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Policy Analysis in the Growth Model

• Classic question: what are the consequences for allocations
and welfare of policy x?

• Today: x = capital income taxation

• but approach works more generally
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Capital Taxes in the U.S.

• U.S. top marginal tax rates (from Saez, Slemrod and Giertz,
2012, Table A1)
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Capital Taxation in Theory

• Most influential: Chamley and Judd’s zero capital tax result

• somewhat more precisely: in the long-run, the optimal linear
capital income tax should be zero

• perhaps even reflected in observed policy (see previous slide)
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Plan

1 Capital income taxation and redistribution

• a growth model with capitalists and workers

• “Ramsey taxation” (Judd, 1985)

• critique by Straub and Werning (2014)

2 Capital income taxation without redistribution

• “Ramsey taxation” (Chamley, 1986)

• only quick overview

3 Summary: takeaway on capital taxation

5 / 45



Growth Model with Capitalists & Workers

• Consider a variant of the growth model with two types of
individuals:

• capitalists: rep. capitalist derives all income from returns to
capital

• workers: rep. worker derives all income from labor income

• Originally due to Judd (1985), use discrete-time formulation
from Straub and Werning (2014)

• Two reasons why variant is better model for thinking about
capital income taxation than standard growth model

• some distributional conflict (as opposed to rep. agent)

• math turns out to be easier

• End of lecture: capital taxation in representative agent

model (Chamley, 1986)

6 / 45



Growth Model with Capitalists & Workers

• Preferences

• capitalist
∞
∑

t=0

βtU(Ct), U(C ) =
C 1−σ

1− σ

• workers
∞
∑

t=0

βtu(ct)

• Technology

ct + Ct + kt+1 = F (kt , ht) + (1− δ)kt

• Endowments: capitalists own k0 = k̂0 units of capital
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Competitive Equilibrium without Taxes
• Definition: A SOMCE for the growth model with capitalists
and workers are sequences {ct , ht , kt , at ,wt , rt}

∞
t=0 s.t.

1 (Capitalist max) Taking {rt} as given, {Ct , at} solves

max
{Ct ,at+1}∞

t=0

∞
∑

t=0

βtU(Ct) s.t.

Ct + at+1 = (1 + rt)at , lim
T→∞

(

∏T

s=0
1

1+rs

)

aT+1 ≥ 0, a0 = k̂0.

2 (Worker max) Taking {wt} as given, {ct , ht} solves

max
{ct ,ht}∞

t=0

∞
∑

t=0

βtu(ct) s.t. ct = wtht

3 (Firm max) Taking {wt , rt} as given {kt, ht} solves

max
{kt ,ht}

∞
∑

t=0

(

t
∏

s=0

1

1 + rs

)

(F (kt , ht)−wtht−it), kt+1 = it+(1−δ)kt

4 (Market clearing) For each t:

ct + Ct + kt+1 = F (kt , ht) + (1 − δ)kt , at = kt
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Comments

• Only capitalist can save

• Worker cannot save, lives “hand to mouth”

• Work with decentralization in which

• firms own capital

• capitalists save in riskless bond

• in contrast, in last lecture: households owned capital, rented it
to firms

• Relative to Straub and Werning

• make notation as similar as possible to last lecture

• impose no-Ponzi condition rather than borrowing limit
at+1 ≥ 0 (doesn’t matter)
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Necessary Conditions

• Necessary conditions for capitalist problem

U ′(Ct) = β(1 + rt+1)U
′(Ct+1) (1)

0 = lim
T→∞

βTU ′(CT )aT+1

• Solution to worker problem

ht = 1, ct = wt

• Necessary conditions for firm problem

Fh(kt , ht) = wt

Fk(kt , ht) + 1− δ = 1 + rt (2)

• Market Clearing

ct + Ct + kt+1 = F (kt , ht) + (1− δ)kt
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Necessary Conditions

• (6) is same no-arbitrage condition we had in last lecture, but
now coming directly from firm’s problem

• Combining (1) and (6) and defining F (kt , 1) = f (kt) we get

U ′(Ct) = βU ′(Ct)(f
′(kt+1) + 1− δ)

• Same condition as usual, except that Ct is consumption of
capitalists

• In steady state Ct = C ∗, ct = c∗, kt = k∗

f ′(k∗) + 1− δ =
1

β

⇒ same steady state as standard growth model.
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Analytic Solution in Special Case: σ = 1

• Lemma: with σ = 1 capitalists save a constant fraction β

at+1 = β(1 + rt)at , Ct = (1− β)(1 + rt)at

• Proof: “guess and verify”. Consider nec. cond’s w/ σ = 1

Ct+1

Ct

= β(1 + rt+1) (∗)

0 = lim
T→∞

βT aT+1

CT

Ct + at+1 = Rtat

• Guess Ct = (1− s)(1 + rt)at . From (∗)

(1− s)(1 + rt+1)at+1

(1− s)(1 + rt)at
= β(1 + rt+1) ⇒

at+1

at
= β(1 + rt)

i.e. s = β.�
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σ = 1: Intuition for Constant Saving Rate
• Log utility ⇒ offsetting income and substitution effects

• (at+1,Ct) do not depend on rt+1

• 1/σ = “intertemporal elasticity of substitution (IES)”

• low σ ⇒ U close to linear ...

• ... capitalists like to substitute intertemporally (“high IES”)

• To understand, consider effect of unexpected increase of rt+1

• σ > 1: income effect dominates ⇒ Ct ↑, at+1 ↓

• σ < 1: substitution effect dominates ⇒ Ct ↓, at+1 ↑

• σ = 1: income & subst. effects cancel ⇒ Ct , at+1 constant

• Same logic as in Lecture 4

• there condition was σ ≷ α where α = curvature of prod. fn.

• reason for difference: planner in Lecture 4 faced concave
saving technology, εkα

t

• ... here instead, capitalists face linear saving technology
((1 + rt)at). In effect, α = 1.
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Analytic Solution in Special Case: σ = 1
• Necessary conditions reduce to

kt+1 = β(f ′(kt) + 1− δ)kt (∗)

Ct = (1− β)(f ′(kt) + 1− δ)kt

ct = f (kt)− f ′(kt)kt

(used F = Fkk + Fhh and so Fh(kt , 1) = f (kt)− f ′(kt)kt)

• Model basically boils down to Solow model

• e.g. with f (k) = Akα

kt+1 = αβAkα

t + β(1 − δ)kt

• effective saving rate αβ and depreciation term β(1 − δ)

• Extremely convenient: compute entire transition by hand
• no need for phase diagram etc, simply do Solow zig-zag graph

• but still same steady state at standard growth model

f ′(k∗) = 1/β + 1− δ
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Policy in GE Models

• Next: policy in growth model with capitalists and workers

• Questions about policy need to be well posed

• example of question that is not well-posed: “What happens if
we introduce a proportional tax τ on capital?”

• reason: if a policy raises revenue (or requires expenditure),
then one must specify what is done with the revenue (where
the revenue comes from)

• There are many possible uses of revenue ⇒ many possible
exercises

• Here, ask: What are the consequences of introducing

• a proportional (linear) tax on capital income of τt

when the revenues are used to fund

• constant government consumption g ≥ 0 and

• a lump-sum transfer to workers Tt

with period-by-period budget balance?
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Competitive Equilibrium with Taxes
• Definition: A SOMCE with taxes for the growth model with
capitalists and workers are sequences
{ct , ht , kt , at ,wt , rt , τtTt}

∞
t=0 s.t.

1 (Capitalist max) Taking {rt , τt} as given, {Ct , at} solves

max
{Ct ,at+1}∞

t=0

∞
∑

t=0

βtU(Ct) s.t.

Ct + at+1 = (1− τt)(1 + rt)at , lim
T→∞

(

∏T
s=0

1
1+rs

)

aT+1 ≥ 0, a0 = k̂0.

2 (Worker max) Taking {wt} as given, {ct , ht} solves

max
{ct ,ht}∞

t=0

∞
∑

t=0

βtu(ct) s.t. ct = wtht + Tt

3 (Firm max) Taking {wt , rt} as given {kt, ht} solves

max
{kt ,ht}

∞
∑

t=0

(

t
∏

s=0

1

1 + rs

)

(F (kt , ht)−wtht−it), kt+1 = it+(1−δ)kt
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Competitive Equilibrium with Taxes

• Definition: A SOMCE with taxes for the growth model with
capitalists and workers are sequences
{ct , ht , kt , at ,wt , rt , τtTt}

∞
t=0 s.t.

4 (Government) For each t

g + Tt = τtkt

5 (Market clearing) For each t:

ct + Ct + kt+1 = F (kt , ht) + (1 − δ)kt , at = kt
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Comments

• Tax is linear as opposed to non-linear tax function τ̃

Ct + at+1 = (1 + rt)at − τ̃((1 + rt)at)

with τ̃ ′′ 6= 0 (e.g. τ̃ ′′ > 0 = progressive)
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Characterizing CE with Taxes
• Necessary conditions unchanged except for

U ′(Ct) = β(1− τt+1)(1 + rt+1)U
′(Ct+1)

and resource constraint

• Therefore

U ′(Ct) = βU ′(Ct+1)(1 − τt+1)(f
′(kt+1) + 1− δ)

• For any {τt}
∞
t=0 can use shooting algorithm to solve for eqm

• natural initial condition: steady state without taxes

• What about steady state with taxes? Suppose τt = τ . Then

(1− τ)(f ′(k∗) + 1− δ) =
1

β

Hence higher τ ↑⇒ k∗ ↓, e.g. if f (k) = Akα

k∗ =

(

αA
1

β(1−τ) + 1− δ

)
1

1−α
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Ramsey Taxation

• So far: positive analysis

• what is the effect of τt ...?

• Now: normative

• what is the optimal τt

• Ramsey problem: find {τt} that produces a CE with taxes
with highest utility for agents (capitalists and workers).

• that is, find optimal {τt} subject to the fact that agents
behave competitively for those taxes

• Important assumption
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Ramsey Problem

• Need to take stand on objective of policy

• Here use
∞
∑

t=0

βt(u(ct) + γU(Ct))

for a “Pareto weight” γ ≥ 0

• γ = 0: only care about workers

• γ → ∞: only care about capitalists
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Ramsey Problem
• Recall necessary conditions for CE with taxes

U ′(Ct) = β(1 + rt+1)(1− τt+1)U
′(Ct+1) (1)

0 = lim
T→∞

βTU ′(CT )aT+1 (2)

Ct + at+1 = (1− τt)(1 + rt)at (3)

ct = wt + Tt (4)

Fh(kt , 1) = wt (5)

Fk(kt , 1) + 1− δ = 1 + rt (6)

ct + Ct + g + kt+1 = F (kt , 1) + (1− δ)kt (7)

kt = at (8)

a0 = k0 = k̂0 (9)

• Ramsey problem is

max
{τt ,ct ,Ct ,kt+1,at+1,wt ,rt}

∞
∑

t=0

βt(u(ct) + γU(Ct)) s.t. (1)-(9)
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Ramsey Problem

• Can simplify by combining/eliminating some of the
constraints

• From (3) and (8)

(1− τt)(1 + rt) =
Ct

kt
+

kt+1

kt

• Substituting into (1)

U ′(Ct−1)kt = βU ′(Ct)(Ct + kt+1)

• Write F (kt , 1) = f (kt) as usual

• Walras’ Law: can drop one budget constraint or resource
constraint. Drop (4).

• Also drop (5) and (6) since {rt ,wt}
∞
t=0 only show up in

equations we already dropped.
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Ramsey Problem

• After simplifications:

max
{ct ,Ct ,kt+1}∞t=0

∞
∑

t=0

βt(u(ct) + γU(Ct)) s.t.

ct + Ct + g + kt+1 = f (kt) + (1− δ)kt

βU ′(Ct)(Ct + kt+1) = U ′(Ct−1)kt

lim
T→∞

βTU ′(CT )kT+1 = 0
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Comments

• Note: problem only in terms of allocation

• Given optimal {ct ,Ct , kt+1}
∞
t=0, can always back out taxes

and prices

wt = Fh(kt , 1) = f (kt)− f ′(kt)kt

rt = Fk(kt , 1)− δ = f ′(kt)− δ

1− τt =
1

f ′(kt) + 1− δ

U ′(Ct)

βU ′(Ct+1)

• In other applications, typically combine constraints in different
way, leading to so-called “implementability” condition.

• same outcome: Ramsey problem in terms of allocations only

• But here follow Judd (1985) and Straub and Werning (2014).
Easier to work with.
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First order conditions

• Lagrangean

L =
∞
∑

t=0

{

βt(u(ct) + γU(Ct))

+ βtλt(f (kt) + (1− δ)kt − ct − Ct − g − kt+1)

+ βtµt(βU
′(Ct)(Ct + kt+1)− U ′(Ct−1)kt)

}

• First order conditions (use that U ′(Ct)Ct = C 1−σ
t )

ct : 0 = u′(ct)− λt (1)

Ct : 0 = γU ′(Ct)− λt − βµt+1U
′′(Ct)kt+1

+ βµt((1− σ)U ′(Ct) + U ′′(Ct)kt+1)
(2)

kt+1 : 0 = −λt + µtβU
′(Ct)

+ βλt+1(f
′(kt+1) + 1− δ)− βµt+1U

′(Ct)
(3)
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Tricky Detail: C−1

• Treated Ct as a state variable, even though it’s a jump var
• C−1 is not-predetermined

• Can show: multiplier µt corresponding to {Ct} has to satisfy

µ0 = 0

• Heuristic derivation: for any (k0,C−1) define V (k0,C−1) by

V (k0,C−1) = max
{ct ,Ct ,kt+1}∞t=0

∞
∑

t=0

βt(u(ct) + γU(Ct)) s.t.

ct + Ct + g + kt+1 = f (kt) + (1− δ)kt

βU ′(Ct)(Ct + kt+1) = U ′(Ct−1)kt

lim
T→∞

βTU ′(CT )kT+1 = 0

• C−1 pinned down from VC (k0,C−1) = 0. Envelope condition

VC (k0,C−1) =
∂L

∂C−1
= −µ0U

′′(C−1)k0 ⇒ µ0 = 0
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First order conditions
• Manipulate (2) as follows

−βµt+1U
′′(Ct)kt+1 = −γU ′(Ct)+λt−βµt((1−σ)U ′(Ct)+U ′′(Ct)kt+1)

Use that U ′′(Ct)kt+1 = −σU ′(Ct)κt+1, κt+1 = kt+1/Ct

µt+1βσU
′(Ct)κt+1 = βµt((σ−1)U ′(Ct)+U ′(Ct)κt+1σ)−γU ′(Ct)+λt

µt+1 = µt

(

σ − 1

σκt+1
+ 1

)

+
λt/U

′(Ct)− γ

βσκt+1

µt+1 = µt

(

σ − 1

σκt+1
+ 1

)

+
1− γvt
βσκt+1vt

, vt =
U ′(Ct)

u′(ct)

• Manipulate (3) as follows

βλt+1(f
′(kt+1) + 1− δ) = λt − µtβU

′(Ct) + βµt+1U
′(Ct)

Divididing by βλt and using λt = u′(ct), vt = U ′(Ct)/u
′(ct)

u′(ct+1)

u′(ct)
(f ′(kt+1) + 1− δ) =

1

β
+ vt(µt+1 − µt) (4)
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First order conditions
• Using these manipulations we obtain

µ0 = 0 (1)

u′(ct) = λt (2)

µt+1 = µt

(

σ − 1

σκt+1
+ 1

)

+
1

βσκt+1vt
(1− γvt) (3)

u′(ct+1)

u′(ct)
(f ′(kt+1) + 1− δ) =

1

β
+ vt(µt+1 − µt) (4)

where κt = kt/Ct−1, vt = U ′(Ct)/u
′(ct)

• Straub and Werning find it convenient to denote (note Rt 6=
rental rate)

Re
t = f ′(kt) + 1− δ

Rt = (1− τt)(f
′(kt) + 1− δ) =

U ′(Ct)

βU ′(Ct+1)
(5)

τ = 0 ⇔ Re
t /Rt = 1
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First order conditions

Theorem (Judd, 1985)

Suppose quantities and multipliers converge to an interior steady

state, i.e. ct , Ct , kt+1 converge to positive values, and µt

converges. Then the tax on capital is zero in the limit: Re
t /Rt → 1.

• Proof: Theorem assumes (ct ,Ct , kt , µt) → (c∗,C ∗, k∗, µ∗).
Hence also (vt , κt) → (v∗, κ∗).

• From (4) with ct = ct+1 = c∗

Re
t → Re∗ =

1

β

• Similarly, from (5) with C ∗
t = C ∗

t+1 = C ∗

Rt → R∗ =
1

β

• Hence R∗
t /Rt → 1 or equivalently τt → 0.�
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Comments

• Theorem seems to prove: capital taxes converge to zero in
the long-run

• Really striking: this is true even if γ = 0, i.e. Ramsey planner
only cares about workers!

• Is this really true? Let’s consider again the tractable case with
log utility, σ = 1
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Ramsey Problem for σ = 1, γ = 0
• Recall analytic solution for capitalists’s saving decision

at+1 = s(1− τt)(1 + rt)at , Ct = (1− s)(1− τt)(1 + rt)at

with s = β. Follow Straub-Werning in writing s, could come
from somewhere else than σ = 1 assumption

• Using Ct =
1−s
s
kt+1, resource constraint becomes

ct +
1

s
kt+1 + g = f (kt+1) + (1− δ)kt

• Also assume γ = 0 (planner only cares about workers)

• Ramsey problem with σ = 1, γ = 0:

max
{ct ,kt+1}

∞
∑

t=0

βtu(ct),

ct +
1

s
kt+1 + g = f (kt+1) + (1− δ)kt

• Mathematically equivalent to standard growth model
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Ramsey Problem for σ = 1, γ = 0

• Euler equation is

u′(ct) = sβu′(ct+1)(f
′(kt+1) + 1− δ) (∗)

• Because this is equivalent to growth model

• unique interior steady state

1 = sβ(f ′(k∗) + 1− δ)

• globally stable

• With R∗ = 1/s and Re∗ = f ′(k∗) + 1− δ have

Re

R
=

1

β
⇒ τ∗ = 1− β > 0

• Counterexample to zero long-run capital taxes.
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What Went Wrong?
• Crucial part of Judd’s Theorem: “Suppose quantities and
multipliers converge to an interior steady state ...”

• Turns out this doesn’t happen: multipliers explode!

• Consider planner’s equations (3), (4) in case σ = 1, γ = 0

µt+1 = µt +
1

βκt+1vt
(3’)

u′(ct+1)

u′(ct)
(f ′(kt+1) + 1− δ) =

1

β
+ vt(µt+1 − µt) (4’)

• Judd: if µt → µ∗, then τt → 0 (follows from (4’))

• But from (3’) µt+1 > µt for all t ⇒ µt → ∞

• In fact, with log-utility

κt+1 =
kt+1

Ct

=
s

1− s
⇒ vt(µt+1−µt) =

1

βκt+1
=

1− s

βs

and so (4) implies (∗) on previous slide and τ∗ = 1− β
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General Case σ 6= 1

• Straub and Werning (2014) analyze general case

• Not surprisingly, asymptotic behavior of τt different whether

• σ > 1: positive limit tax

• σ < 1: zero limit tax

• This is where the meat of the paper is
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General Case σ 6= 1

Proposition

If σ > 1 and γ = 0 then for any initial k0 the solution to the

planning problem converges to ct → 0, kt → kg ,Ct →
1−β
β

kg , with

a positive limit tax on wealth: 1− Rt

R∗

t
→ τg > 0. The limit tax is

decreasing in spending g, with τg → 1 as g → 0.

• Proof: see pp.34-48!

• What about σ < 1?

• zero long-run capital tax is correct

• but convergence may take many hundred years

• to be expected for σ ≈ 1 due to continuity
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Optimal Time Paths for kt and τt
Left panel: kt , Right panel: τt
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Figure 1: Optimal time paths over 300 years for capital stock (left panel) and wealth taxes
(right panel) for various value of σ. Note: tax rates apply to gross returns not net returns,
i.e. they represent an annual wealth tax.
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σ < 1: Years until τt < 1%
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Intuition

• In long-run, why is optimal {τt} increasing when σ > 1 and
decreasing when σ < 1?

• Guess what? Income and substitution effects!

• Warm-up exercise: consider unexpected higher future taxation
(1 + rt+1)(1− τt+1) ↓

• σ > 1: income effect dominates ⇒ Ct ↓, at+1 ↑

• σ < 1: substitution effect dominates ⇒ Ct ↑, at+1 ↓

• σ = 1: income & subst. effects cancel ⇒ Ct , at+1 constant

• One objective of optimal tax policy: high kt ⇒ high output,
high tax base

• ⇒ want to encourage savings at+1

• σ > 1: income effect dominates ⇒ want τt+1 ≥ τt

• σ < 1: substitution effect dominates ⇒ want τt+1 ≤ τt

• σ = 1: income & subst. effects cancel ⇒ want τt constant

39 / 45



Effect of Redistributive Preferences γ
Left panel: kt , Right panel: τt
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Figure 3: Optimal time paths over 300 years for capital stock (left panel) and wealth taxes
(right panel) for various redistribution preferences (zero represents no desire for redistri-
bution; see footnote 16).
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Linearized Dynamics

• Straub and Werning also analyze linearized system

• see their Proposition 4

• linearize around zero-tax steady state (i.e. Judd’s st. st.)

• same tools as in Lecture 4 but 4-dimensional system (2 states,
2 co-states)

• careful: they use “saddle-path stable” to refer to system of 2
states, i.e. “no. of negative eigenvalues = 1” or system is
unstable except for knife-edge initial conditions (k0,C−1)

• Analysis confirms numerical results
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Capital Taxation without Redistribution

• So far: capital taxation in environment with redistributive

motif (capitalists and workers as in Judd, 1985)

• Different question: if government has to finance a flow of
expenditure g , how should it raise the revenue?

• capital taxes?

• labor taxes?

• This is the question asked in Chamley (1986)

• ⇒ Ramsey taxation in representative agent model

• Won’t cover this case in detail

• logic of Ramsey problem same: max. utility s.t. allocation =
CE with taxes

• see Chamley (1986), Atkeson et al. (1999) among others, and
Straub and Werning (2014, Section 3)

• here: brief intuitive discussion
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Capital Taxation without Redistribution

• Key to results in rep. agent models is thinking about “supply
of capital” and its elasticity (responsiveness to rate of return)

• inelastic in short-run, elastic in long-run

• In standard growth model, consider kt(rt , ...)

• supply at t = 0:

k0 = k̂0 ⇒ elasticity = 0

• supply as t → ∞:

r∗ = 1/β − 1 ⇒ elasticity = ∞

(if decrease r by ε, kt → 0; if increase r by ε, kt → ∞)

• “Infinite elasticity in long-run” prediction a bit extreme

• relies on time-separability of preferences:
∑∞

t=0 β
tu(ct)

• but “more elastic in long-run than in short-run” is very general
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Capital Taxation without Redistribution

• What does “more elastic in long-run than in short-run” imply
for capital taxation?

• motif for “front-loading” capital taxes: tax more today, than
tomorrow

• Chamley: no upper bounds on capital taxes ⇒ capital tax ⇒ 0
as t → ∞

• in fact, time-separable preferences + no bounds on taxes ⇒ all
taxation at t = 0

• Werning and Straub point to extreme assumption: no upper
bound on capital taxation

• bounds ⇒ less front-loading

• bounds may even bind indefinitely, i.e. capital taxes > 0 in
long-run
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Takeaway on Capital Taxation

• Robust prediction: if possible, want to tax more today than
tomorrow

• Not robust: this implies that capital taxes should be zero in
long-run
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