Lecture 6: Competitive Equilibrium in the Growth Model (II)

ECO 503: Macroeconomic Theory I

Benjamin Moll

Princeton University

Fall 2014

Plan of Lecture

- 1 Sequence of markets CE
- 2 The growth model and the data

Sequence of Markets CE

Arrow-Debreu CE

- period 0: markets for everything
- Sequence of Markets CE: particular markets at particular points in time

Period 0	Period 1	Period 2	
market for period 0 capital,			
period 0 labor,			
period 0 output,			
period 0 labor,			
1 period ahead borrowing/leding			

- Individ. formulates plan at t = 0, but executes it in real time
 - in contrast, in ADCE everything happens in period 0
- SOMCE features explicit borrowing & lending
 - riskless one-period bond that pays real interest rate r_t

Sequence of Market CE

• **Definition**: A SOMCE for the growth model are sequences $\{c_t, h_t, k_t, a_t, w_t, R_t, r_t\}_{t=0}^{\infty}$ s.t.

1 (HH max) Taking $\{w_t, R_t, r_t\}$ as given, $\{c_t, h_t, k_t, a_t\}$ solves

$$\max_{\{c_t, h_t, k_t, a_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t) \quad \text{s.t.}$$

$$c_t + k_{t+1} - (1 - \delta)k_t + a_{t+1} \le R_t k_t + w_t h_t + (1 + r_t)a_t$$

$$c_t \ge 0, \quad 0 \le h_t \le 1, \quad k_{t+1} \ge 0, \quad k_0 = \bar{k}_0, \quad a_0 = 0$$

$$\lim_{T \to \infty} \left(\prod_{t=0}^T \frac{1}{1 + r_t} \right) a_{T+1} \ge 0 \quad (*)$$

2 (Firm max) Taking $\{w_t, R_t, r_t\}$ as given, $\{k_t, h_t\}$ solves $\max_{k_t, h_t} F(k_t, h_t) - w_t h_t - R_t k_t \quad k_t \ge 0, \quad h_t \ge 0 \quad \forall t.$

(Market clearing) For each t:

$$c_t + k_{t+1} - (1 - \delta)k_t = F(k_t, h_t)$$

 $a_{t+1} = 0$ (**) _{4/16}

Comments

- $a_t = HH$ bond holdings
 - $a_t > 0$: HH saves, $a_t < 0$: HH borrows
 - period-t price of bond that pays off at t + 1: $q_t = 1/(1 + r_t)$
 - some people like to write

$$c_t + k_{t+1} - (1-\delta)k_t + q_t b_{t+1} \leq R_t k_t + w_t h_t + b_t$$

- this is equivalent with $b_t = (1+r_t)a_t$ and $q_t = 1/(1+r_t)$
- Interpretation of bond market clearing condition (**)
 - bonds are in zero net supply
 - more generally, in economy with individuals i = 1, ..., N

$$\sum_{i=1}^{N} a_{i,t+1} = 0$$

- · for every dollar borrowed, someone else saves a dollar
- here only one type, so $a_{t+1} = 0$.
- Q: since $a_t = 0$, why not eliminate? A: need to know eq. r_t

Comments

- (*) is a so-called "no-Ponzi condition"
 - with period budget constraints only, individuals could choose time paths with $a_t \to -\infty$
 - no-Ponzi condition (*) rules out such time paths: a_t cannot become too negative
 - implies that sequence of budget constraints can be written as present-value (or time-zero) budget constraint
 - return to this momentarily
- Could have written firm's problem as

$$\max_{\{k_t,h_t\}} \sum_{t=0}^{\infty} \left(\prod_{s=0}^t \frac{1}{1+r_s} \right) \left(F(k_t,h_t) - w_t h_t - R_t k_t \right) \quad k_t \ge 0, \quad h_t \ge 0$$

but this is a sequence of static problems so can split them up

Sequence $BC + no-Ponzi \Rightarrow PVBC$

• **Result:** If $\{c_t, i_t, h_t\}$ satisfy the sequence budget constraint

$$c_t + i_t + a_{t+1} = R_t k_t + w_t h_t + (1 + r_t) a_t$$

and if the no-Ponzi condition (*) holds with equality, then $\{c_t, i_t, h_t\}$ satisfy the present value budget constraint

$$\sum_{t=0}^{\infty} \left(\prod_{s=0}^{t} \frac{1}{1+r_s}\right) (c_t + i_t) = \sum_{t=0}^{\infty} \left(\prod_{s=0}^{t} \frac{1}{1+r_s}\right) (R_t k_t + w_t h_t)$$

• Proof: next slide

Proof

• Write period *t* budget constraint as

$$\frac{1}{1+r_t}a_{t+1} = \frac{1}{1+r_t}\left(R_tk_t + w_th_t - c_t - i_t\right) + a_t$$

• At
$$t = 0, t = 1, ...$$

$$\frac{1}{1+r_0}a_1 = \frac{1}{1+r_0}(R_0k_0 + w_0h_0 - c_0 - i_0) + a_0$$

$$\frac{1}{1+r_0}\frac{1}{1+r_1}a_2 = \frac{1}{1+r_0}\frac{1}{1+r_1}(R_1k_1 + w_1h_1 - c_1 - i_1)$$

$$+ \frac{1}{1+r_0}(R_0k_0 + w_0h_0 - c_0 - i_0) + a_0$$

• By induction/repeated substitution

$$\left(\prod_{t=0}^{T} \frac{1}{1+r_t}\right) a_{T+1} = \sum_{t=0}^{T} \left(\prod_{s=0}^{t} \frac{1}{1+r_s}\right) (R_t k_t + w_t h_t - i_t - c_t)$$

• Result follows from taking $T \to \infty$ and imposing (*)

Why no-Ponzi Condition?

• Expression also provides some intuition for no-Ponzi condition

$$\left(\prod_{t=0}^{T} \frac{1}{1+r_t}\right) a_{T+1} = \sum_{t=0}^{T} \left(\prod_{s=0}^{t} \frac{1}{1+r_s}\right) (R_t k_t + w_t h_t - i_t - c_t)$$

Suppose for the moment this were a finite horizon economy

• would impose: die without debt, i.e.

$$a_{T+1} \geq 0$$

- in fact, HH's would always choose $a_{T+1} = 0$
- Right analogue for infinite horizon economy

$$\lim_{T\to\infty} \left(\prod_{t=0}^T \frac{1}{1+r_t}\right) a_{T+1} \ge 0$$

and HH's choose $\{a_t\}$ so that this holds with equality

 no-Ponzi condition not needed for physical capital because natural constraint k_t ≥ 0.

• Necessary conditions for consumer problem ($h_t = 1 \text{ wlog}$)

$$c_t$$
: $\beta^t u'(c_t) = \lambda_t$ = multiplier on period t b.c. (1)

$$k_{t+1}: \quad \lambda_t = \lambda_{t+1}(R_{t+1} + 1 - \delta) \tag{2}$$

$$a_{t+1}: \quad \lambda_t = \lambda_{t+1}(1+r_{t+1}) \tag{3}$$

$$c_t + k_{t+1} - (1 - \delta)k_t + a_{t+1} = R_t k_t + w_t h_t + (1 + r_t)a_t \quad (4)$$

no-Ponzi:
$$\lim_{T\to\infty} \left(\prod_{t=0}^{T} \frac{1}{1+r_t}\right) a_{T+1} \ge 0$$
 (5)

TVC on
$$k$$
: $\lim_{T \to \infty} \beta^T u'(c_T) k_{T+1} = 0$ (6)

TVC on
$$a$$
: $\lim_{T \to \infty} \beta^T u'(c_T) a_{T+1} = 0$ (7)

initial: $k_0 = \bar{k}_0, \quad a_0 = 0$ (8)

• Necessary conditions for firm problem

$$F_k(k_t, h_t) = R_t, \quad F_h(k_t, h_t) = w_t \tag{9}$$

• Market clearing

$$c_t + k_{t+1} - (1 - \delta)k_t = F(k_t, h_t), \quad a_{t+1} = 0$$
 (10)

• (1), (3) and (5)

$$\beta^{T} u'(c_{T}) = \lambda_{T} = \prod_{t=0}^{T} \frac{1}{1+r_{t}}$$
$$\Rightarrow \lim_{T \to \infty} \beta^{T} u'(c_{T}) a_{T+1} \ge 0$$

- But no-Ponzi and TVC are different conditions
- Kamihigashi (2008) "A no-Ponzi-game condition is a constraint that prevents overaccumulation of debt, while a typical transversality condition is an optimality condition that rules out overaccumulation of wealth. They place opposite restrictions, and should not be confused."

• (2) and (3)

$$1 + r_{t+1} = R_{t+1} + 1 - \delta$$

- i.e. rate of return on bonds = rate of return on capital
 - arbitrage condition
 - if this holds, HH is indifferent between a and k
- (1), (2) and (9) \Rightarrow

$$\frac{u'(c_t)}{\beta u'(c_{t+1})} = f'(k_{t+1}) + 1 - \delta$$
(11)

- (11) + TVC (6) + initial condition (8) + market clearing (10) = same set of equations as for SP problem
- Hence: SOMCE allocation is same as social planner's allocation
 - this is actually somewhat surprising, see next slide

Why is SOMCE allocation = SP's alloc?

- Relative to ADCE, we closed down many markets
- Q: Why do we still get SP solution even though we closed down many markets?
- A: We only closed down markets that didn't matter
- In fact, ADCE and SOMCE are equivalent

Equivalence of SOMCE and ADCE

• Recall HH's problem in ADCE (last lecture):

$$\max_{\{c_t,h_t,k_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t) \quad \text{s.t.}$$
$$\sum_{t=0}^{\infty} p_t(c_t + k_{t+1} - (1-\delta)k_t) \le \sum_{t=0}^{\infty} p_t(R_t k_t + w_t h_t)$$

 Have shown earlier: HH's problem in SOMCE is same with present-value budget constraint

$$\sum_{t=0}^{\infty} \left(\prod_{s=0}^{t} \frac{1}{1+r_s} \right) (c_t + k_{t+1} - (1-\delta)k_t) = \sum_{t=0}^{\infty} \left(\prod_{s=0}^{t} \frac{1}{1+r_s} \right) (R_t k_t + w_t h_t)$$

- Clearly these are equivalent
 - ADCE is SOMCE with $p_t = \prod_{s=0}^t \frac{1}{1+r_s}$
 - SOMCE is ADCE with $1 + r_{t+1} = p_t/p_{t+1}$
- Firm's problems are also equivalent.

Why is SOMCE allocation = SP's alloc?

- riskless one-period bond is surprisingly powerful
- one period ahead borrowing and lending \Rightarrow arbitrary period ahead borrowing and lending
- When is SOMCE allocation with one-period bonds \neq SP's allocation? That is, when do the welfare theorems fail?
 - risk (idiosyncratic or aggregate)
 - welfare theorems may hold if sufficiently rich insurance markets
 - "financial frictions." Examples:
 - interest rate = $r_t(a_t)$ with $r'_t \neq 0$.
 - in more general environments: borrowing constraint −a_t ≤ 0 or collateral constraints (need to back debt with collateral)

$$-a_{t+1} \leq \theta k_{t+1}$$