chamley and Judd’s zero capital tax result

e somewhat more precisely: in the long-run, the optimal linear
capital income tax should be zero

e perhaps even reflected in observed policy (see previous slide)
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@ Capital income taxation and redistribution

e a growth model with capitalists and workers
e "Ramsey taxation” (Judd, 1985)
e critique by Straub and Werning (2014)

® Capital income taxation without redistribution

e "Ramsey taxation” (Chamley, 1986)

e only quick overview

© Summary: takeaway on capital taxation

Plan
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Growth Model with Capitalists & Workers

Consider a variant of the growth model with two types of
individuals:

e capitalists: rep. capitalist derives all income from returns to
capital

o workers: rep. worker derives all income from labor income

Originally due to Judd (1985), use discrete-time formulation
from Straub and Werning (2014)

Two reasons why variant is better model for thinking about
capital income taxation than standard growth model

e some distributional conflict (as opposed to rep. agent)

e math turns out to be easier

End of lecture: capital taxation in representative agent
model (Chamley, 1986)
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Growth Model with Capitalists & Workers

e Preferences

e capitalist
> leo
S suG). u(o) =
—0
t=0
e workers -
Zﬁtu(ct)
t=0

e Technology

¢t + Gt + kep1 = Fke, he) + (1 — 0) ke

e Endowments: capitalists own kg = l?o units of capital
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Competitive Equilibrium without Taxes
e Definition: A SOMCE for the growth model with capitalists
and workers are sequences {c¢, h, ke, ar, We, 1+ 1324 s.t.
@ (Capitalist max) Taking {r:} as given, {C;, a;} solves
max ZﬁtU(Ct) s.t.

{Crrae11 152, P
— . T 1 7
Ce+ ary1 = (1 + ft)at, T||_r>noo (H5:0 m) ary1 >0, ag = ko.

® (Worker max) Taking {w;} as given, {c¢, h¢} solves

max Btu(ct) st. ¢ = Wtht
{et.he} 2, =0

© (Firm max) Taking {w, r;} as given {k;, h;} solves

{rllht} 1+ rs

t=0 \s=0
O (Market clearing) For each t:

Cc: + Ct+kt+1 = F(kt,ht)+(1—5)kt, dr = kt

ax i (f[ . ) (F(kh ht)_Wtht_it), kiv1 = it+(1—5)kt
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Comments

Only capitalist can save

Worker cannot save, lives “hand to mouth”

Work with decentralization in which

e firms own capital
e capitalists save in riskless bond

e in contrast, in last lecture: households owned capital, rented it
to firms

Relative to Straub and Werning

e make notation as similar as possible to last lecture

e impose no-Ponzi condition rather than borrowing limit
arr1 > 0 (doesn't matter)
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Necessary Conditions

Necessary conditions for capitalist problem
U'(Ce) = B(1 + re1)U'(Cer)
0= lim BTU(Cr)aTts1
T—oo
Solution to worker problem
ht = ]., Ct = Wt
Necessary conditions for firm problem

Fh(knht) = Wi
Fk(kt,ht)+1—5:1+rt

Market Clearing

Ct + Ct + kt+1 = F(kt, ht) + (1 — 5)kt

(1)

()
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Necessary Conditions
(6) is same no-arbitrage condition we had in last lecture, but
now coming directly from firm's problem
Combining (1) and (6) and defining F(k¢, 1) = f(k:) we get
U'(G) = BU'(Ce)(f' (ke+1) +1 = 6)

Same condition as usual, except that C; is consumption of
capitalists

In steady state C; = C*, ¢; = ¢c*, ks = k*
y )

1
f(k* —5==
(k") +1 5

= same steady state as standard growth model.
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Analytic Solution in Special Case: ¢ =1

e Lemma: with 0 = 1 capitalists save a constant fraction 3

a1 =P +r)a,, CG=(1-0)(1+r)a:

e Proof: “guess and verify”. Consider nec. cond'sw/ o =1

C
E—H = B(1 + rev1)
t
. aT+1
— T+l
0 TinooIB Cr

Ct + aty1 = Rear

o Guess Gt = (1 —s)(1 + rt)as. From (x)

(1 —s)(L+ rey1)aetr 3t+1
= f(1 =
(1 — S)(]. + rt)at 6( + rt+1) a;

i.e. s =p.0

(%)

=pB(1+r)
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o = 1: Intuition for Constant Saving Rate

Log utility = offsetting income and substitution effects
e (aty1, C¢) do not depend on reiq

1/0 = “intertemporal elasticity of substitution (IES)"
e low 0 = U close to linear ...
e ... capitalists like to substitute intertemporally (“high IES")

To understand, consider effect of unexpected increase of ry11
e o > 1: income effect dominates = C; T, a:41 |
e o < 1: substitution effect dominates = C; |, a1 T
e o = 1: income & subst. effects cancel = C;, a;1 constant

Same logic as in Lecture 4
e there condition was ¢ 2 a where o = curvature of prod. fn.
e reason for difference: planner in Lecture 4 faced concave
saving technology, kg
o ... here instead, capitalists face linear saving technology
((L+ re)at). In effect, a = 1.

13 /45



Analytic Solution in Special Case: ¢ =1

e Necessary conditions reduce to
key1 = B(F (k) +1— 0)ke (*)
Ce=(1-B)(f'(ke) +1— )k
ce = f(ke) — ' (ke)ke
(used F = Fxk + Fph and so Fp(ke, 1) = f(ke) — ' (ke)ke)

e Model basically boils down to Solow model
e e.g. with f(k) = Ak®
ker1 = aBAkS + B(1 — ) k:
o effective saving rate a3 and depreciation term 3(1 — §)
e Extremely convenient: compute entire transition by hand
e no need for phase diagram etc, simply do Solow zig-zag graph
e but still same steady state at standard growth model
fl(k*y=1/B+1-9§
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Policy in GE Models

Next: policy in growth model with capitalists and workers

Questions about policy need to be well posed

e example of question that is not well-posed: “What happens if
we introduce a proportional tax 7 on capital?”

e reason: if a policy raises revenue (or requires expenditure),
then one must specify what is done with the revenue (where
the revenue comes from)

There are many possible uses of revenue = many possible
exercises
Here, ask: What are the consequences of introducing
e a proportional (linear) tax on capital income of 7,
when the revenues are used to fund
e constant government consumption g > 0 and
e a lump-sum transfer to workers T,
with period-by-period budget balance?
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Competitive Equilibrium with Taxes

e Definition: A SOMCE with taxes for the growth model with
capitalists and workers are sequences
{ct, he, ke, ar, we, 1y, Tt Tt}?io s.t.
@ (Capitalist max) Taking {r:, ¢} as given, {C;, a;} solves
max U(C) st
{C:,:%H}?ig%ﬁ ( t)
Ce+ ary1 = (1 - Tt)(l + rt)at, Tll—r>noo (HsT:o ﬁlrs) ar41>0,a0 = /20-

® (Worker max) Taking {w;} as given, {c¢, h¢} solves

o0
t
ma E ¢:) st ¢ = wihs + T,
{cr,hz]?(fio tzoﬁ U( t) ‘ el '

© (Firm max) Taking {ws, r:} as given {k, h:} solves

o0 t
1 . '
max ) <H ) (F(ke, he)—wehe—iv),  kepr = iv+(1—0)k;

thond g \sp L+ 1
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Competitive Equilibrium with Taxes

e Definition: A SOMCE with taxes for the growth model with
capitalists and workers are sequences
{ct, he, key ae, we, re, Te T} 32 S0t

O (Government) For each ¢

g+ Te = Ttk

@ (Market clearing) For each t:

Ct+ Ct+kt+]_ - F(kt,ht)+(1_5)kt, ar = kt
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Comments

e Tax is linear as opposed to non-linear tax function 7
Ct + di+1 = (1 + rt)at — ’7':((1 + rt)at)

with 7/ £ 0 (e.g. 7 > 0 = progressive)
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Characterizing CE with Taxes
Necessary conditions unchanged except for
U'(G) = B(L — 7e1)(1 + re41) U'(Cepr)
and resource constraint
Therefore
U'(G) = BU(Cey1)(1 — 7er1)(F (key1) +1 = 9)

For any {7:}¢2, can use shooting algorithm to solve for eqm
e natural initial condition: steady state without taxes

What about steady state with taxes? Suppose 7: = 7. Then

uTxﬂuﬂ+1—5y:%

Hence higher 7 1= k* |, e.g. if f(k) = Ak

1

-«
k*:< : aA )
am T1-0
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Ramsey Taxation

So far: positive analysis

e what is the effect of 7 ...7

Now: normative

e what is the optimal 7;

Ramsey problem: find {7;:} that produces a CE with taxes
with highest utility for agents (capitalists and workers).

that is, find optimal {7;} subject to the fact that agents
behave competitively for those taxes

Important assumption
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Ramsey Problem

e Need to take stand on objective of policy

e Here use

Zﬁf u(ct) +vU(Gr))

for a “Pareto weight” v >0

e ~ = 0: only care about workers
e v — 0o: only care about capitalists
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Ramsey Problem

e Recall necessary conditions for CE with taxes

U'(G) =B+ rer1)(1 = me41) U (Cen) (1)

0=_lim BTU(Cr)ari (2)

Ct + dt4+1 = (1 — Tt)(]. + rt)at (3)

Ct = W + Tl’ (4)

Fr(ke, 1) = wy (5)
Fi(ke,1)+1—-6=1+r (6)
Ct+ Ct+g+kt+1 = F(kt,1)+(1 _5)kt (7)
kt = at (8)

ap = ko = /;0 (9)

e Ramsey problem is
max D BHule) +yU(C)) st (1)-(9)

Tt,Ct, Ce Kt 11,3841, Wt e
{re,ct,Ce kev1,ae11, w0, }t:O 22 /45



Ramsey Problem

Can simplify by combining/eliminating some of the
constraints

From (3) and (8)

Gk
(L= m)(1+ ) = 4+ 55

Substituting into (1)
U'(Cez1)ke = BU'(Ce)(Ce + ket)
Write F(ke, 1) = f(k:) as usual

Walras' Law: can drop one budget constraint or resource
constraint. Drop (4).

Also drop (5) and (6) since {r¢, w;}32, only show up in
equations we already dropped.
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Ramsey Problem

e After simplifications:

5 +~U(C t.
{q,C:?;fl}tOZﬁ (c)) +7U(C)) s

ct + G+ g+ k1 = fke) + (1= 0)ke
BU,(Ct)(Ct + key1) = U/(Ct_l)kt

lim 87U/ (Cr)kr41=0
T—oo
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Comments
Note: problem only in terms of allocation

Given optimal {ct, Ce, key1}32,, can always back out taxes
and prices

Wy = Fh(kh 1) = f(kt) — f/(kt)kt
I’t:Fk(kt,l)—(SZ f/(kt)—5
1 U(C)

1— 7=
T k) +1— 0 BU(Crar)

In other applications, typically combine constraints in different
way, leading to so-called “implementability” condition.

e same outcome: Ramsey problem in terms of allocations only

But here follow Judd (1985) and Straub and Werning (2014).
Easier to work with.
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First order conditions

e Lagrangean

L= Z{ﬁf (ct) +YU(Cr))

+ ﬁt)\t( (k) + (1 —0)kt —ct — Gt — g — ket1)
+ B e (BU'(Co)(Ce + ke1) — U'(Cem1)ke) }

o First order conditions (use that U'(C;)C: = CL79)

¢t 0=1u'(ct) = A\t (1)

CG: 0= ’YU/(Ct) — At — Bl U//(Ct)kt-i—l (2)
+ Bue((1 = o)U'(Ce) + U"(Ce)ketr)

key1: 0= —=X¢+ pueSU(Ce) (3)

+ BAe1(F' (ker1) +1—0) — Bue1U'(Gr)
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Tricky Detail: C_;

Treated C; as a state variable, even though it's a jump var
e (_1 is not-predetermined

Can show: multiplier i corresponding to {C;} has to satisfy
po =0
Heuristic derivation: for any (ko, C_1) define V(ko, C_1) by
V(ko, C_1) = U(c t.
o C) = 2%, Zﬂ e +7UC)) s
a+C+g+ kt+1 = f(ke) + (1 — )kt
ﬂUl(Ct)(Ct + key1) = U/(Ct—l)kt
lim BTV (Cr)kri1 =0
T—oo
C_1 pinned down from V((ko, C_1) = 0. Envelope condition

oL
0C_4

Ve(ko, C-1) = —oU"(C_1)ko = po=0
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First order conditions
e Manipulate (2) as follows
—Bres1U" (Co)kerr = —yU'(Ce)+Ae—Bue((1—0) U (Ce)+U" (Cr) kera)
Use that U"(C)ker1 = —oU' (Ce)kert, ke = key1/ G
pes1BoU'(Ce)iesr = Bue((0—1)U'(Ce)+U'(Ce)res10) =y U'(Ce)+Ae

c—1 A/ U(C) —
OKt+1 50/€t+1
o—1 1—yw U/(Ct)
pr— _— 1 _—— pr—
P+l = [t (U/‘ét-;-l + > + Boriave’ Z; v (cr)

e Manipulate (3) as follows
BAes1(f'(ker1) + 1= 0) = Ae — e BU(Ce) + Bruer1U'(C)
Divididing by ¢ and using A\ = u/(ct), v = U'(Ce) /v (ct)

u'(Ce1)

() + 1) = 5+ vl — ) @)
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First order conditions

e Using these manipulations we obtain

o =20 (1)

u'(ce) = At (2)

i = (T 1) f g ()
OKei1 Boker1ve

() +1-0) = 5 vl ) (9

where k¢ = ki /Ce—1, ve = U'(C) /U (ct)
e Straub and Werning find it convenient to denote (note R; #
rental rate)
Rf = f'(ke)+1—6
U'(C)

Ri=(1—7)(f'(ke) +1—0) = BU(Cran)

(5)
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First order conditions
Theorem (Judd, 1985)

Suppose quantities and multipliers converge to an interior steady
state, i.e. ¢, Ci, ki1 converge to positive values, and pi;

converges. Then the tax on capital is zero in the limit: Rf /Ry — 1.

e Proof: Theorem assumes (ct, G, ke, pie) — (¢, C*, k*, p*).
Hence also (v¢, k¢) — (v*, K¥).

e From (4) with ¢ = ¢t41 = ¢*
1
RS — R®* = —
e Similarly, from (5) with ¢} = C,; = C*
.1
Rt — R — B

e Hence Rf/R; — 1 or equivalently 7 — 0.0
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Comments

e Theorem seems to prove: capital taxes converge to zero in
the long-run

e Really striking: this is true even if v = 0, i.e. Ramsey planner
only cares about workers!

e Is this really true? Let's consider again the tractable case with
log utility, c =1
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Ramsey Problem for 0 = 1,7 =10
Recall analytic solution for capitalists’s saving decision
dt+1 = S(]. — Tt)(]. + rt)ah Ct = (1 — S)(]. — Tt)(]. + rt)at

with s = 5. Follow Straub-Werning in writing s, could come
from somewhere else than ¢ = 1 assumption

Using C; = 1—;5kt+1, resource constraint becomes

1
¢t + ;kt—l—l + g = f(ket1) + (1 — 0)ke
Also assume vy = 0 (planner only cares about workers)

Ramsey problem with 0 = 1,7 = 0:

[e.e]

max Zﬂtu(ct),

{ct ker1} =0

1
c + ;kt—l—l + g = f(ket1) + (1 — 0)ke

Mathematically equivalent to standard growth model
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Ramsey Problem for 0 = 1,7 =10

e Euler equation is

() = 5Bt/ (cea)(F(kesr) +1 - ) (+)

e Because this is equivalent to growth model
e unique interior steady state
1=sB(f'(k*) +1-90)
e globally stable
e With R* =1/s and R®* = f'(k*) +1 — ¢ have
R 1
— == = 7T7=1-8>0

R B

e Counterexample to zero long-run capital taxes.
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What Went Wrong?

Crucial part of Judd's Theorem: “Suppose quantities and
multipliers converge to an interior steady state ..."

Turns out this doesn’'t happen: multipliers explode!

Consider planner’s equations (3), (4) incase 0 = 1,7 =0

Hi+1 = pt + Breve (3)
) () 110 = 2wl ) (@)
u'(ct) I6]
Judd: if py — p*, then 7+ — 0 (follows from (4'))
But from (3') w41 > pe for all t = py — o0
In fact, with log-utility
Keyl = ktg:l = 1i5 = Ve(perr—pe) = ﬂfiﬂ = 15_55

and so (4) implies (%) on previous slide and 7* =1 —f
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General Case 0 # 1

e Straub and Werning (2014) analyze general case
e Not surprisingly, asymptotic behavior of 7; different whether

e ¢ > 1: positive limit tax

e g < 1: zero limit tax

e This is where the meat of the paper is
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General Case 0 # 1

Proposition

If o > 1 and ~v = 0 then for any initial kg the solution to the
planning problem converges to ¢; — 0, ky — kg, C; — %kg, with
a positive limit tax on wealth: 1 — Riti — 7g > 0. The limit tax is
decreasing in spending g, with T — 1 as g — 0.

e Proof: see pp.34-48!

e What about o < 17
e zero long-run capital tax is correct
e but convergence may take many hundred years
e to be expected for o ~ 1 due to continuity
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Optimal Time Paths for k; and 7;
Left panel: k:, Right panel: 7¢

10 %
2 8%
6%
1 4%
2%
0
100 200 300 100 200 300

—0.75—0.9 —0.95—0.99 —1.025 — 1.06 — 1.1 —1.25

Figure 1: Optimal time paths over 300 years for capital stock (left panel) and wealth taxes
(right panel) for various value of ¢. Note: tax rates apply to gross returns not net returns,
i.e. they represent an annual wealth tax.
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o < 1: Years until 7, < 1%

1,500 |
1,000 |

500 |
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In long-run,

Intuition

why is optimal {7:} increasing when o > 1 and

decreasing when o < 17

Guess what? Income and substitution effects!

Warm-up exercise: consider unexpected higher future taxation
(1+ 1) (1 = 7o) L

e o> 1:

income effect dominates = C; |, arr1 1

e o < 1: substitution effect dominates = C; T, ar41 |

e og=1:

income & subst. effects cancel = C;, a;11 constant

One objective of optimal tax policy: high k; = high output,
high tax base

= want to
e o> 1:
e o< 1:
e o=1:

encourage savings ari1

income effect dominates = want 7441 > 7¢
substitution effect dominates = want 7p41 < 7¢
income & subst. effects cancel = want 7; constant
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Effect of Redistributive Preferences ~
Left panel: k:, Right panel: 7¢

50/0

4
0 0/0
2 59, N
0 —10%
100 200 300 100 200 300

—08—-06—-04——-02—00—02—04—06—0.8

Figure 3: Optimal time paths over 300 years for capital stock (left panel) and wealth taxes
(right panel) for various redistribution preferences (zero represents no desire for redistri-
bution; see footnote 16).
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Linearized Dynamics

e Straub and Werning also analyze linearized system
e see their Proposition 4
e linearize around zero-tax steady state (i.e. Judd’s st. st.)

e same tools as in Lecture 4 but 4-dimensional system (2 states,
2 co-states)

e careful: they use “saddle-path stable” to refer to system of 2
states, i.e. “no. of negative eigenvalues = 1" or system is
unstable except for knife-edge initial conditions (ko, C_1)

e Analysis confirms numerical results
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Capital Taxation without Redistribution

So far: capital taxation in environment with redistributive
motif (capitalists and workers as in Judd, 1985)
Different question: if government has to finance a flow of
expenditure g, how should it raise the revenue?

e capital taxes?

e labor taxes?

This is the question asked in Chamley (1986)

e = Ramsey taxation in representative agent model

Won't cover this case in detail
e logic of Ramsey problem same: max. utility s.t. allocation =
CE with taxes

o see Chamley (1986), Atkeson et al. (1999) among others, and
Straub and Werning (2014, Section 3)

e here: brief intuitive discussion
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Capital Taxation without Redistribution

e Key to results in rep. agent models is thinking about “supply
of capital” and its elasticity (responsiveness to rate of return)

e inelastic in short-run, elastic in long-run

e In standard growth model, consider k¢(r¢,...)

e supply at t =0:
ko = ko = elasticity = 0
e supply as t — co:
r*=1/8—-1 = elasticity = 0o
(if decrease r by €, ky — 0; if increase r by €, ky — o)

e “Infinite elasticity in long-run” prediction a bit extreme
o relies on time-separability of preferences: .~ 3 u(c¢)
e but “more elastic in long-run than in short-run” is very general
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Capital Taxation without Redistribution

e What does “more elastic in long-run than in short-run” imply
for capital taxation?

e motif for “front-loading” capital taxes: tax more today, than
tomorrow

e Chamley: no upper bounds on capital taxes = capital tax = 0
ast — oo

e in fact, time-separable preferences + no bounds on taxes = all
taxation at t =0

e Werning and Straub point to extreme assumption: no upper
bound on capital taxation

e bounds = less front-loading

e bounds may even bind indefinitely, i.e. capital taxes > 0 in
long-run
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Takeaway on Capital Taxation

¢ Robust prediction: if possible, want to tax more today than
tomorrow

e Not robust: this implies that capital taxes should be zero in
long-run
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