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Outline

(1) Hamilton-Jacobi-Bellman equations in deterministic settings

(with derivation)
(2) Numerical solution: finite difference method

(3) Stochastic differential equations



Hamilton-Jacobi-Bellman Equation: Some “History”

William Hamilton Carl Jacobi Richard Bellman

e Aside: why called “dynamic programming”?

e Bellman: “Try thinking of some combination that will possibly
give it a pejorative meaning. It's impossible. Thus, | thought
dynamic programming was a good name. It was something
not even a Congressman could object to. So | used it as an
umbrella for my activities.” http://www.ingre.unimore.it/or/corsi/vecchi_

corsi/complementiro/materialedidattico/originidp.pdf


http://www.ingre.unimore.it/or/corsi/vecchi_corsi/complementiro/materialedidattico/originidp.pdf
http://www.ingre.unimore.it/or/corsi/vecchi_corsi/complementiro/materialedidattico/originidp.pdf

Hamilton-Jacobi-Bellman Equations

Recall the generic deterministic optimal control problem from

Lecture 1:

V (x0) = max /Oooepfh(x(t),u(t))dt

u(t)Zo

subject to the law of motion for the state
x(t)=g(x(t),u(t)) and u(t) e U

for t > 0, x(0) = xo given.
p > 0: discount rate

x € X CR™: state vector
ue U CR"™ control vector

h: X x U — R: instantaneous return function



Example: Neoclassical Growth Model

V (ko) = max /OOO et U(c(t))dt

c(t)2,

subject to

for t > 0, k(0) = ko given.
e Here the state is x = k and the control u = ¢
o h(x,u) = U(u)
e g(x,u)=F(x)—0x—u



Generic HJB Equation

e The value function of the generic optimal control problem

satisfies the Hamilton-Jacobi-Bellman equation

pV(x) = max h(x,u) + V/(x) - g(x, 1)

e |n the case with more than one state variable m > 1,

V/(x) € R™ is the gradient of the value function.



Example: Neoclassical Growth Model

e “cookbook” implies:
pVI(k) = max U(c) + V/(K)[F(k) - 5k — ]

e Proceed by taking first-order conditions etc



Derivation from Discrete-time Bellman

Here: derivation for neoclassical growth model.
Extra class notes: generic derivation.
Time periods of length A

discount factor
B(A) = e "8

Note that lima_0 8(A) =1 and lima_o B(A) = 0.

Discrete-time Bellman equation:
V(k:) = max AU(ct) + e P2V (kern) sit.
Ct

kt+A = A[F(kt) — 5kt — Ct] —+ kt



Derivation from Discrete-time Bellman

e For small A (will take A —0), e P2 =1— pA
V(kt) = max AU(ct) + (1 = pA)V(kern)
e Subtract (1 — pA)V/(k:) from both sides
pAV(k) = max AU(e) + (1~ Bp)[V(kesa) — V(ke)

e Divide by A and manipulate last term

V(kira) = V(ke) keva — ke
kern — ke A

pV(k) = max U(c) + (1 - Ap)
Take A — 0

p\/(kt) = mCaX U(Ct) + V/(kt)kt



Connection Between HJB Equation and Hamiltonian

e Hamiltonian
H(x,u, ) = h(x, u) + \g(x, u)

Bellman

pV(x) = max h(x,u) + V'(x)g(x, u)

Connection: A(t) = V/(x(t)), i.e. co-state = shadow value

Bellman can be written as

pV(x) = max H(x,u, V'(x))

uelU

Hence the “"Hamilton” in Hamilton-Jacobi-Bellman

Can show: playing around with FOC and envelope condition

gives conditions for optimum from Lecture 1.



Numerical Solution: Finite Difference Method

e Example: Neoclassical Growth Model
pV (k) =max U(c)+ V'(k)[F(k) — 6k — ]
c

e Functional forms

e See material at

http://www.princeton.edu/~moll/HACTproject.htm
particularly

® http://www.princeton.edu/~moll/HACTproject/HACT_Additional_Codes.pdf
e Code 1: http://www.princeton.edu/~moll/HACTproject/HJB_NGM.m

e Code 2: http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m


http://www.princeton.edu/~moll/HACTproject.htm
http://www.princeton.edu/~moll/HACTproject/HACT_Additional_Codes.pdf
http://www.princeton.edu/~moll/HACTproject/HJB_NGM.m
http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m

Diffusion Processes

A diffusion is simply a continuous-time Markov process (with
continuous sample paths, i.e. no jumps)

Simplest possible diffusion: standard Brownian motion
(sometimes also called “Wiener process”)

Definition: a standard Brownian motion is a stochastic

process W which satisfies
W(t+ At) — W(t) = VAL, e~ N(0,1), W(0)=0

Not hard to see
W(t) ~ N(O,t)

Continuous time analogue of a discrete time random walk:

Wip1 = Wi+, e~ N(0,1)



Standard Brownian Motion




Brownian Motion
Can be generalized
x(t) = x(0) + pt + o W(t)
Since E(W(t)) =0 and Var(W(t)) =t
E[x(t) — x(0)] = ut, Var[x(t) — x(0)] = o°t
This is called a Brownian motion with drift 11 and variance o
Can write this in differential form as

dx(t) = pdt + odW/(t)

where dW(t) = limat—0e:V AL, with £, ~ N(0,1)
This is called a stochastic differential equation

Analogue of stochastic difference equation:

Xer1 = pt + x¢ + oer, ¢~ N(0,1)
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Further Generalizations: Diffusion Processes

Can be generalized further (suppressing dependence of x and
W on t)
dx = p(x)dt + o(x)dW
where 1 and o are any non-linear etc etc functions.
This is called a "diffusion process”
u(+) is called the drift and o(-) the diffusion.

all results can be extended to the case where they depend on

t, p(x,t),o(x, t) but abstract from this for now.

The amazing thing about diffusion processes: by choosing
functions 1 and o, you can get pretty much any

stochastic process you want (except jumps)



Example 1: Ornstein-Uhlenbeck Process

Brownian motion dx = pdt 4+ odW is not stationary (random

walk). But the following process is
dx = 0(x — x)dt + odW
Analogue of AR(1) process, autocorrelation e ~ 1 — 6
Xe41 = O0X + (1 — 0)x¢ + o0&y

That is, we just choose

and we get a nice stationary process!

This is called an “Ornstein-Uhlenbeck process”



e Can

Ornstein-Uhlenbeck Process

Ornstein - Uhlenbeck

dX; = 0y — Xp)dt+odW,

show: stationary distribution is N(x,2/(26))



Example 2: “Moll Process”

e Design a process that stays in the interval [0, 1] and

mean-reverts around 1/2
p(x)=60(1/2 —x), o(x)=o0x(1—x)

dx =6(1/2 — x) dt + ox(1 — x)dW

¢ Note: diffusion goes to zero at boundaries 0(0) = 0(1) =0 &

mean-reverts = always stay in [0, 1]



Other Examples
e Geometric Brownian motion:
dx = pxdt + oxdW
x € [0,00), no stationary distribution:
log x(t) ~ N((pn — 02 /2)t, 5°t).
e Feller square root process (finance: “Cox-Ingersoll-Ross")
dx = 0(x — x)dt + o/xdW
x € [0,00), stationary distribution is Gamma(~y,1/0), i.e.
fo(x) ox e™Px77L B =20%/0%, ~=20x/0?

e Other processes in Wong (1964), “The Construction of a

Class of Stationary Markoff Processes.”



Next Time

(1) Hamilton-Jacobi-Bellman equations in stochastic settings

(without derivation)
(2) Ito's Lemma
(3) Kolmogorov Forward Equations

(4) Application: Power laws (Gabaix, 2009)



