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Outline

(1) Hamilton-Jacobi-Bellman equations in deterministic settings

(with derivation)

(2) Numerical solution: finite difference method

(3) Stochastic differential equations



Hamilton-Jacobi-Bellman Equation: Some “History”

William Hamilton Carl Jacobi Richard Bellman

• Aside: why called “dynamic programming”?
• Bellman: “Try thinking of some combination that will possibly
give it a pejorative meaning. It’s impossible. Thus, I thought
dynamic programming was a good name. It was something
not even a Congressman could object to. So I used it as an
umbrella for my activities.” http://www.ingre.unimore.it/or/corsi/vecchi_

corsi/complementiro/materialedidattico/originidp.pdf

http://www.ingre.unimore.it/or/corsi/vecchi_corsi/complementiro/materialedidattico/originidp.pdf
http://www.ingre.unimore.it/or/corsi/vecchi_corsi/complementiro/materialedidattico/originidp.pdf


Hamilton-Jacobi-Bellman Equations

• Recall the generic deterministic optimal control problem from

Lecture 1:

V (x0) = max
u(t)∞t=0

∫ ∞

0
e−ρth (x (t) , u (t)) dt

subject to the law of motion for the state

ẋ (t) = g (x (t) , u (t)) and u (t) ∈ U

for t ≥ 0, x(0) = x0 given.

• ρ ≥ 0: discount rate

• x ∈ X ⊆ Rm: state vector

• u ∈ U ⊆ Rn: control vector

• h : X × U → R: instantaneous return function



Example: Neoclassical Growth Model

V (k0) = max
c(t)∞t=0

∫ ∞

0
e−ρtU(c(t))dt

subject to
k̇ (t) = F (k(t))− δk(t)− c(t)

for t ≥ 0, k(0) = k0 given.

• Here the state is x = k and the control u = c

• h(x , u) = U(u)

• g(x , u) = F (x)− δx − u



Generic HJB Equation

• The value function of the generic optimal control problem

satisfies the Hamilton-Jacobi-Bellman equation

ρV (x) = max
u∈U

h(x , u) + V ′(x) · g(x , u)

• In the case with more than one state variable m > 1,

V ′(x) ∈ Rm is the gradient of the value function.



Example: Neoclassical Growth Model

• “cookbook” implies:

ρV (k) = max
c

U(c) + V ′(k)[F (k)− δk − c]

• Proceed by taking first-order conditions etc

U ′(c) = V ′(k)



Derivation from Discrete-time Bellman

• Here: derivation for neoclassical growth model.

• Extra class notes: generic derivation.

• Time periods of length ∆

• discount factor

β(∆) = e−ρ∆

• Note that lim∆→0 β(∆) = 1 and lim∆→∞ β(∆) = 0.

• Discrete-time Bellman equation:

V (kt) = max
ct

∆U(ct) + e−ρ∆V (kt+∆) s.t.

kt+∆ = ∆[F (kt)− δkt − ct ] + kt



Derivation from Discrete-time Bellman

• For small ∆ (will take ∆ → 0), e−ρ∆ = 1− ρ∆

V (kt) = max
ct

∆U(ct) + (1− ρ∆)V (kt+∆)

• Subtract (1− ρ∆)V (kt) from both sides

ρ∆V (kt) = max
ct

∆U(ct) + (1−∆ρ)[V (kt+∆)− V (kt)]

• Divide by ∆ and manipulate last term

ρV (kt) = max
ct

U(ct) + (1−∆ρ)
V (kt+∆)− V (kt)

kt+∆ − kt

kt+∆ − kt
∆

Take ∆ → 0

ρV (kt) = max
ct

U(ct) + V ′(kt)k̇t



Connection Between HJB Equation and Hamiltonian

• Hamiltonian

H(x , u, λ) = h(x , u) + λg(x , u)

• Bellman

ρV (x) = max
u∈U

h(x , u) + V ′(x)g(x , u)

• Connection: λ(t) = V ′(x(t)), i.e. co-state = shadow value

• Bellman can be written as

ρV (x) = max
u∈U

H(x , u,V ′(x))

• Hence the “Hamilton” in Hamilton-Jacobi-Bellman

• Can show: playing around with FOC and envelope condition

gives conditions for optimum from Lecture 1.



Numerical Solution: Finite Difference Method

• Example: Neoclassical Growth Model

ρV (k) = max
c

U(c) + V ′(k)[F (k)− δk − c]

• Functional forms

U(c) =
c1−σ

1− σ
, F (k) = kα

• See material at

http://www.princeton.edu/~moll/HACTproject.htm

particularly

• http://www.princeton.edu/~moll/HACTproject/HACT_Additional_Codes.pdf

• Code 1: http://www.princeton.edu/~moll/HACTproject/HJB_NGM.m

• Code 2: http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m

http://www.princeton.edu/~moll/HACTproject.htm
http://www.princeton.edu/~moll/HACTproject/HACT_Additional_Codes.pdf
http://www.princeton.edu/~moll/HACTproject/HJB_NGM.m
http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m


Diffusion Processes

• A diffusion is simply a continuous-time Markov process (with

continuous sample paths, i.e. no jumps)

• Simplest possible diffusion: standard Brownian motion

(sometimes also called “Wiener process”)

• Definition: a standard Brownian motion is a stochastic

process W which satisfies

W (t +∆t)−W (t) = εt
√
∆t, εt ∼ N(0, 1), W (0) = 0

• Not hard to see

W (t) ∼ N(0, t)

• Continuous time analogue of a discrete time random walk:

Wt+1 = Wt + εt , εt ∼ N(0, 1)



Standard Brownian Motion

• Note: mean zero, E(W (t)) = 0...

• ... but blows up Var(W (t)) = t.



Brownian Motion

• Can be generalized

x(t) = x(0) + µt + σW (t)

• Since E(W (t)) = 0 and Var(W (t)) = t

E[x(t)− x(0)] = µt, Var [x(t)− x(0)] = σ2t

• This is called a Brownian motion with drift µ and variance σ2

• Can write this in differential form as

dx(t) = µdt + σdW (t)

where dW (t) ≡ lim∆t→0 εt
√
∆t, with εt ∼ N(0, 1)

• This is called a stochastic differential equation

• Analogue of stochastic difference equation:

xt+1 = µt + xt + σεt , εt ∼ N(0, 1)





Further Generalizations: Diffusion Processes

• Can be generalized further (suppressing dependence of x and

W on t)

dx = µ(x)dt + σ(x)dW

where µ and σ are any non-linear etc etc functions.

• This is called a “diffusion process”

• µ(·) is called the drift and σ(·) the diffusion.

• all results can be extended to the case where they depend on

t, µ(x , t), σ(x , t) but abstract from this for now.

• The amazing thing about diffusion processes: by choosing

functions µ and σ, you can get pretty much any

stochastic process you want (except jumps)



Example 1: Ornstein-Uhlenbeck Process

• Brownian motion dx = µdt + σdW is not stationary (random

walk). But the following process is

dx = θ(x̄ − x)dt + σdW

• Analogue of AR(1) process, autocorrelation e−θ ≈ 1− θ

xt+1 = θx̄ + (1− θ)xt + σεt

• That is, we just choose

µ(x) = θ(x̄ − x)

and we get a nice stationary process!

• This is called an “Ornstein-Uhlenbeck process”



Ornstein-Uhlenbeck Process

• Can show: stationary distribution is N(x̄ , σ2/(2θ))



Example 2: “Moll Process”

• Design a process that stays in the interval [0, 1] and

mean-reverts around 1/2

µ(x) = θ (1/2− x) , σ(x) = σx(1− x)

dx = θ (1/2− x) dt + σx(1− x)dW

• Note: diffusion goes to zero at boundaries σ(0) = σ(1) = 0 &

mean-reverts ⇒ always stay in [0, 1]



Other Examples

• Geometric Brownian motion:

dx = µxdt + σxdW

x ∈ [0,∞), no stationary distribution:

log x(t) ∼ N((µ− σ2/2)t, σ2t).

• Feller square root process (finance: “Cox-Ingersoll-Ross”)

dx = θ(x̄ − x)dt + σ
√
xdW

x ∈ [0,∞), stationary distribution is Gamma(γ, 1/β), i.e.

f∞(x) ∝ e−βxxγ−1, β = 2θx̄/σ2, γ = 2θx̄/σ2

• Other processes in Wong (1964), “The Construction of a

Class of Stationary Markoff Processes.”



Next Time

(1) Hamilton-Jacobi-Bellman equations in stochastic settings

(without derivation)

(2) Ito’s Lemma

(3) Kolmogorov Forward Equations

(4) Application: Power laws (Gabaix, 2009)


