Lecture 5: Competitive Equilibrium in the Growth Model

ECO 503: Macroeconomic Theory I

Benjamin Moll

Princeton University

Fall 2014

Competitive Eqm in the Growth Model

- Recall two issues we are interested in regarding resource allocation problems
(1) efficient allocations
(2) decentralized equilibrium allocations
- So far did (1). Now consider (2).
- Focus on particular decentralized equilibrium concept: competitive equilibrium
- see Lecture 1
- benchmark notion of decentralized eqm, but not only one

Competitive Eqm in the Growth Model

- Static economies: one way to formulate CE
- Dynamic economies: three ways to formulate CE
(1) "Arrow-Debreu CE" (ADCE)
(2) "Sequence of Markets CE" (SOMCE)
(3) "Recursive CE" (RCE)
- Outcomes same for all three. Just different representations.
- Begin with ADCE
- extension of static CE
- but defining commodities as pairs of goods \times time

Preliminaries

- Detail to consider in economy with capital: who owns capital?
- households who then rent it to firms?
- firms who own capital who are in turn owned by households?
- reality: see some of each
- Turns out this is of no substantive importance in this setting
- lecture: assume capital owned by HH and rented to firms
- homework: other extreme
- Also assume single "stand-in" firm
- homework: show that this is harmless
- We also go back to discrete-time formulation

ADCE

- Definition: An ADCE for the growth model are sequences $\left\{c_{t}^{h}, h_{t}^{h}, k_{t}^{h}, k_{t}^{f}, h_{t}^{f}, p_{t}, w_{t}, R_{t}\right\}_{t=0}^{\infty}$ s.t.
(1) (HH max) Taking $\left\{p_{t}, w_{t}, R_{t}\right\}$ as given, $\left\{c_{t}^{h}, h_{t}^{h}, k_{t}^{h}\right\}$ solves

$$
\begin{aligned}
& \max _{\left\{c_{t}^{h}, h_{t}^{h}, k_{t}^{h}\right\}} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \quad \text { s.t. } \\
& \sum_{t=0}^{\infty} p_{t}\left(c_{t}^{h}+k_{t+1}^{h}-(1-\delta) k_{t}^{h}\right) \leq \sum_{t=0}^{\infty}\left(R_{t} k_{t}+w_{t} h_{t}\right) \\
& c_{t}^{h} \geq 0, \quad 0 \leq h_{t}^{h} \leq 1, \quad k_{t+1}^{h} \geq 0, \quad k_{0}^{h}=\bar{k}_{0}
\end{aligned}
$$

(2) (Firm max) Taking $\left\{p_{t}, w_{t}, R_{t}\right\}$ as given, $\left\{k_{t}^{f}, h_{t}^{f}\right\}$ solves

$$
\max _{\left\{k_{t}^{f}, h_{t}^{f}\right\}} \sum_{t=0}^{\infty}\left(p_{t} F\left(k_{t}^{f}, h_{t}^{f}\right)-w_{t} h_{t}^{f}-R_{t} k_{t}^{f}\right) \quad k_{t}^{f} \geq 0, \quad h_{t}^{f} \geq 0
$$

(3) (Market clearing) For each t :

$$
k_{t}^{h}=k_{t}^{f}, \quad h_{t}^{h}=h_{t}^{f}, \quad c_{t}^{h}+k_{t+1}^{h}-(1-\delta) k_{t}^{h}=F\left(k_{t}^{f}, h_{t}^{f}\right)
$$

Comments

- Single budget constraint for HH
- Prices take care of discounting implicitly
- Everything happens at $t=0$

Simplifying

- An ADCE for the growth model are sequences $\left\{c_{t}, h_{t}, k_{t}, p_{t}, w_{t}, R_{t}\right\}_{t=0}^{\infty}$ s.t.
(1) (HH max) Taking $\left\{p_{t}, w_{t}, R_{t}\right\}$ as given, $\left\{c_{t}, h_{t}, k_{t}\right\}$ solves

$$
\begin{aligned}
& \max _{\left\{c_{t}, h_{t}, k_{t}\right\}} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \quad \text { s.t. } \\
& \sum_{t=0}^{\infty} p_{t}\left(c_{t}+k_{t+1}-(1-\delta) k_{t}\right) \leq \sum_{t=0}^{\infty}\left(R_{t} k_{t}+w_{t} h_{t}\right) \\
& c_{t} \geq 0, \quad 0 \leq h_{t} \leq 1, \quad k_{t+1} \geq 0, \quad k_{0}=\bar{k}_{0}
\end{aligned}
$$

(2) (Firm max) Taking $\left\{p_{t}, w_{t}, R_{t}\right\}$ as given, $\left\{k_{t}, h_{t}\right\}$ solves

$$
\max _{\left\{k_{t}, h_{t}\right\}} \sum_{t=0}^{\infty}\left(p_{t} F\left(k_{t}, h_{t}\right)-w_{t} h_{t}-R_{t} k_{t}\right) \quad k_{t} \geq 0, \quad h_{t} \geq 0
$$

(3) Market clearing) For each t :

$$
c_{t}+k_{t+1}-(1-\delta) k_{t}=F\left(k_{t}, h_{t}\right)
$$

(k and h markets clear implicitly)

Characterizing ADCE

- First Welfare Theorem applies, so could simply use fact that ADCE allocation $=$ planner's allocation
- But will later consider environments with various distortions (taxes, monopoly power, financial frictions) in which this fails
- \Rightarrow want to know how to solve for ADCE even when First Welfare Theorem fails. Consider such method now.
- General idea:
- for each piece of ADCE: max problem \Rightarrow necessary conditions
- + market clearing

Characterizing ADCE

- Necessary conditions for consumer problem ($h_{t}=1$ wlog)

$$
\begin{align*}
& c_{t}: \quad \beta^{t} u^{\prime}\left(c_{t}\right)=\lambda p_{t}, \quad \lambda=\text { multiplier on b.c. } \tag{1}\\
& k_{t+1}: \quad \lambda p_{t}+\lambda\left[-p_{t+1}(1-\delta)-R_{t+1}\right]=0 \tag{2}\\
& \sum_{t=0}^{\infty} p_{t}\left(c_{t}+k_{t+1}-(1-\delta) k_{t}\right) \leq \sum_{t=0}^{\infty}\left(R_{t} k_{t}+w_{t}\right) \tag{3}\\
& \text { TVC : } \quad \lim _{T \rightarrow \infty} \beta^{T} u^{\prime}\left(c_{T}\right) k_{T+1}=0 \tag{4}\\
& \text { initial : } \quad k_{0}=\bar{k}_{0} \tag{5}
\end{align*}
$$

- Necessary conditions for firm problem

$$
\begin{align*}
& p_{t} F_{k}\left(k_{t}, h_{t}\right)=R_{t} \tag{6}\\
& p_{t} F_{h}\left(k_{t}, h_{t}\right)=w_{t} \tag{7}
\end{align*}
$$

- Market clearing

$$
\begin{equation*}
c_{t}+k_{t+1}-(1-\delta) k_{t}=F\left(k_{t}, h_{t}\right) \tag{8}
\end{equation*}
$$

Characterizing ADCE: TVC?

- As before, can think of TVC (4) as coming from finite horizon problem

$$
\max _{\left\{c_{t}, h_{t}, k_{t}\right\}} \sum_{t=0}^{T} \beta^{t} u\left(c_{t}\right) \quad \text { s.t. }
$$

$$
\sum_{t=0}^{T} p_{t}\left(c_{t}+k_{t+1}-(1-\delta) k_{t}\right) \leq \sum_{t=0}^{T}\left(R_{t} k_{t}+w_{t} h_{t}\right), \quad k_{t+1} \geq 0
$$

- Denote multipliers by λ, μ_{t}, necessary conditions at $t=T$ are

$$
\begin{aligned}
\beta^{T} u^{\prime}\left(c_{T}\right) & =\lambda p_{T} \\
\lambda p_{T} & =\mu_{T} \quad \Rightarrow \quad \beta^{T} u^{\prime}\left(c_{T}\right) k_{T+1}=0 \\
\mu_{T} k_{T+1} & =0
\end{aligned}
$$

Characterizing ADCE

- Use (1) at t and $t+1$

$$
\begin{equation*}
\frac{u^{\prime}\left(c_{t}\right)}{\beta u^{\prime}\left(c_{t+1}\right)}=\frac{p_{t}}{p_{t+1}} \tag{9}
\end{equation*}
$$

- From (2)

$$
\begin{aligned}
& \frac{p_{t}}{p_{t+1}}=\frac{R_{t+1}}{p_{t+1}}+1-\delta \\
\Rightarrow & \frac{u^{\prime}\left(c_{t}\right)}{\beta u^{\prime}\left(c_{t+1}\right)}=\frac{R_{t+1}}{p_{t+1}}+1-\delta
\end{aligned}
$$

- From (6)

$$
\begin{align*}
& \frac{R_{t}}{p_{t}}=F_{k}\left(k_{t}, 1\right)=f^{\prime}\left(k_{t}\right) \\
\Rightarrow \quad & \frac{u^{\prime}\left(c_{t}\right)}{\beta u^{\prime}\left(c_{t+1}\right)}=f^{\prime}\left(k_{t+1}\right)+1-\delta \tag{10}
\end{align*}
$$

Characterizing ADCE

- Recall

$$
\begin{equation*}
\frac{u^{\prime}\left(c_{t}\right)}{\beta u^{\prime}\left(c_{t+1}\right)}=f^{\prime}\left(k_{t+1}\right)+1-\delta \tag{10}
\end{equation*}
$$

- (10) + TVC (4) + initial condition (5) + market clearing (8) $=$ same set of equations as for SP problem
- Hence: ADCE allocation is the same for the SP problem
- How get prices?
- can always normalize one price to unity: wlog set $p_{0}=1$
- get R_{0}, w_{0} from (6) and (7) at $t=0$
- get p_{1} from (9) given c_{0}, c_{1}, p_{0}
- get R_{1}, w_{1} from (6) and (7) at $t=1$ given p_{1}
- ...

Aside: Walras' Law

- Q: Why didn't we use budget constraint (3)?
- A: because it is implied by the other equations, in particular firm's problem + market clearing (8) \Rightarrow (3)
- Firm's problem and market clearing are

$$
\begin{align*}
& \sum_{t=0}^{\infty}\left(p_{t} F\left(k_{t}, h_{t}\right)-w_{t} h_{t}-R_{t} k_{t}\right)=0 \tag{11}\\
& c_{t}+k_{t+1}-(1-\delta) k_{t}=F\left(k_{t}, h_{t}\right) \tag{12}
\end{align*}
$$

Substituting (12) into (11) gives (3):

$$
\sum_{t=0}^{\infty}\left[p_{t}\left(c_{t}+k_{t+1}-(1-\delta) k_{t}\right)-w_{t} h_{t}-R_{t} k_{t}\right]=0
$$

- This is "Walras' Law" http://en.wikipedia.org/wiki/Walras'_law
- very general: all budget constraints \Rightarrow resource constraint
- useful check when writing models: if Walras' Law doesn't hold, you did something wrong (e.g. forgot term in mkt clearing)

Steady State ADCE

- Definition: A St.st. ADCE is a value of k^{*} and an ADCE for the economy with $\bar{k}_{0}=k^{*}$ s.t. $k_{t}=k^{*}\left(\right.$ and $\left.c_{t}=c^{*}\right)$ for all t.
- Clearly from (9)

$$
\frac{1}{\beta}=f^{\prime}\left(k^{*}\right)+1-\delta
$$

- $\Rightarrow k^{*}$ same as in SP problem
- Question: what do you think prices look like in a st.st. ADCE?
- $p_{t}=$ constant?
- $R_{t}=$ constant?
- $w_{t}=$ constant?

Steady State ADCE

- Let's work it out
- Have

$$
\frac{u^{\prime}\left(c^{*}\right)}{\beta u^{\prime}\left(c^{*}\right)}=\frac{p_{t}}{p_{t+1}} \quad \Rightarrow \quad \frac{p_{t+1}}{p_{t}}=\beta
$$

- normalizing $p_{0}=1$

$$
p_{t}=\beta^{t}
$$

- Also

$$
\frac{R_{t}}{p_{t}}=F_{k}\left(k^{*}, 1\right), \quad \frac{w_{t}}{p_{t}}=F_{h}\left(k^{*}, 1\right)
$$

- Summary:
- $R_{t} / p_{t}, w_{t} / p_{t}$ constant
- R_{t}, w_{t}, p_{t} decreasing at rate β
- So prices are not constant in st.st. ADCE
- prices implicitly reflect discounting of future values
- price of future output is lower
- return to future work is lower

Alternative Pricing Convention

- Denote factor prices relative to output price in each period
- Write budget constraint as

$$
\sum_{t=0}^{\infty} p_{t}\left(c_{t}+k_{t+1}-(1-\delta) k_{t}\right) \leq \sum_{t=0}^{\infty} p_{t}\left(\tilde{R}_{t} k_{t}+\tilde{w}_{t} h_{t}\right)
$$

- This formulation is useful for thinking about real rates of return and interest rates in ADCE
- no explicit credit market in ADCE
- but can infer implicit real interest rate on one-period ahead borrowing and lending

Alternative Pricing Convention

- Denote real interest rate by r_{t}
- Definition: $1+r_{t+1}=$ amount of consumption you can get tomorrow by giving up unit of consumption today
- giving up one unit today saves p_{t}
- with this you buy p_{t} / p_{t+1} tomorrow

$$
\Rightarrow 1+r_{t+1}=\frac{p_{t}}{p_{t+1}}
$$

- In steady state, $1+r_{t}=1 / \beta$
- Real rate of return on capital: from HH max. w.r.t. k_{t+1}

$$
p_{t}=p_{t+1} \tilde{R}_{t+1}+p_{t+1}(1-\delta)
$$

- buy 1 unit of k today, get $p_{t+1} \tilde{R}_{t+1}+p_{t+1}(1-\delta)$ tomorrow
- must equal cost of doing so p_{t}

$$
1+r_{t+1}=\tilde{R}_{t+1}+1-\delta \Rightarrow \tilde{R}_{t}=r_{t}+\delta
$$

- Terminology: rental rate $\tilde{R}_{t}=$ "user cost of capital" $r_{t}+\delta$

