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Outline

(1) Hamilton-Jacobi-Bellman equations in stochastic settings

(without derivation)

(2) Ito’s Lemma

(3) Kolmogorov Forward Equations

(4) Application: Power laws (Gabaix, 2009)



Stochastic Optimal Control

• Generic problem:

V (x0) = max
u(t)∞t=0

E0

∫

∞

0
e−ρth (x (t) , u (t)) dt

subject to the law of motion for the state

dx(t) = g (x (t) , u (t)) dt + σ(x(t))dW (t) and u (t) ∈ U

for t ≥ 0, x(0) = x0 given.

• Deterministic problem: special case σ(x) ≡ 0.

• In general x ∈ R
m, u ∈ R

n. For now do scalar case.



Stochastic HJB Equation: Scalar Case

• Claim: the HJB equation is

ρV (x) = max
u∈U

h(x , u) + V ′(x)g(x , u) +
1

2
V ′′(x)σ2(x)

• Here: on purpose no derivation (“cookbook”)

• In case you care, see any textbook, e.g. chapter 2 in Stokey

(2008)

• Sidenote: can again write this in terms of the Hamiltonian

ρV (x) = max
u∈U

H(x , u,V ′(x)) +
1

2
V ′′(x)σ2(x)



Just for Completeness: Multivariate Case

• Let x ∈ R
m, u ∈ R

n.

• For fixed x , define the m ×m covariance matrix

σ2(x) = σ(x)σ(x)′

(this is a function σ2 : Rm → R
m × R

m)

• The HJB equation is

ρV (x) = max
u∈U

h(x , u)+

m
∑

i=1

∂V (x)

∂xi
gi (x , u)+

1

2

m
∑

i=1

m
∑

j=1

∂2V (x)

∂xi∂xj
σ2
ij(x)

• In vector notation

ρV (x) = max
u∈U

h(x , u)+∇xV (x)·g(x , u)+ 1

2
tr
(

∆xV (x)σ2(x)
)

• ∇xV (x): gradient of V (dimension m × 1)

• ∆xV (x): Hessian of V (dimension m ×m).



HJB Equation: Endogenous and Exogenous State

• Lots of problems have the form x = (x1, x2)

• x1: endogenous state

• x2: exogenous state

dx1 = g̃(x1, x2, u)dt

dx2 = µ̃(x2)dt + σ̃(x2)dW

• Special case with

g(x) =

[

g̃(x1, x2, u)

µ̃(x2)

]

, σ(x) =

[

0

σ̃(x2)

]

• Claim: the HJB equation is

ρV (x1, x2) =max
u∈U

h(x1, x2, u) + V1(x1, x2)g̃(x1, x2, u)

+V2(x1, x2)µ̃(x2) +
1

2
V22(x1, x2)σ̃

2(x2)



Example: Real Business Cycle Model

V (k0,A0) = max
c(t)∞t=0

E0

∫

∞

0
e−ρtU(c(t))dt

subject to

dk = [AF (k)− δk − c]dt

dA = µ(A)dt + σ(A)dW

for t ≥ 0, k(0) = k0, A(0) = A0 given.

• Here: x1 = k , x2 = A, u = c

• h(x , u) = U(u)

• g(x , u) = F (x)− δx − u



Example: Real Business Cycle Model

• HJB equation is

ρV (k ,A) =max
c

U(c) + Vk(k ,A)[AF (k) − δk − c]

+ VA(k ,A)µ(A) +
1

2
VAA(k ,A)σ

2(A)



Example: Real Business Cycle Model

• Special Case 1: A is a geometric Brownian motion

dA = µAdt + σAdW

ρV (k ,A) =max
c

U(c) + Vk(k ,A)[AF (k) − δk − c]

+ VA(k ,A)µA +
1

2
VAA(k ,A)σ

2A2

See Merton (1975) for an analysis of this case.

• Special Case 2: A is a Feller square root process

dA = θ(Ā− A)dt + σ
√
AdW

ρV (k ,A) =max
c

U(c) + Vk(k ,A)[AF (k) − δk − c]

+ VA(k ,A)θ(Ā − A) +
1

2
VAA(k ,A)σ

2A



Special Case: Stochastic AK Model with log Utility

• Preferences: U(c) = log c

• Technology: AF (k) = Ak

• A follows any diffusion

ρV (k ,A) =max
c

log c + Vk(k ,A)[Ak − δk − c]

+ VA(k ,A)µ(A) +
1

2
VAA(k ,A)σ

2(A)

• Claim: Optimal consumption is c = ρk and hence capital

follows

dk = [A− ρ− δ]kdt

dA = µ(A)dt + σ(A)dt

• Solution prop’s? Simply simulate two SDEs forward in time.



Special Case: Stochastic AK Model with log Utility

• Proof: Guess and verify

V (k ,A) = v(A) + κ log k

• FOC:

U ′(c) = Vk(k ,A) ⇔ 1

c
=

κ

k
⇔ c =

k

κ

• Substitute into HJB equation

ρ[v(A) + κ log k] = log k − log κ+
κ

k
[Ak − δk − k/κ]

+ v ′(A)µ(A) +
1

2
v ′′(A)σ2(A)

• Collect terms involving log k ⇒ κ = 1/ρ ⇒ c = ρk .�

• Comment: log-utility ⇒ offsetting income and substitution

effects of future A ⇒ constant savings rate ρ.



General Case: Numerical Solution with FD Method

• See HJB_stochastic_reflecting.m

• Solve on bounded grids ki , i = 1, ..., I and Aj , j = 1, ..., J

• Use short-hand notation Vi ,j = V (ki ,Aj). Approximate

Vk(ki ,Aj) ≈
Vi+1,j − Vi−1,j

2∆k

VA(ki ,Aj) ≈
Vi ,j+1 − Vi ,j+1

2∆A

VAA(ki ,Aj) ≈
Vi ,j+1 − 2Vi ,j + Vi ,j−1

(∆A)2

• Discretized HJB

ρVi ,j =U(ci ,j) + Vk(ki ,Aj)[AjF (ki )− δki − ci ,j ]

+ VA(ki ,Aj)µ(Aj) +
1

2
VAA(ki ,Aj)σ

2(Aj)

ci ,j = (U ′)−1[Vk(ki ,Aj)]

HJB_stochastic_reflecting.m


General Case: Numerical Solution with FD Method

• As boundary conditions, use

VA(k ,A1) = 0 all k ⇒ Vi ,0 = Vi ,2

VA(k ,AJ) = 0 all k ⇒ Vi ,J+1 = Vi ,J−1

• These correspond to “reflecting barriers” at lower and upper

bounds for productivity, A1 and AJ (Dixit, 1993).

• In theory also need boundary condition for k (possibility:

reflecting barrier at kI )

• Instead, use “dirty fix”: backward and forward rather than

central differences at boundaries

Vk(k1,A) =
V2,j − V1,j

∆k
, Vk(kI ,A) =

VI ,j − VI−1,j

∆k



General Case: Numerical Solution with FD Method

• Iterate using same explicit method as in deterministic case.

• Guess, V 0, update using:

V n+1
i ,j − V n

i ,j

∆
+ ρV n

i ,j =U(cni ,j) + V n
k (ki ,Aj)[AjF (ki )− δki − cni ,j ]

+ V n
A(ki ,Aj)µ(Aj) +

1

2
V n
AA(ki ,Aj)σ

2(Aj)

• See HJB_stochastic_reflecting.m

• Extremely inefficient: need 112,140 iterations.

• Implicit Method?

HJB_stochastic_reflecting.m


Ito’s Lemma

• Let x be a scalar diffusion

dx = µ(x)dt + σ(x)dW

• We are interested in the evolution of y(t) = f (x(t)) where f

is any twice differentiable function.

• Lemma: y(t) = f (x(t)) follows

df (x) =

(

µ(x)f ′(x) +
1

2
σ2(x)f ′′(x)

)

dt + σ(x)f ′(x)dW

• Extremely powerful because it says that any (twice

differentiable) function of a diffusion is also a diffusion.

• Can also be extended to vectors.

• FYI: this is also where the V ′(x)µ(x) + 1
2V

′′(x)σ2(x) term in

the HJB equation comes from (it’s E[dV (x)]
dt

).



Application: Brownian vs. Geometric Brownian Motion

• Let x be a geometric Brownian motion

dx = µxdt + σxdW

• Claim: y = log x is a Brownian motion with drift µ− σ2/2

and variance σ2.

• Derivation: f (x) = log x , f ′(x) = 1/x , f ′′(x) = −1/x2

By Ito’s Lemma

dy = df (x) =

(

µx(1/x) +
1

2
σ2x2(−1/x2)

)

dt + σx(1/x)dW

=
(

µ− σ2/2
)

dt + σdW

• Note: naive derivation would have used dy = dx/x and hence

dy = µdt + σdW wrong unless σ = 0!



Just for Completeness: Multivariate Case

• Let x ∈ R
m. For fixed x , define the m ×m covariance matrix

σ2(x) = σ(x)σ(x)′

• Ito’s Lemma:

df (x) =





n
∑

i=1

µi(x)
∂f (x)

∂xi
+

1

2

m
∑

i=1

m
∑

j=1

σ2
ij(x)

∂2f (x)

∂xixj



 dt

+
m
∑

i=1

σi (x)
∂f (x)

∂xi
dWi

• In vector notation

df (x) =

(

∇x f (x) · µ(x) +
1

2
tr
(

∆x f (x)σ
2(x)

)

)

dt+∇x f (x)·σ(x)dW

• ∇x f (x): gradient of f (dimension m × 1)

• ∆x f (x): Hessian of f (dimension m ×m).



Kolmogorov Forward Equations

• Let x be a scalar diffusion

dx = µ(x)dt + σ(x)dW , x(0) = x0

• Suppose we’re interested in the evolution of the distribution

of x , f (x , t), and in particular in the limit limt→∞ f (x , t).

• Natural thing to care about especially in heterogenous agent

models

• Example 1: x = wealth

• µ(x) determined by savings behavior and return to investments

• σ(x) by return risk.

• microfound later

• Example 2: x = city size, will cover momentarily



Kolmogorov Forward Equations

• Fact: Given an initial distribution f (x , 0) = f0(x), f (x , t)

satisfies the PDE

∂f (x , t)

∂t
= − ∂

∂x
[µ(x)f (x , t)] +

1

2

∂2

∂x2
[σ2(x)f (x , t)]

• This PDE is called the “Kolmogorov Forward Equation”

• Note: in math this often called “Fokker-Planck Equation”

• Can be extended to case where x is a vector as well.

• Corollary: if a stationary distribution, limt→∞ f (x , t) = f (x)

exists, it satisfies the ODE

0 = − d

dx
[µ(x)f (x)] +

1

2

d2

dx2
[σ2(x)f (x)]



Just for Completeness: Multivariate Case

• Let x ∈ R
m.

• As before, define the m ×m covariance matrix

σ2(x) = σ(x)σ(x)′

• The Kolmogorov Forward Equation is

∂f (x , t)

∂t
= −

m
∑

i=1

∂

∂xi
[µi(x)f (x , t)]+

1

2

m
∑

i=1

m
∑

j=1

∂2

∂x2
[σ2

ij(x)f (x , t)]



Application: Stationary Distribution of RBC Model

• Recall RBC Model

ρV (k ,A) =max
c

U(c) + Vk(k ,A)[AF (k) − δk − c]

+ VA(k ,A)µ(A) +
1

2
VAA(k ,A)σ

2(A)

• Denote the optimal policy function by

k̇(k ,A) = AF (k)− δk − c(k ,A)

• Then f (k ,A, t) solves

∂f (k ,A, t)

∂t
=− ∂

∂k
[k̇(k ,A)f (k ,A, t)]

− ∂

∂A
[µ(A)f (k ,A, t)] +

1

2

∂2

∂A2
[σ2(A)f (k ,A, t)]

• Can discretize using FD method, run forward, see if it

converges to stationary distribution.



Application: Power Laws

• See Gabaix (2009), “Power Laws in Economics and Finance,”

very nice, very accessible!

• Pareto (1896!!!): upper-tail distribution of number of people

with an income or wealth S greater than a large x is

proportional to 1/xζ for some ζ > 0

Pr(S > x) = kx−ζ

• Definition: We say that a variable, x , follows a power law

(PL) if there exist k > 0 and ζ > 0 such that

Pr(S > x) = kx−ζ , all x

• x follows a PL ⇔ x has a Pareto distribution

• Holds for surprisingly many variables.



History Interlude

Vilfredo Pareto Kiyoshi Ito Andrei Kolmogorov



City Size

• Order cities in US by size (NY as first, LA as second, etc)

• Graph ln Rank (ln RankNY = ln 1, ln RankLA = ln 2) vs. ln Size

• Basically plot log quantiles ln Pr(S > x) against ln x



City Size

• Surprise 1: straight line, i.e. city size follows a PL

Pr(S > x) = kx−ζ

• Surprise 2: slope of line ≈ −1, regression:

ln Rank = 10.53 − 1.005 ln Size

i.e. city size follows a PL with exponent ζ ≈ 1

Pr(S > x) = kx−1.

• A power law with exponent ζ = 1 is called “Zipf’s law”

• Two natural questions:

(1) Why does city size follow a power law?

(2) Why on earth is ζ ≈ 1 rather than any other number?



Where Do Power Laws Come from?

• Gabaix’s answer: random growth

• Economy with continuum of cities.

• S i
t : size of city i at time t

S i
t+1 = γit+1S

i
t , γit+1 ∼ f (γ) (RG)

• S i
t follows random growth process ⇔ log S i

t follows random

walk.

• Gabaix shows: (RG) + friction (e.g. minimum size) ⇒ power

law. Use “Champernowne’s equation”

• Easier: continuous time approach.



Random Growth Process in Continuous Time

• Consider random growth process over time intervals of length

∆t

S i
t+∆t = γit+∆tS

i
t

• Assume in addition that γit+∆t takes the particular form

γit+∆t = 1 + g∆t + vεit
√
∆t, εit ∼ N(0, 1)

• Substituting in

S i
t+∆t − S i

t = (g∆t + vεit
√
∆t)S i

t

• Or as ∆t → 0

dS i
t = gS i

tdt + vS i
tdW

i
t

i.e. a geometric Brownian motion!



Stationary Distribution

• Assumption: city size follows random growth process

dS i
t = gS i

tdt + vS i
tdW

i
t

• Does this have a stationary distribution? No! In fact

log S i
t ∼ N((g − v2/2)t, v2t)

⇒ distribution explodes.

• Gabaix insight: random growth process + friction does have a

stationary distribution and that’s a PL

• Simplest possible friction: minimum size Smin. If process goes

below Smin it is brought back to Smin (“reflecting barrier”)



Stationary Distribution

• Use Kolmogorov Forward Equation.

• Recall: stationary distribution satisfies

0 = − d

dx
[µ(x)f (x)] +

1

2

d2

dx2
[σ2(x)f (x)]

• Here geometric Brownian motion: µ(x) = gx , σ2(x) = v2x2

0 = − d

dx
[gxf (x)] +

1

2

d2

dx2
[v2x2f (x)]



Stationary Distribution

• Claim: solution is a Pareto distribution, f (x) = S
ζ
minx

−ζ−1

• Proof: Guess f (x) = Cx−ζ−1 and verify

0 = − d

dx
[gxCx−ζ−1] +

1

2

d2

dx2
[v2x2Cx−ζ−1]

= Cx−ζ−1

[

gζ +
v2

2
(ζ − 1)ζ

]

• This is a quadratic equation with two roots ζ = 0 and

ζ = 1− 2g

v2

• For mean to exist, need ζ > 1 ⇒ impose g < 0.

• Remains to pin down C . We need

1 =

∫

∞

Smin

f (x)dx =

∫

∞

Smin

Cx−ζ−1dx ⇒ C = S
ζ
min.�



Zipf’s Law

• Why would Zipf’s Law (ζ = 1) hold? We have that

S̄ =

∫

∞

Smin

xf (x)dx =
ζ

ζ − 1
Smin

⇒ ζ =
1

1− Smin/S̄
→ 1 as Smin/S̄ → 0.

• Zip’s law obtains as friction becomes small.



Alternative Friction: Death

• No minimum size.

• Instead: die at Poisson rate δ, get reborn at S∗.

• Can show: correct way of extending KFE (for x 6= S∗) is

∂f (x , t)

∂t
= −δf (x , t)− ∂

∂x
[µ(x)f (x , t)]+

1

2

∂2

∂x2
[

σ2(x)f (x , t)
]

• Stationary f (x) satisfies (recall µ(x) = gx , σ2(x) = v2x2)

0 = −δf (x) − d

dx
[gxf (x , t)] +

1

2

d2

dx2

[

σ2x2f (x)
]

(KFE’)



Alternative Friction: Death

• To solve (KFE’), guess f (x) = Cx−ζ−1

0 = −δ + ζg +
v2

2
ζ(ζ − 1)

• Two roots: ζ+ > 0 and ζ− < 0. General solution to (KFE’):

⇒ f (x) = C−x
−ζ−−1 + C+x

−ζ+−1 for x 6= S∗

• Need solution to be integrable

∫

∞

0
f (x)dx = f (S∗) +

∫ S∗

0
f (x)dx +

∫

∞

S∗

f (x)dx < ∞

• Hence C− = 0 for x > S∗, otherwise f (x) explodes as x → ∞.

• And C+ = 0 for x < S∗, otherwise f (x) explodes as x → 0.



Alternative Friction: Death

• Solution is a Double Pareto distribution:

f (x) =











C (x/S∗)
−ζ−−1 for x < S∗

C (x/S∗)
−ζ+−1 for x > S∗
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Alternative Friction: Death

• Again, Zipf’s Law (ζ = 1) obtains as friction gets small.

Here: δ → 0.

• Other cases in Gabaix’s paper:

(1) Extension to jump processes

(2) Approximate power laws with generalized growth process

dSt

St
= g(St)dt + v(St)dt


